
The Journal of Supercomputing, 4, 357-371 (1990)
@ 1990 Kluwer Academic Publishers, BoslOn. ManufactUred in The Netherland,.

Using Strassen's Algorithm to Accelerate the
Solution of Linear Systems*
DAVID H. BAILEY

NASA Ames Research Center, Mail Srop 7D45-1. Moffett Field, CA 94035

KING LEE

Compurer Science Deparrment. California State Universiry,Bakersfield, C4 93309

HORST D. SIMON

Compurer Sciences Corporatioll, NASA Ames Research Cemer, Mail Srop 7D45-1. Moffett Field. CA 94035

(Received March 1990; final version accepted September 1990.)

Abstract. Strassen's algorithm for fast matrix-matrix multiplication has been implemented for matrices of arbi-

trary shapes on the CRAY-2 and CRAY Y-MP supercomputers. Several techniques have been usCd to reduce the

scratch space requirement for this algorithm while simultaneously preserving a high level of performance. When

the resulting Strassen-based matrix multiply routine is combined with some routines from the new LAPACK

library, LV decomposition can be performed with rates significantly higher than those achieved by conventional

means. We succeeded in factoring a 2048 X 2048 matrix on the CRAY Y-MP at a rate equivalent to 325 MFLOPS.

Key words. Strassen's algorithm, fast matrix multiplication, linear systems, LAPACK, vector computers. AMS

Subject Classification 65F05, 65F30, 68A20. CR Subject Classification F.2.1, G.1.3, G.4

1. Introduction

The fact that matrix multiplication can be performed with fewer than 2n3 arithmetic opera-
tions has been known since 1969, when V, Strassen [1969] published an algorithm that asymp-
totically requires only about 4.7n2.8CT1operations. Since then, other such algorithms have
been discovered, and currently the best known result is due to Coppersmith and Wmograd
[1987], which reduces the exponent of n to only 2.376.Unfortunately, these newer algorithms
are significantly more complicated than Strassen's. To our knowledge a thorough investigation
of the usefulness of these techniques for an actual implementation has not yet been carried
out. It appears that these asymptotically faster algorithms only offer an improvement over
Strassen's scheme when the matrix size n is much larger than currently feasible. Thus
the remainder of this paper will focus on an implementation and analysis of Strassen's
algorithm.

Although Strassen's scheme has been known for over 20 years, only recently has it been
seriously considered for practical usage. Partly this is due to an unfortunate myth that has
persisted within the computer science community regarding the crossover point for Strassen's
algorithm-the size of matrices for which an implementation of Strassen's algorithm becomes
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more efficient than the conventional scheme. For many years it was thought that this level
was well over 1000 x 1000[Gentleman 1988]. Even recently published reference works
have propagated the unfounded assenion (e.g., [Press et al. 1986,p. 76]) that Strassen's
algorithm is not suitablefor matrices of reasonable size. In fact, for somenew workstations,
such as the Sun-4and the SiliconGraphics IRIS 4D, Strassenis fasterfor matrices as small
as 16 x 16. For Cray systems the crossover point is roughly 128,as will be seen later.
so that square matrices of size 2048 on a side can be multiplied nearly tWiceas fast using
a Strassen-based routine (see [Bailey 1988]and below).

Another reason that Strassen's algorithm has not received much attention from practi-
tioners is that it has been widely thought to be numerically unstable. Again, this assertion
is not really true, but instead is a misreading of the paper in which the numerical stability
of Strassen's algorithm was first studied [Miller 1975].In this paper, Miller showed that
if one adopts a very strict definition of numerical stability, then indeed only the conven-
tional scheme is numerically stable. However, if one adopts a slightly weaker definition
of stability,one similarto that used for linear equationsolutions,for example,then Strassen's
algorithm satisfies this condition. The most extensive study of the stability of Strassen's
algorithm is to be found in a recent paper by Higham [1989],Using both theoretical and
empirical techniques, he finds that although Strassen's algorithm is not quite as stable as
the conventional scheme, it appears to be sufficiently stable to be used in a wide variety
of applications. In any event, Strassen's algorithm cenainly appears to be wonh further
study, including implementation in real-world calculations.

This paper will describe in detail the implement<:rionof a Strassen-based routine for
multiplying matricesof arbitrary size and shape (i.e., notjust square power-of-tWomatrices)
on Cray supercomputers. A number of advancedtechniques have been employedto reduce
the scratch space requirementof this implementation,whilepreservinga high levelof perfor-
mance. When the resultingroutine is substitutedfor the Level3 BLASsubroutine SGEMM
[Dongarra et al. 1988a, 1988b]in the newly developed LAPACKpackage [Bischof et al,
1988], it is found that LV decomposition can be performed at rates significantly higher
than with a conventionalmatrix multiply kernel. Thus it appears that Strassen's algorithm
can indeed be used to accelerate practical-sized linear algebra calculations.

This study is based on the authors' implementationof Strassen's algorithm for the CRAY
'Y-MP,and all results are based on this implementation. Since the completionof this study,
however, the authors learned that Cray Research. Inc., has developeda library implemen-
tation of Wmograd'svariation of Strassen's algorithm. Readers interestedin using Strassen's
algorithmon Craysystemsare directedto this routine, whichis knownas SGEMMS,available
under UNICOS 4.0. and later [Cray Research, Inc. 1989].Funhermore in [Higham 1990]
it is pointed out that the mM ESSL library contains routines for real and complex matrix
multiplication by Strassen's method tuned for the mM 3090 machines.

2. Performance of the Strassen Algorithm

The Strassen algorithmmultiplies matrices A and B by partitioning the matrices and recur-
sively forming the products of the submatrices. Let us assume, for the moment. that A
and Bare n X n matrices and that n is a power of 2. If we panition A and B into four
submatrices of equal.size,
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and compUte

P] = (All + A22)(Bll + BI2)
P2 = (A21 + An)(Bl1)
P3 = (Al1)(BI2 - Bn)
P4 = (An)(B21 - Bl1)

Ps = (All + AdB22
P6 = (A2] - Al1)(Bl1 + BJ2)

P7 = (AJ2 - A22)(B21 + Bd, (2)

then it can be seen that

Cl1 = PI + P4 - Ps + P7
CJ2 = P3 + Ps
C21 = P2 + P4

C22 = PI + P3 - P2 + P6 . (3)

If the conventionalmatrix multiplicationalgorithmis usedin (2), thenthere will be approx-
imately 7 .2(11/2)3arithmetic operations in forming the matrix products in (2) and 18. (11/2)2

arithmetic operations involvedin adding and subtracting the submatrices on the right side
of (2) and (3).

Ignoring for the moment the 112terms, we see that the number of arithmetic operations
has been reduced from 2113to (7/8) . 2113arithmetic operations in going from the conven-

tional algorithm to the Strassenalgorithm. Wemay continueto apply the Strassenalgorithm
until the matrices are so small the conventional algorithm is faster for them. Denote this
point as 2Q. The number of times we can apply the reduction is

k = Llog2(11/Q)J 11 > Q.

The total number of arithmetic operations performed by the conventional 113algorithm on
submatrices is

(7/8)k . 2113 ::::: 2Q3-log,' 11log,' = 2QO.2 112.8. (4)

In the following the performance of the computation of the matrix product AB will be
given in MFLOPS, where the MFLOPS for implementations of Strassen's algorithm are
also based on 2n3floating point operations. Since the number of floating point operations
for Strassen's algorithm is actually less than 2n3,we will obtain MFLOPS performance
for the new implementation that occasionally exceeds the peak advertised speed of the
machine. We have chosen this form for expressing performance because the performance
improvementsof the new implementationover the traditionalmatrix multiplicationalgorithm
are expressedmore clearly.All numerical experimentswerecarried out on the CRAY'Y-MP

"
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of the NAS Systems Division of NASA Ames Research Center. This is an early (serial
number 1002)machine with a 6.3-nsec cycletime, and hence a peak performance of 318
MFLOPS per processor. All our results are singleprocessor results. No attempt wasmade
to use all eight processors and multitasking techniques.

The performance of the conventionalmatrix multiplicationalgorithmon vector machines
is not a smooth function of n, but peaks at points when n is a multiple of the vector register
length, drops immediately afterwards, and then increases again to the next multiple of the
vector register length. For the CRAY Y-MPthere is a 14%drop at n = 64, an 8% drop
at n = 128,and a 4% drop at n = 256 (Table 1).All measurements in Table 1were made
on a CRAYY-MPin multiuser mode. The performance in Table 1 was obtained by using
an assembly coded matrix multiplication subroUtineprovided by CrayResearch in SCILIB
[Cray Research, Inc. 1989]. Here we list the average of four runs. Performance may vary
depending on the load.

For the Strassen algorithm, with Q = 64, we expect to see an increase in MFLOPS at
each level of recursion due to the reduced number of operations (ignoring n2 terms). At
n = 130,however,the Strassen algorithm would require sevenmatrix multiplications with
n = 65, and these multiplicationswould be performed at the low rate of about 244 MFLOPS
compared with 269 MFLOPS using the conventionalalgorithm for n = 130(Table 1).The
lower performance would cancel out the gain in reduction in the number of operations
(Figure 1). If, on the other hand, we set Q = 80, we can be sure that the minimum size of
matrices that we multiply is 80 and in this wayavoid the vector length mod 64 = 1 effect
at vector length 65. However, we may still see this effect when n = 258 where we multiply
seven matrices of size 129.But the speed of matrix multiplication of matrices of size 129
is 269 MFLOPS, whereas the speed is 244 MFLOPS when the size is 65 (Figure 2).

The optimal value of Q depends to a large extenton the relative speed of the computation
of n2and n3 terms. To see this let S be the speed of the conventional algorithm, Sl be the

Table 1. Matrix multiplication
perfonnance using the conven-
tional algorithm.

.,",
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n MFLOPS

64 284
65 244
66 247
67 250

128 289
129 267
130 269
131 271

256 291
257 280
258 281
259 282

ex> 296
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speed when computing the n3 terms, Sz be the speed when computing the n2 terms, and
P = S]/S2' Weassume that S ::::Sl and S > S2' For the moment let us consider the n2 terms
as including all operations not involvedin the n3 terms. Thus the n2 terms include moving
submatrices and procedure calls as well as arithmetic operations. To get any gain from the
bottom levelof the recursion the fraction of the time spentin the slowercomputation of the
n2terms must be sufficientlysmallso as not to offseta 10%reductionin the operation count.
In other words, the larger the value of P the less time we must spend in the n2terms. We
can decrease the time spent in the n2terms by increasingQ, the minimal sizeof the matrices
at the lowest level of recursion. Increasing Q has the effect of increasing the number of
operations in the n3terms and decreasing the number of operations in the n2terms. Thus
Strassen will work best (small Q and many levels of recursion) when P is relatively small.

In a detailed analysis of arithmetic operations of the Strassen algorithm, Higham [1989]
has shown that, assuming the speedof scalar multiplication is the same as scalar addition,
Q = 8 minimizes the operation count for square matrices of any size greater than eight.
Since the computations of the n2 terms are slower than those of the n3 terms, the value
of eight will be a lower bound on the optimal value of Q. For machines with conventional
architecture like Sun workstations a reasonable value for optimal Q might be 16. For a
balanced vector machine like the CRAY'Y--MP,chainingand more intensiveuse of registers
for the n3 terms would increase the ratio P and a reasonable value of an optimal Q may
be around 80. While the CRAY-2does not have chaining, it can still produce one addition
and one multiplication result in one clock cycle. It also has fast local memory and slow
main memory, and that would further increase the ratio P. A few measurements indicate
that the optimal value of Q on the CRAY-2is about 200. In view of the complexdependence
of Q on the architecture it seems that the best way to determine Q is heuristically.

The operation count for the n2 terms is 18 . (n/2)2. On vector machines this count is
not a good indication of the time taken to perform the computations because the speed
of computing the n2 terms will be much slower than the speed of computing the n3 terms
for the reasons given above. Let us assume that the time to perform the computation of
the n2terms is C(n/2)2,where we can adjust the value of C to take into account the relative
speed of performing the n2 terms and the n3terms. At the k-th level of recursion, the time
spent on the n2terms is 7k-1 . C(n/2ky The total time spent on the n2 terms is, assuming
k = LZog2(n/Q)J,

[[
n

J
2

[n

J
2 k-j [n ~

J
\2

JT = C 2 + 7 22 +. .. + 7 2"
(5)

- C- 1
8

3 . (fl.8 W' .
(6)

We should first note that each term in the series in equation (5) refers to a level of recur-
sion and that the magnitude of the terms in the series is rapidly increasing. This means
that most of the contribution of the n2 terms occur deep in the recursion. Secondly, the
coefficient of n2.8in (6) will, in general, be comparable to the coefficient of n2.8in (4).
Thirdly, note that k is not a continuousfunction of n, but jumps when n = 2iQ, i = 2, ...
The fraction of time spent in the n2 terms will be at a local maximum at n = 2jQ and
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will decrease as n increases until just before n = i+1Q, at which point another term is
added to the series in (5) and the fraction will take a jump. This accounts for part of the
performance drop at n = 128 and at n = 256 in Figure 1.

Let R be the ratio of the time spent in the n2 terms to the n3terms and T be the total
time to perform the matrix multiplication. Then from (4), (5), and (6) we can see that

C [1 7k-l ]R= 4+'" +41'

[
7

]
k

8 . 2n

(7)

C
- 6Q

(8)

T::: [ C ;j
3Q.8 + 2Q.2j n2.8.

(9)

Flow traces of the Strassen algorithm, with Q = 64, were takenfor n = 128and n = 256,
and R was found to be 0.10and 0.12, respectively. The corresponding values of C turn out
to b~ 90 and 71. Since for /1 = 128the ratio of the number of arithmetic operations per-
formed in the n2terms and in then3terms is about 0.02,we can inferthat, ignoringoverhead,
the speed of the n2 terms is one-fifth the speed of the n3 terms. If one takes a value of
80 for C, then for large n, R will tend toward0.20, and the n2terms will account for about
16% of the coefficient in (9).

If we fix C and n in (9), then T will have a minimum when Q = 2/3C. This value of
Q, Qo, is the value of Q that theoretically minimizes the time to perform matrix multiplica-
tion for square matrices for a particular value of C and n. If we substitute this value into
(8) and (9), we find

1
R=4

5
T = - Q.2n2.8

2 0

- 5 [2 :J .2

- 2 3 Cj n2.8.

Therefore, when Q = Qowe should expect that for square matrices about one-fifth of the
time is spent computing the n2terms. The total time for the matrix multiplication depends
on Q~or C.2 so that the smaller the ratio P, the smaller the coefficient of n2.8.

It is difficult to determine the optimal value Qoover all values of n, especially for vector
machines. First, if n is not a power of 2, that is to say if n has an odd factor, special correc-
tions will have to be made (see below) that will increase the number of operations in the
n2terms. This means that C is a function of n. Secondly,the effectof differentvectorlengths

,
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in the computations may affect C. One problem is that one value of Q may give relatively
good performance on matrices of size N and poor performance for matrices of size M,
and at another value of Q we might have fuir performances for matrices of these sizes.
We saw that with Q = 64 we had good performance when n = 128,but poor performance
when n = 130.With Q = 80 we had fair performance with n = 128 and n = 130 (no
Strassen in both cases). In other words, for every square matrix there may be a different
optimal Q, and the situation for rectangular matrices will be even more complicated. On
the CRAYY-MPwe found a value of 80 for C would yield a Qoof about 57. A value of
80 may be preferable to avoid the vector length mod 64 = 1 effect.

Figure 3 plotsour Strassenagainst the CrayStrassen. The code of the n2terms waswritten
in Fortran for the NAS Strassen and written in assembly for the Cray Strassen. The code
for the n3 terms for both programs were written in assembly. The value of C should be
smaller for the Cray program, and that leads to a smaller value for the coefficient in (9).
The assembly coding of the important order n2 computations probably accounts for the
performance differences observed in Figure 3.

Wehave assumed that at each stage of the recursion we could partition the matrices into
submatrices of size (n/2). In the eventthat n is odd we may multiply matrices of size n - I
and make a correction after the multiplication is performed. The complexityof the correc-
tion will be 0(n2), and the work involvedin the correction is in addition to the n2 terms.
This correction for odd dimensions will be expensive if it occurs in the stages of recursion
corresponding to the last terms of the series in (5). In those cases, not only will there be
large numbersof corrections to be made, but also the correctionswill be made with relatively
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Figure 3. Cray Strassen versus NAS Strassen. NQ = 64.
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Table 2. Multiplication perform-

ance using NAS Strassen.

n MFLOPS

260
26]
262
263
264
265
266
267
268

279
275
268
265
284
280
273
269
288

short vectors. These corrections introducea pattern of variationin performance.For exam-
ple, if Q = 64 and n = 260, then at each stage of the recursion n is even, and no correc-
tions need be made. When n = 261,one correction on a matrix of size261 has to be made.
If n = 262, we have to make seven corrections on matrices of size 131.If '! = 263, we
have to make one correction for a matrix of size 263, and seven for matrices of size 131.
If n = 264 we do not have to make any corrections. This pattern will repeat for the next
four dimensions. Table 2 contains the MFLOPS performance for the Strassen algorithm
when n takes on values from 260 to 268.

The Strassen algorithm can be applied to nonsquare matrices as well as square matrices.
Let A be i x m and B be m x n; the conventionalalgorithm requires approxirr.ately2imn
arithmetic operations. We stop recursion when the minimum of i, m, 11is less than 2Q.
If one or two of the dimensions is much greater than the smallest dimension, then the 112
terms become a smaller fraction of the total operation count, and the reduction in operation
count becomes more pronounced. Table 3 gives the performance for several rectangular
matrices. Wewould like to point out that in 1970Brent used both the odd dimensioncorrec-
tion and Strassen for rectangular matrices in his unpublished report [Brent 1970].

In summary, the performance of the Strassen algorithm is influenced by the following
factors: the reduction in the number of operations, the dimensionsof the matrices on which
the conventional algorithm operates (e.g., 65 versus 127on the Y-MP), the proportion of
the computation due to the n2 terms, and the number of times we have to correct for odd
dimensions.

3. Memory Requirements

The straightforward way of implementing the Strassen algorithm would be to compute the
submatrices Ph P2, ..., P7, appearing in equations (2), and then compute Cn, Cn, C21,
C22.For this method we need two scratch arrays to hold the operands on the right side
of equations (2) and seven scratch arrays to hold the matrices PI, . . . , P7.Then the amount
of scratch space required is 9(n/2)2. At the k-th level of recursion the space requirement
will be 9(n/2k)2.The total space required will be

9n2 (~ + /6 + ... + ;kJ = 3n2 [1 - (~J k ].

" ".
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Note that each term of the series corresponds to a level of recursion and that the first
two terms of the series account for more than 90% of the sum.

An alternative method is to compute Ph store that result in ClI and C22,compute P2,
store that result in C21,subtract it from C22,and so on. We need two matrices to hold
the operands on the right sides of equations(2) and only one to hold the matricesPI, . . ., P7.
The total space required would be

[1 1 1

J [ [
I

J
k+l

]3n2 4: + 16 + '" + 4k = n2 1 - 4: .

Even though the number of arithmeticoperations is the same for both methods, the second
method would run more slowly on vector machines because there is more data movement.
The fast (first) method holds more intermediate results in registers in the computation of
Cu, ..., Cn in equations (3). The penalty in speed for the second method is machine-
dependent. The difference between the fast and slow versions was less than 3% for 11be-
tween 128 and 512.

Fortunately, it is possible to combine the best features of both methods. Wecan get most
of the benefitsof the smaller memory requirementsof the slowmethod if we use that method
at the first one or two levels of recursion corresponding to the early terms of (3). We may
expect to get most of the benefits of the faster method by using that method deep in the
recursion, corresponding to the later terms of (5).

," ..
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Table3. Matrix multiplicationfor rectangularmatrices
using NAS Strassen.

m n MFLOPS

128 128 128 291
256 128 128 300
512 128 128 304

128 128 128 291
128 256 128 305
128 512 128 312

128 128 128 291
128 128 256 296
128 128 512 298

128 128 128 290
256 256 128 311
512 512 128 321

128 128 128 291
256 128 256 303
512 128 512 309

128 128 128 289
128 256 256 309
128 512 512 319
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If one level of the slow method were used, and the remaining levels used the fuster method.
the scratch space requirement would be 1.5 . n2; if tWo levels of the slow method were
used, the scratch space requirement would be 1.25 .n2; if three levels of the slow method
were used, the space requirement would be 1.125. n2.The most desirable version for a
computer may be dictated by the architectUreand configuration. Using zero or one slow
level might be appropriate for the CRAY-2because it has large common memory and it
is relatively slow on the n2 terms. Using one or two levels of the slow method would be
appropriate for the CRAY Y-MP because it has relatively small memory per processor
and is relatively efficient computing the n2 terms.

For the case of rectangular matrices, a bound for the required scratchspace for the slower
and faster versions tUrns out to be

im mn 7 . in-+-+-
3 3 3 (fast version)

im mn in
-+-+-
3 3 3 (slow version).

We might mention that the Cray Research implementation of Winograd's variation of
the Strassen algorithm required memory bounded by 2.34 . max(l, m) . max(m, n) (see
[Cray Research, Inc. 1989].

In the special cases when one or two of the dimensions of A or B is much less than
the other dimension(s), further savingsof scratch memory are possible. Take, for example,
the case when i = K, m = 4K, n = 4K. The product AB can be computed by multiplying
A with four 4K X K submatrices of B. The amount of scratch space required for the slow
version would be 3K2 instead of 8K2.MultiplyingA by the submatrices of B in this manner
does not increase the count of operations, but some bookkeeping and short vector effects
are introduced.

The NAS implementation is called SSGEMM and uses the same calling sequence as
the UNPACK subroutine SGEMM. The scratch memory is in common, and there is a
default size. However, the size could be increased by compiling and loading a function
such as the following:

INTEGER FUNCTION GETSCR
PARAMETER (ISIZE = 100000)
COMMON/SCRATCH/X(ISIZE)
GETSCR = ISIZE
END

When SSGEMM is called, it is first determined whether there is enough scratchmemory
to use the full Strassen algorithm. If there is not enough memory to use the full Strassen
algorithm, it is determined whether there is enough memory to use a partial Strassen. This
means that, for example, only tWolevels of recursion in the Strassen algorithm are used,
when with more memory three or more levels could have been used. If partial Strassen
cannot be used, then the subroutine SSGEM will call SGEMM, the conventionalmatrix

CopyRjght, 54 Loomis St., Bedford, MA, 01730 115-3(11)
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multiply routine that does not need any scratchmemory. Our implementationuses multiple
copies of the code, and there are at most six levels of recursion allowed. This means that
our version could in principle multiply 4000 x 4000 matrices. Wenote that the Cray sub-
routine SGEMMSuses the samecallingsequenceas SGEMM, exceptthat the last parameter
is a scratch array.

In summarywe haveimplementeda flexible.generalpurpose,matrix-matrixmultiplication
subroutinein the style of the Level3 BLAS [Dongarraet al. 1988a,1988b].This subroutine
can be used in all contexts, where the Level 3 BLAS routine SGEMM is used, subject
to the availability of the additional workspace. We will now demonstrate this point with
the linear equation solving routine from LAPACK,which makes extensiveuse of SGEMM
and Level 3 BLAS.

4. Applications to LAPACK

LAPACK[Bischofet al. 1988]is a new library of linear algebra routines being developed
with the objective of achieving very high performance across a wide range of advanced
system::..The main feature of this package is its reliance on block algorithms that preserve
data locality, together with a facility that permits near-optimal tuning on many different
systems.

SGETRF is a LAPACKsubroutinethat uses dense matrixmultiplication. This subroutine
performs an LV decomposition on an II X n matrixA by repeatedly calling the subroutine
SGETF2 to perform an LV decomposition on a diagonal submatrix of size NB, calling
STRSM to compute the superdiagonal block of V, and calling SGEMM to perform matrix
multiplication to update the diagonal and subdiagonal blocks. The matrix multiplications
are performed on matrices of sizesJ x NB and NB x (n - 1) for J = NB,2 .NB, . . . , n.
The parameter NB, also referred to as block size, can be chosen for performance tuning.

A Fortran version of this subroutine from Argonne National Laboratory was linked to
call SGETF2 and STRSM from the Cray libraries and either the Cray SCILIB version
of SGEMM or our Strassen version of SGEMM.

Table 4 gives the approximate time spent in each of the three subroutines and Table 5
gives the performance results for different sizes of nand NB. The timings are given for
the case when the leading dimension of A is 2049. If the leading dimension were 2048,
the performance would be less due to memory stride conflicts in STRSM. Table 5 shows
that no single value of NB gives uniformly the best performance for varying problem sizes.
Even when A has dimension 2048, we are performing matrix multiplication with matrices
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Table 4. Fraction of time spent in subroutines of
SGETRF NAS Strassen, NB = 512.

N SGETF2 SGEMM STRSM

512 0.99 0.00 0.00
1024 0.51 0.29 0.19
1536 0.33 0.36 0.30
2048 0.25 0.39 0.36
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whose minimum dimension is 512at the rate of 368 MFLOPS, and this rate is achieved
only on part of the computation. In the case when n = 2048 and NB = 512, three matrix
multiplications are performed. The dimensions of the matrix factors are 1536by 512and
512by 512; 1024by 1024and 1024by 512; and 512by 1536and 1536by 512.With Q = 64
and using one level slow method we see that the scratch memory requirement is bounded
by 11/12megawords.As mentioned earlier, a bound for the memory requirement for imple-
mentation of the algorithm by Cray Research is 2.34 .max(l, m) .max(m, n). The matrix
multiplication that requires the most scratch space is the one that multiplies 512by 1536
and 1536by 512matrices, and the scratch memory requirement to form this product is
5.75megawords. It is possible to decrease the memory requirements by a factor of about
two for the Cray Strassen by partitioning the matrices into two submatrices, performing
the multiplications on submatrices and combining the products of the submatrices.

Higham [1989]discussesseveralother Level3 BLAS subroutinesthat mayuse the Strassen
algorithm. One is a subroutine to multiply an upper triangular matrix U with a general
matrix B. Higham writes

A = [~I
Ul2

] [
Bll Bl2

] = [UllBll + U12B21 UllB12

.

+ U12B22

]U2'2 B21 B22 U22B21 U22BB21'

The two dense matrix multiplications involving U12may be computed using the Strassen
algorithm, and the remaining products are products of triangular matrices with general dense
matrices and can be computed recursively. It can be shown, assuming square matrices, that
the number of arithmetic operations is 0(,(-1'.). However, the asymptotic speed is approached
more slowly than in the case of matrix multiplication. For example, for 1024 x 1024 matrices
half the operations would be computed at the rate of 368 MFLOPS, (the rate of the Strassen
algorithm for n = 512), a quarter of the operations would be carried out at the rate of
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Table 5. Performance of SGETRF in MFLOPS as a
function of nand NB.

n

512 1024 1536 2048

NB Coded BLAS

128 262 284 290 291

256 250 281 288 291
512 229 274 285 289
768 229 250 281 288

1024 229 260 280 286

Strassen

128 250 290 299 304
256 243 297 311 317
512 217 290 314 325
768 216 272 305 318

1024 216 258 294 319
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326 MFLOPS (n = 256),andone-eighthat289MFLOPS.Theremainingone-eighthwould
be carried out at the conventional triangular matrix multiply speed. The improvement in
speed for the triangular matrix multiply should be significantly better than that of the
SGETRF decomposition because a larger fraction of the operations can be computed by
the Strassen algorithm. We should expect similar performance improvementsfor the other
Level 3 BLAS subroutines discussed by Higham that use matrix multiplication.

5. Conclusions

The speed in terms of effectiveMFLOPS for the Strassenalgorithmincreaseswithoutbound
with increasing size of the matrix. On the CRAYY-MP,the Strassen algorithm increased
the performance by 10% every time the dimension doubled. For n = 1024 the conventional
Cray matrix multiply routine had a performanceof 296 MFLOPS. while our Strassencould
run at over 400 MFLOPS and the Cray version even faster. The increase in performance
with matrix size is not a smooth functionof the size of thematrices,but showsminor oscilla-
tions and jumps. The causes of the jumps and oscillations are the drop in operation count
in the n3 terms, short vector effects, the effectof n2 terms, and corrections for even and
odd matrices.

We succeeded in implementing a general purpose matrix-matrix multiplication routine
for the CRAY'Y-MP,which can handle rectangular matrices of arbitrary dimension. Ever.
for moderately sized matrices this routine outperforms the functionallyequivalent Level 3
BLAS subroutine basedon the traditionalmultiplicationalgorithm.Becauseof its flexibility,
this subroutine can be used as a computationalkernel for higher levelapplications. This has
been demonstrated by integrating this routine with the linear equation solver in LAPACK.

Many LAPACKsubroutines are using SGEMM, notjust the denseunsymmetric LV fac-
torization. The use of Strassen's method potentially could speed up a number of linear
equations and eigenvalue computations. In addition, complex routines in LAPACKcould
be improved using the trick discussed in [Higham 1990]. Generally, we believe that the
performance of LAPACKand Level 3 BLAS subroutines that use dense matrix multiplica-
tion will improve if the Strassen algorithm is employed;the exact improvementwill depend
on the size of the problem and to a large part on the fraction of the computation that can
take advantage of the Strassen algorithm.
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