Replication

- Experimental study in [Kondo et al. 2002]
- Replication factor n, no keepalive, synchronous

$$\overline{T_n} = \frac{1}{\lambda(1 - (1 - e^{-\lambda})^n)} \sum_{k=1}^n \frac{(1 - e^{-\lambda})^k}{k}$$

Infinite ressource: the optimal latency can be closely approximated

$$\lim_{n \to \infty} T_n = 1$$

- Completion time
 - M/G/1 queue, service time $\overline{T_n}$
 - n=2 or 3 is a reasonable tradeoff

The Cost Model

- A job is falsified with unknown probability p the defect rate
- p_a the acceptable defect rate
- Non-productive system, $p \ge p_a$: the cost is the number of calls to the oracle s(p)
- Productive system, $p < p_a$: the cost is number of calls to the oracle plus erroneous rejections

$$C(p) = \frac{1}{B} \left(s(p) + r(p) P_p(\text{reject}) \right)$$

The average cost for a productive system is

$$\mathcal{C}_a = E_Q[C(p)|p \le p_a]$$

Checking a Batch (1) The simple sequential test

- Acceptable performance for the Normal case
 - The cost is dominated by the number of calls to the oracle

- Vulnerable to denial of service
 - With a uniform distribution of p, the decision of rejection should be reached earlier

Cost breakdown.
$$\alpha=\beta=0.05,\,B=1000,$$
 $p_a=0.1$ (lower), $p_a=0.01$ (upper), $\lambda=0.01,0.1,1$

The two-phases test

- Algorithm
 - First step : sense the system timesequential test
 - Second step: Test the whole batch
- Normal and Massive : Same cost
- Denial of service: Much more robust

$$\alpha=\beta=0.05, B=1000,$$

$$p_a=0.1 \text{ (lower)}, p_a=0.01 \text{ (upper)},$$

$$\lambda=0.1,1$$