MPICH-CM: a Communication Library Design
for a P2P MPI Implementation

Anton Selikhov, George Bosilca, Cecile Germain, Gilles Fedak, Franck Cappello

Laboratoire de Recherche en Informatique - CNRS and Université de Paris-Sud,
Batiment 490, F-91405 Orsay Cedex, France
{selikhov|bosilcalcecile|fedak|fci}@lri.fr

Abstract. The paper presents MPICH-CM — a new architecture of com-
munications in message-passing systems, developed for MPICH-V - a
MPI implementation for P2P systems. MPICH-CM implies communica-
tions between nodes through special Channel Memories introducing fully
decoupled communication media. Some new properties of communica-
tions based on MPICH-CM are described in comparison with other com-
munication architectures, with emphasis on grid-like and volunteer com-
puting systems. The first implementation of MPICH-CM is performed
as a special MPICH device connected with Channel Memory servers. To
estimate the overhead of MPICH-CM, the performance of MPICH-CM
is presented for basic point-to-point and collective operations in compar-
ison with MPICH p4 implementation.

1 Introduction

Global Computing (GC) and Peer-to-Peer (P2P) [1] systems gather unprece-
dented processing power from borrowing time of idle computers. From the num-
ber of processor criterion, a GC system is thus an ideal infrastructure to run
massively parallel applications. Nevertheless, only limited attempts have been
done towards parallel programming on such systems.

Parallel execution models have been designed with a traditional machine
model in mind, which can be summarized as strongly coupled: machines are
reliable, and information flows reliably across computing entities (processes or
threads). On the other hand, GC systems are extreme representatives of dis-
tributed systems. Failures are very frequent, for instance when a user reclaims
his machine or unplugs his laptop. Failures are the worst case of faults, in that
they are also perfectly (quite) unexpected: the machine simply disappears, leav-
ing the system in whatever state it can be.

Message-passing in such a highly unreliable environment needs to address
transparent virtualization as the basic issue: stable user-level MPI processes
and logical communication endpoints must be implemented on top of ephemeral
processes running in a GC system; a reliable communication protocol must be
run on a fuzzy set of tasks. On top of this virtualization system, fault-tolerance
can be achieved through execution rollback: tasks are checkpointed and lost ones
are restarted from a process image saved in a stable storage [2].

Dispatcher

Fig. 1. MPICH-CM architecture components and their communication structure. Bold
lines show a virtual channel from node 0 to node 2. The dashed box shows two Channel
Memories hold by one CM server

All these issues are reflected in implementation of MPICH-V system [3],
which the MPICH-CM communication library has been developed for. This pa-
per presents only the virtualization layer: MPICH-CM, the communication layer
of a GC parallel system. MPICH-CM is a full-fledged MPI implementation based
on MPICH; it is highly distributed, thus is adapted to a P2P context, and fully
asynchronous, being able to cope with non-existent target endpoints. Execution
rollback, described in [3] is outside the scope of the paper; however, we will
sketch in section 4 how the architecture allows for easy communication recovery.

2 MPICH-CM Architecture

MPICH-CM is based on the concept of communication tunneling, where a per-
sistent communication channel is built on top of a variable architecture [4].
However, the variability tackled here is not at the level of transfer protocol, but
at the level of endpoints. MPICH-CM mediates communication through Channel
Memories (CM). The CMs act as proxies for sent messages, and repositories for
the messages not yet delivered.

Fig. 1 describes the overall MPICH-CM architecture. The Dispatcher is re-
sponsible for mapping 1) the global MPI objects (parallel applications and Com-
municators), to sets of tasks running on Nodes, 2) Channel Memories servers to
Nodes. The last mapping is destination oriented: each Node is associated with
one CM, called its owner CM, which stores the messages en route to this Node.

Channel Memory servers handle communication requests, actually decou-
pling the communicating nodes. Besides, whatever may be the firewall in front
of the nodes, they only need to communicate with a CM Server. While a parallel
node may fail unexpectedly, CM servers are expected to be stable, therefore al-

ways reachable (meaning that a failure is fatal). Currently, this is implemented
through dedicated servers; whether the CM service should be provided by volatile
resource, or kept for stable ones, it is an instance of the general open question
of flat vs hierarchical internal organization for P2P systems [5].

The Dispatcher distributes CMs to CM servers at the initialization time
through an Application Channel Memory Map (ACMMap). The ACMMap ac-
tually translates MPT Communicators into CM ownership: one CM Server needs
only to know about its owned nodes, and the nodes which may send messages to
one of its owned nodes; thus, the CM Server in-degree is determined by its out-
degree (number of owned nodes), which is a decision of the Dispatcher, and by
the communication topology of the application. For instance, a 5-points stencil
application (2D grid topology) gives a in-degree bounded above by 4 times the
number of owned nodes (in-degree). On the contrary, fig 1 shows the CM com-
munication structure associated to a fully connected application topology: each
node connects to all CMs, as it has to communicate with all the other nodes; as
stated before, only one CM is input for any node. Knowing the communication
requirements of an application, for instance from its Communicators, the Dis-
patcher can tune the resources (storage and server nodes) allocation accordingly.

3 The Node Library

MPICH-CM is nearly transparent to the user: the only requirement is to link
with the MPICH-CM library, which is in charge of interfacing with the Channel
Memory system. The MPICH-CM library is built in the regular MPICH manner,
through a device implementing the Chameleon Interface functions Plbsend, PI-
brecv (for blocking communications with Channel Memory), PInprobe, Plfrom,
PIilnit and PIiFinish. This ch_.CM device is thus at the same level as ch_p4.

3.1 Initialization and Finalization

When a parallel application is dispatched, each MPI process calls the ch.CM
implementation of the PIilnit function. Plilnit connects to the owner CM Server,
and receives the ACMMap. The next step is synchronization: before starting to
communicate, the region of the CM set that the node will have to deal with
must be ready. Thus, the node registers to all its destination CMs, resulting in
resources allocation at the CM level, and creation of connections. PIilnit returns
only when the node has received acks from all CMs it has registered to.

The connections established with CM servers during this phase are TCP sock-
ets open until the application finishes communication by calling MPI_ Finalize.

At the user level, MPI_Finalize notifies all processes about the end of the
MPI communication structure. The device-dependent PIiFinish, which task is
to shut down the device, sends a system message (see next subsection) to all CM
servers to notify them and closes all corresponding sockets.

3.2 Communication

The implementation of all communication functions follows the same scheme.
First, a system message notifies a CM about the type of communication and
the properties of the message to be sent or received (source, destination, size,
tag and kind). Next, the message body (PIx buffer) is sent or received. System
messages are used by CM Servers 1) to select the appropriate handler for the
next request 2) to know about its parameters. We named them System and not
Control messages, to be not confused with MPICH high level Control messages.

All the communications with the CM server are passed through blocking
write and read on UNIX sockets.

PIbsend copies its tag, length and to parameters to the corresponding fields
of a system message, fills source information with its MPI rank and sends the
message to a CM server, which is selected according to the destination rank
using the ACMMap. The message body follows using the buffer parameter of
the Plbsend.

Plbrecv uses the tag parameter to determine the source of the message to
be received (when the source is important and for non-rendezvous protocol of
communications), sets the tag and length fields and sends it to the owner CM
server. Next, it waits to receive a system message to know about the source and
the size of the body, which is received immediately after this.

PlIfrom returns the value of the source field of the last system message received
by Plbrecv.

PlInprobe uses the tag parameter and the rank number to fill the correspond-
ing fields of a system message. It sends the message to the owner CM and receives
information about existence of messages in the CM.

4 The Channel Memory Architecture

A CM is basically a data structure devoted to message storage. A CM Server
interfaces one or multiple CMs to other components (Nodes and Dispatcher).
The main functions of a CM Server include accepting requests to handle new
applications from a Dispatcher, accepting connections from the nodes involved
in the application and managing all communications (handling multiple CMs).
To make the best use of the available bandwidth, a CM Server is multi-threaded.
A pool of thread is allocated at init time, and at each instant, only one thread
is waiting on select for any activity on all known sockets. Due to lack of space,
we focus on communication handling, skipping all init phases.

An essential property of the Channel Memory protocol is existence of in-
termediate message queues. This differs from the p4 device, where all messages
are retrieved from a channel and queued locally. Therefore, the protocol involves
two overheads: queue management and doubling the number of communications.
While the second one cannot be avoided, the first one is decreased by special
data structures, and tuned message storing and retrieving mechanisms.

4.1 Data storage structures

According to MPICH specifications [6], passing any user data breaks down into
Control Message(s) and, maybe, a Data message, depending on the actual size of
the user data (very short messages are included in the Control message body). A
CM Server stores these two types of MPICH messages, for each owned node, in a
separate Control queue, and an array of data queues, which has n queues, where
n is the whole number of nodes in the communication group. An index of a data
queue in the array corresponds to the rank of source of these data messages.
Both Control queue and Data queue are organized as FIFO. This organization
allows to keep the time ordering of messages issued from a particular node and
to retrieve Data messages by source rank. The first property means that all the
messaging events are fully logged (data and temporal ordering), allowing com-
munication replay [3]. The combination of the two properties provides constant
time data message retrieval.

4.2 Queues Management

Handling of request to communication depends on the kind of request received
in a system message.

The PlInprobe handler tests the Control queue corresponding to this node
and sends the result.

Upon a request to receive a Control message, the first message (if exists) is
retrieved from the Control queue and sent to the node; otherwise the node is
marked as ”waiting for a Control”. Receiving Data message includes an attempt
to retrieve the first data message in the queue according to the requested source
and, like in the case of Control messages, leads to either sending the data message
found to the node, or marking the node as ”waiting for a Data”.

Upon a request to send a message, whether Data or Control, to the owned
destination node, the message is first buffered. Next, if the destination client is
”waiting for a Control (Data)”, the message is directly sent to the destination
node; otherwise it is stored in the Control (Data) queue.

5 Performance Evaluation

Performance tests results were obtained for both p4 and CM- based MPICH on
the LRI cluster of PCs (500 to 700MHz), connected through a switch with 100
Mbit/s maximal throughput for each node. The aim of the tests was to explore
the overhead involved by the CM architecture and the architecture scalability.
All measurements, except the last one, are averages over one hundred runs.

5.1 RTT performance

First, the round-trip time (RTT) for blocking communication was measured for
two nodes, communicating through two CM servers (Fig.2, left graph), which is

RTT performance, 2 nodes, 2 CH servers
time (sec)

RTT CH ron-blocking
RTT M blocking
RTT pé blocking

time (sec)

0.08

RTT scalability, nessage size is BSGT5 bytes

RTT
RTT
RTT
RTT
RTT

.2 threads
. 3 threads —a—
L4 threads —e—

L5 threads ——

L B threads —e—

0 20000 40000 60000 B00DD 100000 120000 140000 16000 180000 200000

Size (bytes)

Nunber of nodes

Fig. 2. RTT vs message size (left graph) and number of nodes on one CM (right graph)

the best situation (one CM server per Node). MPICH-CM reaches nearly half of
the performance of the p4 based MPICH. Moreover, the linear behavior and the
slope show that the performance is strictly determined by the underlying TCP

bandwidth. Thus, the overhead incurred in the CM server itself is negligible.

Second, the scalability of a CM Server was investigated on the base of RTT
measurements (Fig.2, right graph). In this test, only one CM Server was used
to manage all CMs. The nodes were divided in pairs, each pair communicating
independently. The quasi-linear behavior above 4 nodes follows the bandwidth
limitation. However, the threaded architecture helps for low in-degree: from 2 to
4 nodes, and 4 threads, the latency is nearly constant.

5.2 MPI_Alltoall performance

WPL_AL1taall test for message size BEGI6 bytes
avg. time (sec)

P4

0.2 b —e—

min. tine (sec)

2.5

HPI_Alltoall test for 9 nodes

o
[]

2 3 4 5 6 7 8 9

Nurber of rodes

200000 400000 600000

Hessage size (bytes)

800000

1e+06

Fig. 3. MPI_Alltoall vs number of nodes managed by one CM server (left graph), and

vs message size (right graph)

Estimation of MPI_Alltoall time is used often for performance analysis of
multiprocessor systems and clusters. It involves very intensive communications
and allows to estimate the scalability of the system being tested. For MPICH-CM
based system, the effect of message size and number of nodes was measured. In
both cases, only one CM Server was used to manage all CMs. The reported times
are measured on node 0, with no special synchronization between consecutive
calls to the Alltoall routine, besides the one involved by the operation itself.

The increasing times for MPI_Alltoall operation presented on Fig.3, left
graph, has two reasons: first, the overhead of message transition through a CM,
illustrated in the first experiment on Fig. 2 and second, the overhead of managing
all the nodes by only one CM server, which is illustrated in the Fig.2.

Fig.3 (right graph) presents the results of measurement of MPI_Alltoall min-
imal time for 9 nodes with increasing size of message being sent. For the same
reason of having only one CM server for managing all CMs, the increase of time
for this operation is faster than in the case of RTT measurements.

6 Related Work

The Channel Memory approach has two motivations: communication decou-
pling and communication events logging. The first one has been pioneered by
Linda [7]. Besides that, most of Linda features are related to a high-level parallel
programming language, based on a shared-memory abstraction for interprocess
communications, implemented through associative search, while MPICH-CM is
a pure message-passing system with named communicating entities. The project
closest to MPICH-V is MPI-FT [8]. It uses a monitoring process, the observer,
for providing MPT level process failure detection and recovery mechanism based
on message logging. Our work is a step more in the same direction, as it merges
communication decoupling and logging. Many other works [9,10], tackles the
issue of fault-tolerance by exposing the faults and the computation state at the
application level. Yet another way has been explored by the Condor team [11],
by global distributed checkpointing following the Lamport algorithm.

7 Conclusion and Future Work

This paper has presented MPICH-CM, a communication library designed for
MPICH-V, a MPI implementation for GC and P2P systems. The experimental
results have shown 1) predictable and explainable limitations in its performance;
2) scalability if one is willing to provide enough resource for communication, that
is enough CM Servers. This may appear costly; however, a network of volatile or
unreliable nodes may become a more common substrate when considering very
large clusters, or clusters or clusters, running during quite long computing time.
In this case, it may be more efficient to allocate resources for ordered logging
of communication events, which is the core of the CM architecture, than to
restart execution of all nodes many times from the very beginning and to hope
successfulfinalizing. Other salient features of MPICH-CM are:

— Firewall bypass. All communications between nodes are initiated by a node

and addressed to a specialized port of a CM Server, not directly to a peer.
Thus, both communicating peers may stay behind firewalls

— Effective pipelining. Channel Memories may be used for the creation of an

effective pipelined system by forwarding on the fly messages on their way
from one node to another. This may be useful for some specialized video-
processing systems.

— Fully asynchronous communication. Neither the sending nor the receiving

node is required to wait until the end of the communication. All communi-
cation requests are absorbed by the Channel Memories, allowing nodes with
different communication throughput to work with maximal performance.

We are currently integrating MPICH-CM inside the XtremWeb Global com-

puting platform [12,13] developed at LRI, together with a checkpoint and re-
covery facility. The complete system will provide a framework for transparent
parallel execution of MPI programs on volunteer-based resources.

References

1.

2.

10.

11.

12.

13.

Oram, A. (ed.): P2P: Harnessing the Power of Disruptive Technologies. O’Reilly
(2001)

Elnozahy, E., Jonhnson, D., Wang, Y.: A Survey of Rollback Recovery Protocols
in Message-Passing Systems. CMU TR-96-181. Carnegie Mellon University (1996)
Bosilca, G. et al.: MPICH-V: Parallel Computing on P2P systems. To appear in
IEEE-ACM SC2002: High Performance Networking and Computing (2002)
Al-Khayatt, S. et al.: A Study of Encrypted, Tunneling Models in Virtual Private
Networks. 4th IEEE Conf. in IT and computing & coding (2002)

Kan, G.: Gnutella. In: Oram, A. (ed.): P2P: Harnessing the Power of Disruptive
Technologies. O’Reilly (2001)

Gropp, W., Lusk, E., Doss, N., Skjellum. A.: A High-performance, Portable Imple-
mentation of the MPI Message Passing Interface Standard. Parallel Computing,
Vol. 22, (1996) 789-828

Bakken, D. E., Schlichting, R. D.: Supporting Fault-Tolerant Parallel Programming
in Linda. IEEE Trans. on Paral. and Distrib. Systems, Vol. 6(3), (1995) 287-302
Louca, S. et al.:. MPI-FT: a Portable Faut Tolerant Scheme for MPI. Parallel
Processing Letters, Vol.10(4). World Scientific, New Jersey London Singapore Hong
Kong. (2000) 371-382

Fagg, G., Bukovsky, A., Dongarra, J.: Harness and Fault Tolerant MPI. Parallel
Computing. North-Holland. Vol. 27(11), (2001) 1479-1479

Agbaria, A., Friedman, R.: Starfish: Fault-Tolerant Dynamic MPI Programs on
Clusters of Workstations. 8th IEEE Int. Symp. on High Perf. Dist. Comp. (1999)
Pruyne, J., Livny, M.: Managing Checkpoints for Parallel Programs. Workshop on
Job Scheduling Strategies for Parallel Processing, IPPS’96. IEEE Press. (1996)
Fedak, G., Germain, C., Neri, V., Cappello, F.: Xtremweb: A Generic Global Com-
puting Platform. IEEE/ACM CCGRID’2001. IEEE Press. (2001) 582-587
Germain, C., Fedak, G., Neri, V., Cappello, F.: Global Computing Systems. 3rd
Int. Conf. on Scale Scientific Computations, Lecture Notes in Computer Science,
Vol.2179. Springer-Verlag, Berlin Heidelberg New York. (2001) 218-227

