Result Checking in Global Computing Systems

Cécile Germain

Laboratoire de Recherche en Informatique
Laboratoire de l’Accélérateur Linéaire
CNRS - Unwversité Paris-Sud
cecile.germain@lru. fr

Abstract
Global Computing is a particular modality of Grid

Computing targeting massive parallelism, Internet
computing and cycle-stealing. This new computing in-
frastructure has been shown to be exposed to a new type
of attacks, where authentication is not relevant, net-
work security techniques are not sufficient, and result-
checking algorithms may be unavailable. The behavior
of a Global Computing System, which s likely to be
bimodal, nevertheless offers an opportunity for a prob-
abilistic »erification process that is efficient in the most
frequent cases, and degrades gracefully as the problem
becomes more difficult. For the two cases of a system
based on anonymous volunteers, and a better controlled
system, we propose probabilistic tests which self-adapt
to the behavior of the computing entities.

1 Introduction
Global Computing is a particular modality of Grid

Computing targeting massive parallelism, Internet
computing and cycle-stealing. The distinctive feature
of Global Computing Systems (GCS) is to harvest the
idle time of Internet connected computers, which may
be widely distributed across the world, to run very
large and distributed applications [1]. All the com-
puting power is provided by volunteer computers, the
workers, which offer some of their idle time to execute
a piece of the application. The actual design of GCS
may vary widely, from a fully master-slave architecture
like SETI@home [2], to the decentralized style of peer-
to-peer systems; which are mostly e<emplified in the
field of data storage [3, 4, 5].

An active research area is the interoperability be-
tween GCS and classical Grid systems in the Globus
style [6]. Protocols like JXTA or OGSA [7] offer some
opportunities to merge both approaches, through the
concept of soft-state registration [8], to allow for im-
permanence of resources. Classical Grid systems and

GCS are opposite in another aspect, which is the sub-
ject of this paper: the reliability of the computations.
GCS use uncontrolled computing resources, and are
thus exposed to sabotage: some of the workers may
tamper with the computation process, so that they re-
port erroneous results. Classical Grid systems have
to protect only their network transactions, for which
well-known techniques do e=ist, because the computers
are assumed to be reliable. GCS cannot make this as-
sumption, and this is not only a problem of theoretical
interest: some SETI volunteers actually faked their re-
sults, by the use of a code different from the original
one [9]. While the SETI@home project could afford
to replay each computation many times, more efficient
techniques can be considered for computations that are
to some extent fault-tolerant.

Two strategies can be considered against sabotage:
malke it difficult, through code encryption, or check the
results. In this paper, we consider the second solution,
in the framework of probabilistic testing. Our goal is
to define a probabilistic testing process that 1) ensures
that a set of results is indeed correct, 2) do not unduly
eliminate results which are actually correct, 3) keep the
test cost low. The first requirement is obvious from the
users point of view, The second one is important from
the point of view of the GCS efficiency, and has been
overlooked in some previous work (see related work).
As there is a tradeoff between confidence and cost, the
user and the GCS operator must be able to tune the
test parameters to meet their quality requirements.

In this paper, we show that sequential analysis
[10, 11], a technique widely used in statistical testing,
is especially appropriate to realistic models of GCS.
The main advantage of sequential analysis is that it is
adaptive: it implements a quantitative assessment of
the concept of system reliability, which appears in var-
ious GCS frameworks like JXTA or Bayanihan [12], by
adapting the cost to the behavior of the system.

The rest of the paper is organized as follows. The
second part discusses the features of GCS related to

error tolerance, and defines the entities which will be
subject to testing. The next section defines the test
model, and the features of GCS related to testing. The
fourth section discusses sequential analysis. In section
5 this analysis is applied to the worst case of GCS,
where workers cannot be identified, while the opportu-
nities offered by blacklisting saboteurs are discussed in
section 6, along with the motivations to consider only
a weak form of blacklisting. The ne=t section discusses
related work, from the active area of program and prop-
erty testing, and from spot-checking in GCS research,
and we finally propose some conclusions.

2 Global computing and error
tolerance

2.1 Computations

A computation is a very large set of computationally
independent jobs : jobs do not communicate, nor have
data dependencies (eg through files [13]). A GC service,
the Dispatcher, commits jobs to e=<ecution following the
availability of workers, marshals their execution, and
gets back the results of each job. The Dispatch service
is also responsible for assessing the correctness of the
results, rerunning a job if its result is considered false,
and eventually delivering the result to the client.

In the framework of statistical testing, we define a
batch as the unit for testing purposes. All jobs of a
batch have to wait for the quality assessment of the
batch before being delivered (if the outcome is posi-
tive) to the client. The quality assessment test is a
probabilistic procedure which takes as input a batch,
and issues a binary answer, either ACCEPT, or REJECT,
with high probability of being correct with respect to
the quality criteria.

In some cases, despite this formal independency,
some collection of jobs may make sense at the applica-
tion level, because they contribute to the computation
of a result; for instance in a Monte-Carlo simulation,
to the computation of statistical quantities. To deliver
useful results, batches must respect this organi-ation.
For other applications, the computation has no partic-
ular structure besides its basic units, the jobs, and the
boundaries of batches are arbitrary.

2.2 Sabotage

Sabotage can have two purposes. The first one is to
modify the result of the computation, whatever may
be the origin of this practice (e.g. actually changing
the result, or getting a best rank in a hall of fame, or
simply an erroneous manipulation). The second one,
which has less been considered, is a kind of denial of
service: the attacker has no particular interest in the

computation, but wants to make suspicious all workers
it can reach, so as to slowdown the whole GC system.

Sabotage can be modeled in two ways. In the first
one, workers are permanent entities, which can be hon-
est or not (saboteur). Then, the objective of the test
should be to detect saboteurs, and to decide some ac-
tion against them. Possible actions are to remove the
saboteur from the worker pool, or to try to correct its
behavior. However, workers cannot always been cat-
egorized so simply: remotely identifying a computer
directly connected to the internet is possible even with
dynamic IP addresses by the use of network card iden-
tifiers; workers that connect trough ISP cannot give
such meaningful identifiers, and anonymity is currently
quite easy to achieve (for a more detailed discussion of
this issue, see [12]). Hence, it is necessary to design
tests that can also deal only with sets of jobs.

2.3 Error-tolerance

To allow non perfectly guaranteed results, the ap-
plication must be error-tolerant to some extent. More
precisely, the application can accept a fraction p, of
erroneous results. If the number of jobs is large, the
distribution of defects can be modelled as a Bernoulli
distribution (0 = correct, 1 = defect), with unknown
probability p of being defective.

3 Testing for global computing

3.1 Test definition

Our goal is to define a test 7 which decides if a batch
has an error rate p less than pg, or is ”far” from this
property, that is p > p; with p; > pg. More precisely:

Given the thresholds py and py, and the confidence
parameters o and f3

if p < po, T accepts with probability greater than
1—oa;

if p > p1, T rejects with probability greater than
1-75;

T is given access to a job checker (an oracle), which
states if the result of this particular job is exact or de-
fective.

The cost of T s the number or queries to the ora-
cle.

Such a tester provides only partial information:
when the actual error rate p is between py and p;, there
is no guarantee on the behavior of the tester. However,
from the definition of the test process, the probability
of accepting a batch under p may be computed, and in
some cases be useful.

In the terminology of statistical testing, « is the risk
of the first kind(false alarm): the probability of reject-
ing a batch when the error rate is less than pq ; 3 is the

risk of the second kind (false negative): the probability

of accepting a batch when the error rate is greater than

P1.

3.2 Checking Jobs

The cost of checking an individual job (an oracle
query) raises two issues: the checking algorithm, and
the supporting machines. The choice for the checking
algorithm is application-dependent. The most costly
one, but always applicable, is to replay the job; for
many applications, program-checking algorithms [14]
In this case, the
checking process is itself probabilistic, so that the out-

provide a convenient alternative.

come of the check can also be erroneous (with low prob-
ability). Uncertainty can also appear even with job re-
play: e=cept if both environments are exactly identical,
the results can disagree, because of different hardware
and software. The second issue is where to run the
checking program. In this paper, we assume that re-
liable machines will be used for this purpose. We will

show below how reliable machines can, in some cases,
be discovered in the worker pool itself.

3.3 Adaptation

Global Computing e=<hibits some distinctive features
that must e=ploited to design an efficient test.

e We expect the vast majority of workers to be hon-
est. Thus, it is of primary importance that the
test exhibits a low cost for honest workers, or for

batches with a low defect rate.

e The second most represented category of work-
ers (after honest workers) will be naive saboteurs,
which always fake the results. Thus, the test
should also be fast for this class of saboteurs.

e Errors must no lead to complete collapse of the
system. Thus, the test must not reject moderately
erroneous workers.

The two first points show the need for an adaptive
strategy: the test should self-adapt to the information
previously got on workers or batches. Results coming
from suspicious workers (or batches) should be tested
more carefully than those computed by more reliable
workers (or batches).

The third point requires a more careful analysis.
Two scenarios can lead to a moderate and persistent
error rate. The first one is probabilistic job checking,
or job replay in a different environment, leading to a
non-null rate of job rejection while the job is actually
correct. The second one is the denial of service kind of
attack. Assume that an adversary of the GC system is

able to contribute by a significant number of workers.

10 T T T T T
reject threshold —
accept threshold ----- _
sample_ o=~
8 reject region i B
6 4
& 4| O G TS o ° i
O B <
2 F o 4
Oeeeeen o
0¢” accept region q
2 L L L L L
0 2 4 6 8 10
n

Figure 1: Sequential testing as a Random Walk

If these saboteurs are naive, they will be eliminated
at once, and the system will continue to function with
as many honest workers it is able to gather; thus, to
be efficient, the clever adversary will try to remain in
the system, which is possible only if it fakes only a few
The GCS can thus use the results of the ad-

versary, if the error-tolerance criteria are met, that is,

results.

the overall error rate remains low enough. However,
working with clever adversaries has a cost, as the ne=t
sections will show; detecting and coping with such an
attack is considered in section 7.

4 The Sequential Test Proce-
dure

Let pg, p1, @, B be the parameters of the test. Clas-
sical tests do not provide any flexibility: the sample
si=e is statically determined from the (pg,p1, @, §) pa-
rameters. On the contrary, sequential testing [10, 11] is
precisely based on the intuitive idea that a partial test
may be enough to decide, if the data strongly points
to the acceptance or rejection decision. Formally, it
works as follows: for a sample ¢ = {(2z1,...,2,) €
{0, 1}", let the likehood ratio l(x) be defined by l(z) =
P, (2)/Ppy(z) (as in classical tests). Two values A
and B (B < A) are chosen; at the mth step, if
Wz, ...,2m) < B, accept; if {(z1,...,2m) > A, re
ject; otherwise (B < l(z1,...,2m) < A), draw a new
item 2,41 and test on (z1,...,Zm41). A and B can be
respectively appro=imated by (1 —)/« and 8/(1 — «).
In the Bernoulli case, the test can be conveniently e=-
pressed through S,,. From P,(z) = p°= (1 — p)m™~ 5=,
and the appro=imation for A and B, the rejection re-

12

300

cla. p0=0.0:

250 -

200 |- [1

150 | i | |

100

50 [

Ep=z3E BE0a3 IEZCDazacE=aazzCD:

]

; =
0.15 0.2

0 0.05 0.1

Figure 2: The average sample size

gion is above the line

log 1?—& + mlog tzf
m = . T—p,
logz—D — log —1_20

and the acceptance region is below the line

log% + mlog tzg
m = 1 1-py
logf;—o — logﬁ

Fig. 1 gives a graphical view of the testing process.
The sample si=e is a itself a random ~variable, de-
pending on the path defined by the successive samples.
Thus, the average sample si=e E,(n), as a function of
the actual error rate, is the test cost.
In the framework of result-checking, a sequential test
has two decisive advantages over a classical one. The
first one is that the average sample si-e is lower than
the si-e of the equivalent classical one. The second and
most important one is that the test is self-adaptive.
Fig. 2 displays E,(n), for the sequential test, versus
the actual error rate p, for various choices of (pg, p1) at
a = 8 = 0.05; the hori=ontal lines are the correspond-
ing sample si=es for the classical test. The sample si=e
is much lower that the classical one for p = 0, goes
through a ma=<imum between pg and p;, and drops
sharply for high values of p. Closed e=pressions for
E,(n) are available for p = 0, pg, p1, 1. In particular,

log %

= 1-py
log T

EQ(TL)

Let L(p) be the probability of acceptance at the p
error rate. By construction, the test is built so that

1 —==z= T
1-alpha o 55 2056:03-p4=005.
p0=0.05 p1=0.1 ----
p0=0.01 p1=0.1 -----
p0=0.1 p1=0.2
p0=0.05 p1=0.2 -
08 | p0=0.01 p1=0.2 4
0.6 - | 4
i3
0.4 i]
0.2 4
beta
0 I 1 P | A
0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 3: Probability of acceptance

L(0) =1,L(po) =1 —a,L(p1) = B and L(1) = 1. Fig.
3 displays L, versus the actual error rate p, for various
choices of (pg,p1) at @« = 8 = 0.05; between pg and
p1 1is the =one where the test may give an erroneous re-
sult with a probability higher than what the confidence

parameter allow for.

5 Batch testing

This section discusses the e=treme case where no
Thus the

test has only a batch as a whole, whose quality must

information is available about the workers.

be assessed.

The simplest solution is the plain sequential test.
The Dispatcher initiative is limited to the choice of the
parameters of the test, pg,p;, @ and §. The require-
ment of the end-user are not the same as the ones of a
test: the end-user will provide only its error tolerance
parameters, that is p,, the ma=imum error rate, and
€, the acceptable risk. To fulfill these requirements,the
rejection parameters must be set to the user require-
ments: p; = p, and § = €. On the other hand, from
the si=e of the batch and its own resource availability,
the Dispatcher may decide on a desirable amount of
resource devoted to individual checks, let say k checks.
Hopefully, the batch will be composed of correct works,
so that p will be near 0. A reasonable strategy is
then to choose pg such that Eg(n) = k. This gives
po=1—(1—p1)c'/k,
the values of pg (in the form of the ratio pg/p;) versus

where ¢ = 1_70‘ Fig. 4 displays

the values of k for various values of p1, a = § = 0.05.
Very large values of k, which are not of practical use,
would be necessary to get a small uncertainity region

for small pg. Thus, this strategy can be applied only if

08t
07 |
06
o5 [
04|
03
02}

0.1

L L
1000 2000 3000

Figure 4: Rejection value at fixed Fg(n)

a large uncertainity region is acceptable, which means
that the Dispatcher has a strong confidence in the fact
that the defect rate is actually null. If it is not the
case, the test will reject acceptable batches with a high
probability.

To minimi=e the overhead of failed batches, a two-
step process can be considered. If we first run the
batch, and run the test only after the batch is com-
plete, when the batch fails, all the failed jobs will con-
tribute to the overhead. Thus, what we seek is a strat-
egy that allows to stop the batch as soon as possible if
it appears that the batch will fail. This can be imple-
mented through a test of the earliest results. However,
a saboteur can appear at any time, thus the earliest
results are not necessarily a sample of the actual error
rate. We thus propose a two-steps algorithm. In the
first step, only a few jobs, say NN, are launched, and
all are checked; these jobs are randomly chosen in the
batch. This test is a sensor of the system reaction to
this particular batch. If N is not large enough for the
test to complete, new jobs are launched until the test
finally completes. If this first test succeeds, the whole
batch is launched; when finished, a new test is run on
the result set. The batch is accepted only if both tests
succeed. If either of the tests fails, it shows that the
GC is in serious malfunction, and a corrective action
should be undertaken, as described in section 7. After
this action, the whole process is restarted.

The choice of N is a tradeoff. Any reasonable choice
of N is bounded above by & = Sup,¢q 17(Ep(n)), the
ma=imum over all error rates of the expected sample
si=e. There is no close formula for this ma=imum, which
is attained between py and p;. However, if the results
are homogeneous, either good (at small p) or bad (at

L
4000 5000

large p), the actual sample si=e is smaller than £, and
indeed much smaller at large p. Hence the sequen-
tial test should be computed sequentially, leading to
N = 1.
reached, the test stops, and the number of redundant

In this way, as soon as a decision can be

computations is kept at its exact minimum (as a func-
tion of the precision parameters). On the other hand,
in the extreme case of this section, where it is assumed
that contributor are fully anonymous, the only strategy
available to the Global Computing system scheduler is
to launch jobs in parallel: in order to corrupt simul-
taneously running jobs, a saboteur should get control
over many machines. Conversely, if the test jobs are
scheduled sequentially, the saboteur could more eas-
ily catch and corrupt all or most of them, and lead to
an incorrect anticipation of the behavior of the whole
batch. As a tradeoff, the factoring strategy [15] used
in load-balancing can be used for the first test. Ini-
tially, £/2 jobs are scheduled in parallel. If the test is
not complete, half of the remaining test jobs (£/4) are
scheduled at the next step and so on.

One could consider that, as two tests are run on
the same set, the § parameter could be adjusted : as
the two tests are independent, they could be run under
(' = /2. This is not correct, because only the sec-
ond test actually assesses the error rate of the whole
batch as a result of the contribution of the various and
Hence, if the batch is actually a
=ero-default one, the overall test will use a sample of
average si=e at best Fy(a, 3, po, p1), doubling the cost
with respect to the first algorithm.

Choosing between the two tests is another decision

unknown workers.

process, that can use an analogous methodology: each
successful test is a positive result (a 0), each failed
one is a negative result (a 1). Starting with the op-
timistic hypothesis that batches will be accepted, the
first testing procedure is used, until the rejection re-
gion is reached. Then the Dispatcher switches to the
second procedure. This strategy provides a second level
of adaptive behavior, and a more graceful degradation

of the system throughput.

6 Blacklisting
The name blacklisting has been coined by [12], as

a class of algorithms allowing to reject a saboteur. If
saboteurs can be identified, there is an evident advan-
tage at eliminating them, at least for the duration of a
batch. However, as explained before, we do not want
to define a saboteur on a only-one error basis. This
section explores a weak form of blacklisting, where we
eliminate only the workers which have a too high error
rate.

Here also, we propose a two-step method. FEach

0.01 T T T T T T T
0.009
0.008

0.007 |-/

=T

po

0.006

T

T

0.005

0.004

T

0.003 ! ! ! ! ! ! ! !
100 200 300 400 500 600 700 800 900

Figure 5: Rejection value for the second step of the
blacklisting algorithm

worker takes a piece of a batch B; on this piece, a
sequential test is run, with pg = p,, and a large value
of p;. More precisely, the objective of this step is to
eliminate the saboteurs that fake a serious amount of
results. The exact values of p;, @ and § will depend
on the size of the piece of work allotted to a worker,
as in the previous section. All the jobs performed by
a worker which has failed the test are eliminated, and
reserved for another batch. This is the reason for the
choice of pg = p,: we do not want to eliminate pieces
that comply with the user requirement, so we tune the
test so that it accepts (whp) a set of jobs with an actual
defect rate less than pyg.

At the end of this first test, the remaining jobs,
which come only from the workers that have not been
eliminated, form an improved batch B’. At this step,
to assess the quality of B’, we can reuse the results of
the jobs tested, thus at no cost, to conduct a second
test on B’. For this new test, we must set p; = p,, and
3 = €. As the naive saboteurs have been eliminated,
and because we expect that the naive and honest ones
are the overwhelming majority, the most frequent case
will be the one where the remaining workers are nearly
perfect. Thus, a likely efficient choice for pg will be the
one such that Fg(n') = kFEg(n), where k is the number
of remaining workers. Fig. 5 shows the values of pg
as a function of k, assuming that o/ = a and ' = 3,
for p, = 0.01, and various choices of p;. For p; = 0.2,
which gives a sample si=e on the order of 10 for each
worker, it suffices to keep slightly more than 200 work-
ers to get a final test which is subject to err only for
0.009 < p < 0.01.

An optimi=ation of this scheme would be to allow for

1000

the early rejection of the previous section. However, in
this case, the amount of work allotted to each worker
may be varying. A worker may have passed the test,
and be allotted new jobs, which offers an opportunity
to new errors. Integrating the two schemes will be the
subject of future work.

7 Actions

7.1 Corrective actions

The simplest corrective action is to force the worker
to reload the code. In the XtremWeb framework we
are currently developing [21], this is easy: each time
a worker asks for work, it gives information about the
codes it has previously downloaded, and the dispatcher
is responsible for uploading the code of the job it plans
to commit to the worker. For a honest worker, up-
loading is avoided, if the code is already present, as
it wastes network and server bandwidth. For a sabo-
teur, the dispatcher will upload the code, and otherwise
monitor its results as usual. This is the only possible
action when the workers are anonymous.

When workers can be identified, the average si=e
of the test can be used to estimate the error rate
of a worker, through Wald first lemma stating that
E,(Sn) = pEp(N). Dealing with honest workers and
naive saboteurs is straightforward. An error rate be-
tween the acceptance and rejection threshold is much
more penali=ing, as it requires a very high number of
checks.
nial of service attack (assuming the job checking algo-
rithm is mostly correct). First, if the saboteur fakes

This behavior strongly points towards a de-

only a few results, it may be expected that the over-
all computation will not be seriously hampered; hence,
its purpose is only to hamper the GC system itself, by
increasing the checking overhead. Second, and more
important, this attack may show that the saboteur has
a precise knowledge of the appropriate parameters of
the checks. In this case, if the reloading code strategy
does not modify the system behavior, it would become
necessary to assume that the security of the dispatcher
itself has been compromised.

7.2 Reliable workers

At bootstrap, there must be some external guaran-
tee for the workers which are in charge of individual
job checking. This could be a serious limitation to the
overall throughput of the GCS, which can only deliver
a batch when the testing process is complete. In per-
manent regime, and when workers can be identified,
their reliability performance can be traced over time,
and tested for =ero default. Workers that have a negli-
gible probability of faking the results can be used as a

support for the testing process itself. Then, only these
workers have to be checked on the definitely reliable
ones. Here also, the system will self-adapt to the work-
ers behavior: the number of workers it can actually use
will increase with the number of honest workers.

8 Related Work

Checking the correctness of a computation has been
the subject of a lot of theoretical work, since the sem-
inal paper of Blum [16]. Two main approaches have
been considered. The first one considers the problem
of checking the result of a computation on a particular
input, through the use of some properties relating the
inputs to the outputs [14]. In this paper, we consider
result-checking algorithms only at the level of individ-
ual job checking, assuming that a batch checker is not
available. However, as explained before, the availability
of job checkers are not a requirement for our scheme.

The second approach is property testing [17], which
has a very strong relation to the problem considered
here. A property tester states probabilistically whether
an object actually possesses a property, or is far for any
object possessing it. Thus, a property tester exhibits
the same parameters (false alarm and false negative)
than a statistical test. In the literature, property tester
usually consider non-numeric properties (linearity of
functions [18, 19], or graph partition problems such as
k-colorability [17]) In our framework, the tested prop-
erty is to have a defect rate lower than a prescribed
threshold, and the distance is described by the p; pa-
rameter.

In the framework of the Global Computing projects,
the sabotage problem has been considered by the
Bayanihan one [12]. Our work shares the idea of us-
ing dynamically built credibility to verification process.
The main difference are that [12] 1) does not use the
framework of statistical tests, and thus does not take
into account the risk of false alarm ; 2) is based on

blacklisting.

9 Conclusion

Global Computing Systems are e<posed to a new
type of attacks, where authentication is not relevant,
and network security techniques are not sufficient. In
this paper, we have considered the case where no in-
formation is available about the properties of the col-
lective result of a batch, and thus the result-checking
algorithms cannot be looked for. We think that this sit-
uation may be frequent. The massive trivial parallelism
offered by GCS is especially well-suited to Monte-Carlo
computations, and indeed GCS have been built for or
applied to such applications [20, 21]. In this case, the

overall computation result is the probability distribu-
tion of natural processes on which little is known, thus
only too crude reliability tests can be defined. We have
analy-ed the likely behavior of a GCS, which is bi-
modal, and devised probabilistic methods which self-
adapt to the behavior of the computing entities.

Future work will go in two directions. The first one
is a typical case study, for a Monte-Carlo application
in astrophysics, for which the slack in individual result
checking is a reality. The second one is to e~plore the
potential of the sequential analysis core idea, that is to
build dynamically the sample, in the field of property
testing.

References

[1] C. Germain et al. Global Computing Systems. In Sci-
Com01. LNCS 2179. Springer, 2001

[2] D. Anderson and al. A New Major SETI Project Based
on Project Serendip Data and 100,000 Personal Com-
puters. In 5th Intl. Conf. on Bioastronomy, 1997.

[3] G. Kan. Gnutella. In P2P: Harnessing the power of
disruptive technologies. A. Oram Ed. O’Reilly, 2001.

[4] A. Langley. Freenet. In P2P: Harnessing the power of
disruptive technologies. A. Oram Ed. O’Reilly, 2001.

[5] David R. Karger and Matthias Ruhl. Finding Nearest
Neighbors in Growth-restricted Metrics. In STOC ’02.

[6] I. Foster. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. [JSA, 15(3), 2001.

[7] I. Foster, C. Kesselman, J. Nick, S. Tuecke. Grid Ser-
vices for Distributed System Integration. Computer,
35(6), 2002.

[8] S. Raman and S. McCann. A model, Analysis and Pro-
tocol Framework for for Soft State-based Communica-
tion. Computer Communication Review, 29(4). 1999

[9] D. Molnar. The SETI@home problem

[10] A. Wald. Sequential Analysis. Wiley Pub. in Math.
Stat.1966

[11] D. Siegmund. Sequential Analysis. Springer series in
Statistics. 1985.

[12] L. Sarmenta Sabotage-Tolerance Mechanisms for Vol-
unteer Computing Systems. FGCS, 18(4). 2002

[13] H. Casanova, A. Legrand, D. Zagorodnov, and
F. Berman. Heuristics for Scheduling Parameter
Sweep Applications in Grid Environments. In 9th Het-
erogeneous Computing Workshop, 2000.

[14] M. Blum and H. Wasserman. Program result-checking:
A theory of testing meets a test of theory. In 35th
FOCS. 1994

[15] S. F. Hummel, E. Schonberg, and L. E. Flynn. Fac-
toring: a method for scheduling parallel loops. Comm.

ACM, 35(8). 1992.

[16]

(17]

(21]

M. Blum and S. Kanna. Designing programs that
check their work. In 21th STOC. 1989.

O. Goldreich, S. Goldwasser, and D. Ron Property
Testing and its Connection to Learning and Approxi-

mation. JACM, 45(4). 1998

M. A. Kiwi, F. Magniez, M. Santha. Approximate
Testing with Relative Error. In 31th STOC. 1999

F. Ergun et al. Spot-checkers. In 30th STOC. 1998.

L. Loewe. Evolution@home: Experiences with Work
Units that Span More than 7 Orders of Magnitude.
In Workshop on Global and P2P systems at 2nd IEEE
CCGrid. 2002.

G. Fedak et al. XtremWeb: a generic Global Com-
puting System. In Workshop on Global Computing on
personal devices at 1st IEFE CCGrid

