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ABSTRACT
Result checking is the theory and practice of proving that
the result of an execution of a program on an input is cor-
rect. Result checking has most often been envisioned in the
framework of program testing or property testing, where the
issue is the conformity of the program to some a-priori spec-
ification. Very large scale distributed computing systems
demand to tackle the issue of computation correctness, al-
beit from hypothesis very different from the program testing
ones. The general issues examined in this paper are the fol-
lowing. First, the definition of checking methods adapted to
large-scale Monte-Carlo simulations; for these applications,
no external criterion can be used to assess the quality of
the result. Second, two result checking algorithms which
minimize the overall overhead through an adaptive strat-
egy. Finally, a specialization of this framework to a case
study, the Auger astrophysics experiment. Our main contri-
butions are: first to focus on checking Monte-Carlo simula-
tions, which have rarely been considered previously; second
to define a probabilistic checking strategy including the risk
of first kind (false positive) as well as the risk of second kind
(false negative) which is usually the only one considered,
and which is compatible with Byzantine saboteurs; third, to
exploit the probable characteristics of the behaviour of the
saboteurs to optimise for the most frequent case. Finally,
we show on a case study that the implementation details
can be carried out.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; J.2 [Physical Sciences and Engineering]: Physics
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1. INTRODUCTION
Result checking [3] is the theory and practice of proving

that the result of an execution of a program on a given input
is actually correct. Result checking has most often been en-
visioned in the framework of program testing [2] or property
testing [13], where the issue is the conformity of the program
to some a-priori specification. Very large scale distributed
computing systems demand to tackle the issue of computa-
tion correctness, albeit from hypotheses very different from
the program testing ones.
Grids can be broadly classified in two categories: Institu-

tional Grids (IG), and Global Computing or P2P (GCP) sys-
tems. IG extend the computing centre model to a large geo-
graphical scale, based on the virtual organization paradigm
[10, 9]. GCP [11, 8] harvest the computing power provided
by individual computers, the collaborators, to run very large
and distributed applications.
GCP such as SETI@home [18] or XtremWeb [7] use un-

controlled computing resources, and are thus very vulner-
able to sabotage: some of the workers may tamper with
the computation process and report false results. Although
few GCP were actually deployed in an open environment,
at least three of them (distributed.Net, SETI@home, De-
crypthon) suffered from this kind of attack. The case of
SETI@home is well documented; some collaborators substi-
tuted for the original FFT a faster but inadequate one; the
probable goal was to get a better classification in the SETI’s
”hall of fame”.
IG have better control over their collaborators; with re-

spect to result checking, the main difference is that the
collaborators are identifiable through strong authentication
systems. Nevertheless, IG target broad scientific collabo-
rations where very various individuals, groups and insti-
tutions, carry out many digital simulations and where the
chain of the data processing is only partially automated.
An example of this kind of grids is EGEE/LCG, one of the
largest grids deployed so far. Formerly, the simulations were
run in a very small number of computing centres, ensuring
relatively easy traceability of software. A more decentral-
ized and autonomous access to computing resources is now
considered important even in particle physics [5]. The pos-
sibility of errors in the process is then increased.
We will use the following terminology (as defined by [19]):

falsification stands for the process which creates erroneous
results, and saboteur for either a machine or a human being
tampering with the computation. In increasing order of ma-
licious intention, the origin of falsification may be running
an incorrect code, or a correct one with incorrect inputs,



whether inadvertently or to get speedup; or the will to skew
the results; both GCP and IG are exposed to these risks.
Only GCP might suffer from free riding, where the collabo-
rators use the resources, but do not provide any; GCP might
also be exposed to denial of service attacks, where the goal
is to halt the GCP system by destroying its credibility.
Two classes of strategies can be used to prohibit or limit

falsification: a-priori prevention or a posteriori checking.
Prevention enforces the use of the proper software and in-
puts. For IG, prevention relies on organization management
and is out of the scope of this paper; however, as pointed
before, the need for autonomous use of the grid limits this
approach. For GCP, at user level, the issue is very similar
to the protection of execution against malicious agents, for
which code encryption and execution tracing has been pro-
posed [14]; however, both imply large overheads for design-
ing and running the encrypted code. At the system level,
the code and data fidelity can be enforced by a chain of
certification, which ultimately relies on hardware (TCPA-
Palladium [15], microcode [17]), but with major sociological
problems.
Besides, none of the these methods is relevant for open

source code. Thus only a posteriori checking will be consid-
ered here.
The general organisation this paper are as follows. Section

2 sketches the general issues raised by checking large-scale
Monte-Carlo simulations; for these applications, no exter-
nal criterion can be used to assess the quality of the result.
Section 3 proposes two result checking algorithms, which
minimize the overall checking overhead through an adap-
tive strategy, together with a quantitative evaluation of their
performance. Section 4 proposes a framework for exploiting
these algorithms when both identified and anonymous col-
laborators contribute to the system. Section 5 describes the
specialization of the oracle component of the algorithms to
a case study, the Auger astrophysics experiment.
Our main contributions are:

• to focus on checking Monte-Carlo simulations, which
have rarely been considered previously [22];

• to define a probabilistic checking strategy including
the risk of first kind (false positive) as well as the risk
of second kind (false negative) which is usually the
only one considered ; this strategy is compatible with
Byzantine saboteurs;

• to exploit the probable characteristics of the behaviour
of the saboteurs to optimise for the most frequent case;

• to show on a case study that the implementation de-
tails can be carried out.

This paper extends the ideas presented initially in [12] on
three points. The first one is to present a comprehensive cost
model; the second one is to show that Byzantine saboteurs
can be dealt with; the last one is to propose a case study.

2. OVERVIEW

2.1 Grid Applications
In this paper, we consider only multi-parameter or pleas-

antly parallel applications, which consist of a large set of
independent jobs. Most result-checking or property-testing

work is rooted in exhibiting a characteristic property of the
computation; this property is able to separate the correct
results from the incorrect ones. For many important grid
applications, like Monte-Carlo simulations or the search for
rare events, this model does not apply to jobs.

• Monte-Carlo methods build a sample of a statistical
law. In this respect, they differ from numerical meth-
ods which e.g. compute the solution of a partial dif-
ferential equation (PDE) which fall into the category
of one-way invertible functions. In many Monte-Carlo
simulations used in physics and biology, the program
simulates a complex system, whose only local inter-
action laws are known. There almost never exists
a positive property allowing validating an individual
job, and re-execution is required for job testing. On
the other hand, the results are exploited by statistical
procedures, in order to estimate the parameters or the
form of the distribution of quantities of interest. Such
procedures are amenable to fault tolerance: robust sta-
tistical methods tolerate aberrant values of unknown
amplitude, if their number is known. The checking al-
gorithm has thus to guarantee an upper bound on the
falsification rate.

• The search for rare events is exemplified by SETI@home,
or the search for Mersenne prime numbers. The fre-
quency of positive results (”extraterrestrial signal found”)
is supposed to be extremely low. The issue is to check
the mass of negative results. Such applications share
with the Monte-Carlo ones the characteristic of requir-
ing re-execution to prove correctness. However, they
differ in the fact that the individual results, not the
collective behaviour, are the point of interest ; thus
these applications are essentially non fault-tolerant.

For both cases, the only possible verification of individual
jobs is re-execution. Whatever scheme is applied (vote, m-
first voters), the penalty of an exhaustive checking is at least
doubling the execution cost.
Fault-tolerance is exhibited by other applications, for in-

stance ray-tracing. For non fault-tolerant applications, test
strategies will have to target the elimination of unreliable
collaborators, thus are restricted to IG, or to accept the
penalty of multiple re-execution (this strategy has been ap-
plied by SETI). The rest of this paper considers only the
fault-tolerant applications.
One advantage of this quality control approach is its gener-

icity: as the semantics of the jobs does not matter, it will
be implemented as the level of grid middleware, and be in-
dependent of the user algorithms.

2.2 A Cost Model
The previous discussion leads to define a verifiable unit,

a batch, as a group of jobs. A checking algorithm accepts or
rejects a batch as a whole; thus all the jobs of a batch have
to wait for the completion of the checking algorithm before
any of them can be validated.
A batch of size n can be modelled as a vector of random

binary variables (x1, . . . , xn). xi = 0 with probability p
(resp. 1 with probability 1−p) if job i is correct (resp. false).
Assuming independent jobs (x1, . . . , xn) follows a binomial
law:

Pp(x1, . . . , xn) = pSn(1− p)n−Sn , where Sn =
∑n

1
xi.



Independent jobs do not imply independence of saboteurs:
the checking algorithms will sample the batch to assess p; if
the sample is uniform over the batch, the model of indepen-
dent jobs is always applicable (provided that the size of the
sample is small with respect to the batch one). A counter-
example would be a test which would choose the first n jobs
issued by the system as its sample, when the saboteurs are
faster than the honest collaborators. Therefore the indepen-
dent jobs model can accommodate Byzantine adversaries by
enforcing uniform sampling.
The application fault tolerance is defined by two parame-

ters: pa is the tolerated rate of falsification in a batch, and
ε is the tolerated risk of false negative: ε is the risk which
the user agrees to take by using a system which guarantees
its results only by a probabilistic algorithm. The checking
algorithm A decides if the falsification rate p is greater than
pa, with a risk ε of optimistic error. Here and afterwards an
error is a wrong decision of A, either rejecting a good batch
or accepting a bad one. A has access to an oracle, which
deterministically asserts if a particular job has been falsi-
fied or no. The typical oracle is re-execution on dependable
machines, or vote.
When A must reject a batch, all the executed jobs are

useless, since a batch is delivered entirely or not at all; thus
the cost of A must take into account, not only the cost of the
tests, but also the overall resource usage. To model the re-
source usage, let B be the size of the batch, s(p) the number
of calls to the oracle and r(p) the number of jobs executed
before a rejection. For a given value of the falsification rate
p, the overhead of A is then s(p), whatever final issue (ac-
ceptance or rejection), plus r(p) when A rejects, normalized
by the batch size:

C(p) =
1

B
(s(p) + r(p)Pp(reject)) . (1)

However, p is by hypothesis unknown. Moreover, it is
not true in general that the overhead increases with p, as
shown by the adaptive algorithms presented in the next sec-
tion. Thus the comparison or the parameterisation of the
checking algorithms must take into account the statistical
distribution of p. Let Q be this distribution. Then a perfor-
mance indicator for A is the average overhead Ca under Q
when A should accept :

Ca =
1

B
EQ[C(p)|p ≤ pa] =

1

BQ([0, pa])

∫ pa

0

C(p)dQ, (2)

For instance, a saboteur-free system is by definition a sys-
tem where p is always null; thus Q({p = 0}) =1. On the
other hand, any reasonable test must accept systematically
perfect batches, i.e. Pp(reject) = 0; therefore Ca = s(0): the
overhead is precisely the number of calls to the oracle.
Ca measures the overhead in a stable state. A stable state

is a state where the system can deliver, i.e. p < pa. When
the system should not issue anything, because the falsifica-
tion rate is higher than acceptable, the only sensible cost is
the complexity of the halting procedure, measured by the
number of calls to the oracle. Detection of this situation
must lead to corrective actions, which are sketched in sec-
tion 4.2.
The distribution Q models the behaviour of saboteurs.

• Q concentrated on 0 and 1: Q(0) = q,Q(1) = 1 − q,
describes the alternation of massive and coordinated

attacks (all jobs falsified, p is always 1) and the ideal
situation (p is always 0).

• Q as a power law: Qλ(p ≤ x) = xλ; 0 < λ ≤ 1;x ∈
[0, 1], represents a distribution which concentration on
the null rate decreases with λ, down to the uniform
case (λ = 1) where all falsification rates are equally
likely.

3. ADAPTIVE ALGORITHMS
Three distinct behaviours can be considered.

• Normal. Most collaborators are not saboteurs. This
is true if the system can control the origin of jobs, or
if sabotage is made difficult (binary encrypted code).

• Massive attack. The saboteurs systematically falsify
their results.

• Subtle attack. In this scenario, a large number of col-
laborators are saboteurs. If these collaborators were
to falsify systematically (massive attack), the system
should be able to eliminate them and continue work-
ing with the remaining honest collaborators. Therefore
the most subtle attack consists in providing collabora-
tors who falsify only a fraction of results, and who are
thus difficult to identify.

The possibility of very different scenarios is an argument for
adaptive checking algorithms, which optimise for the most
frequent situation. The realization of a subtle attack is
complex: the entity responsible for sabotage must control
a significant fraction of collaborators, organize anonymity,
and falsify not systematically. The checking algorithm must
therefore be optimised to normal and massive attacks sce-
narios, while being able to detect a situation of subtle attack,
at higher cost.

3.1 Wald’s sequential test
The fault-tolerance property of Monte-Carlo simulation

leads to the broad class of statistical decision procedure
known as hypothesis testing. What is needed is to assess
if the falsification rate is below some given threshold pa.
Parametric hypothesis testing is a procedure which de-

cides, given a distribution Pp (here the binomial law) with p
unknown, if p ≤ p0 or p > p1, p0 and p1 being known values.
The specification of a test is its acceptance region H0 (null
hypothesis); for an empirical sample (x1, . . . , xn) of Pp, the
test accepts if and only if (x1, . . . , xn) ∈ H0.
Two risks must be considered: α is the probability (under

Pp) to reject when p is actually less than p0 (false positive);
β is the probability (under Pp) to accept when p is actually
greater than p1 (false negative).
H0 is constrained by the fact that for p ≤ p0, the test

must accept with probability greater than 1−α; for p ≥ p1,
the test must reject with probability greater than β; in the
region p0 < p < p1, the quality of the outcome of the test is
not quantified; thus [p1 − p0] measures the zone where the
test is meaningless. n is the sample size.
A standard result of statistics (Neyman-Pearson theorem)

shows that there is an optimal test among the non-adaptive
tests, with samples of fixed size. The principle is to define the
acceptance region by the number of defects in the sample:

H0 = {(x1, . . . xn)}|Sn ≤ c}.
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c and n, which define the test, are determined by Pp0(H0) ≥
1− α and Pp1(H0) < β.
This test is offered in all the statistical environments, from

spreadsheets to high performance statistical systems. Its
cost is very high, as shown in Fig. 1: to get a relatively low
accuracy (p0 = p1/2), the size of the sample is in the order
of 100 for p1 = 0.1, but of several thousands for p1 = 0.01.
The sequential test defined by Wald [21, 23] formalizes the
intuitive idea that a partial test is sufficient if the previous
data imply acceptance or rejection. Fig. 2 describe the al-
gorithm: the test begins with a sample of size 1; at step m,
if the number of defects in the sample (x1, . . . , xm) is less
(resp greater) than a value which depends of m, the test
accepts (resp. rejects); if the number of defects is between
these two values, the sample size is increased. The sample
size becomes a random variable, and the test cost is mea-
sured by Ep(n), the average sample size under Pp. It can be
shown that the test ends (Ep(n) < ∞) [23]. The choice of
the sequential test has two advantages over the static test
(Fig. 3):

• On average, its cost is less than that one of the static
test, at all defect rates.
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• It is adaptive; the cost increases to a maximum be-
tween p0 and p1, and drops fast after. The benefit
in comparison with the static test is a factor of 5 for
the normal case, where there are very few saboteurs
(p close to 0), and of several orders of magnitude for a
massive attack (p close to 1) .

In the following, L(p) is the probability that Wald’s test
accepts. By construction, L(0) = 1, L(p0) = 1−α,L(p1) = β
et L(1) = 0. Other properties of Wald’s test are recalled in
the appendix.
Sequential tests are routinely used in various areas. Ther-

apeutic trials must end as soon as significant data is avail-
able, for ethical reasons (when one treatment is significantly
better than other one), which motivates a considerable lit-
erature concerning variants of the test (for a bibliography
see [6]). In industrial process control, the non-adaptive test
corresponds to V-tests, and the sequential test to CUSUM
methods. [21] notes the relation between the sequential test
and dynamic programming. Finally, the notion of credibility
developed by [19] revolves around the same ideas, but with
elementary mathematical tools.

3.2 Checking a Batch
The most difficult case is the one where the collabora-

tors are anonymous: the composition of a batch cannot be
improved by the removal of suspicious collaborators. This
section will present two algorithms adapted to this case.

The Simple Sequential Test
The first algorithm is a direct application of Wald’s sequen-
tial test. For a falsification rate p, the sampling cost s(p) is
Ep(n), and the probability of rejection is simply 1−L(p). To
comply with the user specifications, it is necessary to choose
p1 = pa and β = ε, ensuring that the upper bounds on the
falsification rate and false negative will not be exceeded.
In this framework, the number of calls to the oracle s(p)

is the size of the sample, that is the random variable n;
the number of jobs executed before a rejection is simply the
batch size B. Thus, according to (2),

Ca =
EQ[Ep(n)|p ≤ pa]

B
+ EQ[1− L(p)|p ≤ pa].



The complete specification of algorithm requires to define
p0, α and the size of the batch B. The batch size is mainly
constrained by external factors, such as the maximal time a
user would accept to wait for the results; the four parameters
α, β, p0 and p1 are redundant to define the actual behaviour
of a sequential test (which is fully defined by three parame-
ters, e.g.the common slopes of the acceptance and rejection
lines, and their intersection with the Y-axis). Thus in the
following, we focus on the dependance on the p0 parameter.
In the previous expression, the Ep(n) term increases with

p0, for p fixed, and the second term decreases: a test is more
selective, in acceptance, if p0 and p1 are closer, but requires
a larger sample. These inequalities remain true with Q-
averages.
Fig. 4 display the overhead computed by numerical inte-

gration, as a function of p0, and for the power law proba-
bility distributions on p presented in 2.2. For this example,
α = β = 5% and B = 1000. The leftmost column corre-
sponds to λ = 0.01 (falsification distribution concentrated
to 0); the middle column is λ = 0.1 ; the rightmost column
is λ = 1 (uniform distribution). The lower row corresponds
to pa = 0.1, the upper row to pa = 0.01. The horizontal
axis is p0.
The most obvious result is that this simple test provides

acceptable performance in the normal case, when the distri-
bution of p knowing that p < p1 is highly peaked at 0. On
the other hand, the simple test becomes very costly in situ-
ation of subtle attack, modelled by an uniform distribution:
sabotage consists then in providing enough wrong results to
cause high resource use, and enough good results to pre-
vent the system from efficient reaction. The simple test is
therefore very vulnerable to a denial of service attack.
With the cost model described before, the overhead has

two components: the number of oracle calls on one hand,
and of erroneous rejections on the other hand. Fig. 4 dis-
plays the breakdown of these two components (dark grey
= erroneous rejections, light grey = number of calls). The
simple test remains static, in the sense that it does not re-
ally integrate the possibility of early rejection. On the other
hand, a strictly sequential implementation of Wald’s test
would not be convenient for servicing multiple users. The
next section proposes a traeoff between the fully parallel test
(simple test) and a sequential implementation.

A two-phases test
An early detection of a rejection situation decreases the over-
head, since the batch is not entirely executed. A 2-phases
test starts by assessing the reaction of the system toward a
particular batch, by testing all the results of an initial sub-
set. When a decision is reached, if positive, the rest of the
jobs is launched, then a new simple test is performed by
random selection amongst the results of the whole batch .
The batch is accepted only if both tests accept.
If the first step rejects, the number of calls to the oracle

is s1(p) = Ep(n); if it accepts, the number of calls to the
oracle is s2(p) = 2Ep(n). Thus, s(p) = (1 + L(p))Ep(n).
Rejection at the first step costs only the execution of the
fraction of the batch required for reaching a decision, thus
r1(p) = Ep(n) ; if the first step accepts and the second one
rejects, all the batch is executed, thus r2(p) = B. Hence,
r(p) = (1− L(p))Ep(n) + L(p)(1− L(p))B. Finally, we get

C2phases(p) =
2Ep(n)

B
+ L(p)(1− L(p)).

The second test is necessary, the first jobs not being rep-
resentative of the system, except if the adversaries are inde-
pendent. A much weaker hypothesis than the one of inde-
pendent adversaries is to assume that the falsification rate
remains constant between the first and the second phase,
what is equivalent to assume that the adversary cannot dis-
cover the frequency of tests. Under this hypothesis, the val-
ues of β for the 2-phases test must be adapted, with β =

√
ε,

to get the same overall risk of the second kind.
When there are not falsifications (p = 0), with the adapted

β, equation (3) in the appendix gives E2phases
p (n) = Ep(n)/2;

as L(0) =1, C2phases(0) = C(0), therefore the 2-phases test
overhead is not worse that the simple one.
As soon as the falsification rate is significant, Fig. 5 and 6

show that the 2-phases test significantly decreases the over-
head for a large scale of p0 values . In these examples, the
upper (resp lower) graph corresponds to pa = 0.01 (resp.
pa = 0.1). α = β = 5% ; medium and high are as in Fig.
4. At low falsification rate, the results for the overhead are
very close, thus the figures were not included. The two-
phases test has therefore two advantages.

• The system is much more robust with respect to subtle
attacks.

• The range of tradeoffs between the cost of rejection
and the oracle calls is much larger.

If the hypothesis of a constant falsification rate is not
valid, therefore assuming an omniscient adversary, the situ-
ation is more complex [12]. The simple test is better when
the falsification rate is concentrated at 0; for p = 0 the over-
head of the two phases test is double of the one of the simple
test; if the falsification rate is uniform, the two phases test
is better for small values of p0, as in the previous case.

4. THE CREDIBILITY OF THE
COLLABORATORS

In a simpler case, the association between jobs and collab-
orators can be tracked down. It is then possible to test not
only the batches, but also the collaborators themselves, and
to eliminate jobs coming from suspicious collaborators. This
rejection must not be immediate, because an unintentional
falsification is likely to be transitory (erroneous manipula-
tion).

4.1 Simultaneous checking
For simultaneous testing of collaborators and batches, the

adequate setting is to accept (with probability 1 − α) any
correct production, therefore to set p0 = pa. The definition
of the other parameters (β and p1) will be provided by exter-
nal constraints, for instance the ratio between the test size
and the subset of the batch (Br) delegated to collaborator
r (the overall batch B is the union of all Br). The size of
Br being limited, the simple sequential test is probably the
only applicable one. The test outcome is double: first, the
admittance of rejection of Br; second, an assessment of the
collaborator credibility; this assessment is binary (depend-
able or suspicious). Both results can be effectively exploited.
Concerning the assessment of B, the impact of the test is

to improve the quality of the batch results: any results com-
ing from suspicious collaborators are discarded, and their
jobs are rescheduled to collaborators that have passed the



Figure 4: Overhead for the simple test
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previous test. When B is complete, the results come only
from the remaining non suspicious collaborators. The batch
must then be re-tested with p1 = pa, to guarantee confor-
mity with the prescribed tolerance; as the batch is very likely
to be of very good quality, a very low rejection threshold p0

is reasonable, allowing for a fast test.

4.2 A Reliability Architecture
The checking algorithms must be inserted into a more

general process, the inspector. The general objective of the
inspector is to dynamically allocate resources as a function
of, on one hand the user quality requirements (accepted fal-
sification rate and error tolerance) and on the other hand
the behaviour of the system. A realistic modelling of the in-
spector would require more information on attack scenarios
than what is currently available; we will only provide some
initial ideas.
The resources can be categorized threefold: the absolutely

reliable collaborators, which are under the direct control of
the system administration, the identified collaborators, and
the others ones. The primary role of the absolutely reliable
collaborators is checking individual jobs. As their number is
necessarily small, they constitute the inspector bottleneck.
Extending the pool of collaborators entitled to check to iden-
tified collaborators, is a by-product of the test sketched in
4.1: the reliability of the collaborators itself is a random bi-
nary variable, thus subject to the hypothesis testing. How-
ever, an erroneous promotion of a computing collaborator
to checking collaborator would have very serious negative
impact on the inspector. Thus the most adequate statisti-
cal test for the promotion would probably be a test of rare
events rather than a sequential test. Nevertheless, the pro-
moted collaborator must continue being tested by random
re-execution of its results on fully reliable collaborators.
A much more difficult problem is recovery from attacks.

When the falsification rate is estimated higher than the ac-
ceptable threshold, continuing operations without particular
intervention would simply mean trying to realize the statisti-
cally unlikely event of false negative. For IG systems, alert-
ing the collaborators is probably enough. For GCP systems,
one simple but useful tool is to enforce reloading the appli-
cation code (eg the FFT in SETI) from a reliable source.
For the identified collaborators, only saboteurs will have to
reload. For the anonymous collaborators, reloading might
lead to an indirect denial of service, the reliable sources
becoming overloaded by simultaneous requests. Thus the
reloading has to be scheduled over time, from the assumed
identities of the collaborators.

5. A CASE STUDY

5.1 The Pierre Auger Observatory
The Monte-Carlo simulations in the Auger experiment are

an interesting and probably general example of the possible
improvements to the general scheme exposed in the previ-
ous sections. The Pierre Auger Observatory studies the very
high-energy cosmic rays. These cosmic rays are electromag-
netic particles with energies above 1019 eV (by comparison,
accelerators attain at best 1012eV). They are also extremely
rare: above 1019 eV, the arrival rate is only 1 event per km2

per year; the especially interesting ones with energies above
1020 eV have an estimated arrival rate of just 1 per km2 per
century. The origin of these cosmic rays is a major scientific

issue: in the standard model of the universe, such events
should be so rare (GZK cutoff) that the accidental detec-
tion of a few of them in the 90’s was rather unlikely. The
main goal of the observatory is to record a significant sample
(statistics in physicist language) of high-energy events.
Very energetic cosmic rays are observed in the earth at-

mosphere. The primary energetic cosmic ray collides with a
nucleus in the air, creating many secondary particles, which
share the original energy. The secondary particles also col-
lide with nuclei in the air, creating a new generation of
still more particles that continue the process. This cascade,
called an extensive air shower, arrives at ground level with
billions of energetic particles that can be detected over ap-
proximately 10 square kilometres. Auger particle detectors
are deployed with a separation of 1.5 km on a 3000km2 sur-
face in Argentina, in order to sample each air shower’s den-
sity at numerous locations on the ground. Fluorescence de-
tectors register the shower development in the atmosphere.
The observation of cosmic rays is thus very indirect. Phys-

ically relevant information, particularly the nature of the
primary electromagnetic particle, its initial energy and its
angle, must be inferred from the measurements of the phys-
ical effects produced in detectors by the shower. The recon-
struction models are designed from in silico experiments:
numerical simulations of showers and detectors. Shower
simulations dominate the computation time for these simu-
lations, and will only be considered in the following.

5.2 Air shower simulation
The simulations inputs are the physical parameters (pri-

mary particle, energy, angle), plus steering parameters (eg
thinning). The output is a sample of the shower develop-
ment including ground level particles. The simulation codes
are Aires [20] and Corsika [16].
The physics of a shower is a complex and partly random

process, particularly because of the low density of the upper
atmosphere. Consequently, the simulation is of the Monte
Carlo type: the physics of a collision is deterministic, but
the location of this collision is statistical. This first source
of randomness comes from the modelling of physical real-
ity. The constraints of numerical simulation add internal
algorithmic randomisation. There are simply too many par-
ticles in shower (eg a 1020 eV primary particle creates a
shower of 1011 particles). Statistical sampling of particles
is governed by the thinning parameter. Table 1 shows a
typical impact of the thinning parameter over the execution
cost; in general, the computation time and storage require-
ments depend exponentially on the thinning. Decreasing the
thinning decreases the statistical fluctuation due to internal
randomisation.

5.3 Checking a shower
The previous sections detailed the testing methods, which

provide an upper bound for the falsification rate inside a
batch. What remains to be optimised is the cost of testing
individual jobs, here shower simulations.

Principle
The goal is to design a shower checker better than reexe-
cution. The exponential dependency on thinning allows to
approximate a shower G (subject to check), by computing a
control sample S(G) for the same physical input parameters,
with a thinning large enough for an overall execution time



Relative Thinning 10−4 10−5 10−6 10−7

Computation time 1mn 43s 16mn 52s 2h 50mn 24h58mn
Storage 541KB 5MB 46MB 589MB

Table 1: Impact of thinning on simulation - Energy 1020 eV - Xeon 2,4GHz

of S(G) less than the execution time of G. The problem is
then to decide if G and S(G) are compatible. This is an
instance of the classical outliers detection problem in statis-
tics. Numerous studies analysed the power of various tests
against alternatives and tabulated the acceptance thresholds
[1]. However, these tests can be rigorously derived only for
parametric problems, where the distribution shape is known
a-priori (gaussian, hyper-geometric etc.). For shower simu-
lations, the double source of randomness leads to the combi-
nation of gaussian distributions due to internal randomisa-
tion and non-necessarily gaussian distributions coming from
the above-mentioned physical effects.
Thus, the outlier detection test itself has to be designed

from data mining of existing (and hopefully correct) shower
results. This design is an ongoing project; only very pre-
liminary results based on the physical interpretation of the
result parameters and some crude statistical methods are
exposed here.

Test design
The output of a simulation is a highly structured dataset.
Therefore, direct tampering with the result files is difficult;
moreover voluntary falsification is not a real threat in the
Auger context. The normal mode of falsification would more
likely be due to involuntary bugs in the submission process;
it would substitute the results of a shower G′ for those of
another shower G. Thus, checking a shower amounts to
prove that the input parameters of a given shower are what
they were assumed to be. The next section will focus on
checking the following input parameters: particle energy and
particle type.
Post processing of a shower output delivers a set of physi-

cal quantities; these quantities do not capture all the useful
physical information, but they depend in a complex manner
on the whole dataset and therefore constitute good candi-
dates for the test. The most significant quantities with re-
spect to the energy parameter are probably those who repre-
sent the shower maximum: Xmax is the altitude of the point
where the number of charged particles reaches his maxi-
mum and Nmax, the value of the maximum. The simulated
shower initially expands, each collision producing new par-
ticles, then becomes diminishing, when the secondary parti-
cles have not enough energy to produce new particles; below
a threshold called the cutoff energy, particles are not fol-
lowed anymore. Xmax is not discriminant enough, because
the impact of the altitude of the first collision introduces a
large variability. On the other hand, the number of particle
Nmax does not depend on the altitude of first collision.
However, experiments proved that the shower maximum is

not discriminant for the particle kind parameter. A discrim-
inant quantity must be searched amongst absolute values.
For physical reasons, the number of muons at ground level
NMuons is the best candidate.
The test is the deviation from the mean: |x−m|

s
< c, where

m and s are respectively the mean and deviation estimators.
The estimator of m is the median, and the estimator of s is
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the unbiased one (for a gaussian distribution, this test is the
maximum likelihood test). More precisely, the test accepts if

( |x1−m1|
s1

< c1) ∧ ( |x2−m2|
s2

< c2), where the first test relates
to Nmax and the second to NMuons.

Experimental results
We used the Auger simulation database and the XtremWeb
Global Computing system at LAL for shower simulations.
The terms of experience are the following. The energy of
showers to check varies from 0.75E19 to 1.25E19 (unit is
eV) for the first example and from 0.75E20 to 1.25E20 for
the second example; the kind can be either Iron or Proton.
One shower G is thus, for instance, (Proton, 0.9E19). For
each G, the control sample is composed of 20 showers, with
the G parameters, except the thinning which is 10−4.
The performance of the test is computed on a set of show-

ers at 1.0E19 for the first example, and 1.0E20 for the sec-
ond one. Each shower in this set play the role of a falsified
shower. To have a significant sample of falsified showers,
we had to use all the available showers in the central Auger
database, with a 10−6 thinning. This is a worst case, be-
cause 10−6 is the lower bound of physically relevant simu-
lations, and is due to the fact that the Auger experiment is
still in an early phase. However, this provided sample sizes
in the order of 100, except for (Iron, 1020), where it is only
44.
Fig. 7 presents the acceptance ratio (number of shower

accepted over total number of showers) for c1 = c2 = 1,
when the only variable to be checked is energy. For instance,
if G is (Iron, 0.85E19), the point on the curve Fe-1019eV
with abscissaX = 0.85 gives the number of accepted showers
from the 100 showers (Iron, 1.0E19) taken from the Auger
database, divided by 100. The ideal result would be to have
an acceptance ratio of 1 for showers with X = 1, and 0 for
all the other ones. The test has a very good behaviour for
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Iron showers, but less good for Proton showers where the
separation of the energy is correct only up to 10%.
A more intuitive view of the test is given in Fig. 8 and

9. The points with error bars are the median and standard
deviation of the control sample E(G); the isolated points
are the potentially falsified showers. The combination of
criteria Nmuons and Nmax separates showers of different
kinds. The dispersion of the Nmax for protons for the two
samples at 1019 and 1020 shows that the separation of energy
cannot be improved on this criterion only.
More generally, a test scalable both in power (false pos-

itive) and significance (false negative) is probably not real-
istic, because of the intrinsic statistical variation of simula-
tions; therefore, the test against a sample of control cannot
be the only method for individual checks. On the other
hand, accepting a relatively high number of false positive,
allows to define a test with as good a significance as simula-
tion allows for. Acceptance becomes then only an indication,
which must be confirmed by full re-execution. This strat-
egy is effective, because it actually rejects falsified showers
at low cost. Let k be the ratio of execution time of G over
S(G); the benefit of the test in comparison with re-execution
is 1−α−k; for instance, a 30% false positive rate and a 20%
time ratio provide a 50% speedup.

6. CONCLUSION
This paper has presented a checking architecture focused

on Monte-Carlo applications. The cost model of the test
takes into account not only the abstract complexity - number
of calls to an oracle - but also the resource management
issues. Previous work on checking for global computing was
more focused on test design than on overhead estimation.
Our future work will explore result-checking of non one-way
invertible functions through data mining.
Credibility appears as one variant of what has been con-

sidered as a major issue for large scale distributed systems:
recovery-oriented computing [4]. While there exist an im-
mense body of literature about protecting a distributed com-
putation, the new vision of ROC is coping with failures,
which translates to attacks in our context. The work de-
scribed in this paper is also closer to the ROC strategy than
for instance self-stabilizing algorithms: the user application
remains unmodified; the middleware is in charge of taking
the necessary actions, which are furthermore essentially bi-
nary -acceptance or rejection -, also in conformity with ROC
principles.
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APPENDIX
This section recalls some results from [23].

L(p) =
( 1−β

α
)h − 1

( 1−β
α
)h − ( β

1−α
)h

where h is defined by

p =
1− ( 1−p1

1−p0
)h

( p1
p0
)h − ( 1−p1

1−p0
)h

The values of h for p = 0, p0, p1, 1 are +∞, 1,−1 et −∞
Moreover

Ep(n) =
L(p)logB + (1− L(p))logA

plog p1
p0
+ (1− p)log 1−p1

1−p0

(3)

with A = 1−β
α
et B = β

1−α


