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Abstract—The ever increasing scale and complexity of large
computational systems ask for sophisticated management tools,
paving the way toward Autonomic Computing. A first step toward
Autonomic Grids is presented in this paper; the interactions
between the grid middleware and the stream of computational
queries are modeled using statistical learning. The approach is
implemented and validated in the context of the EGEE grid.
The GSTRAP system, embedding the STRAP Data Streaming
algorithm, provides manageable and understandable views of the
computational workload based on gLite reporting services. An
online monitoring module shows the instant distribution of the
jobs in real-time and its dynamics, enabling anomaly detection.
An offline monitoring module provides the administrator with a
consolidated view of the workload, enabling the visual inspection
of its long-term trends.

I. INTRODUCTION

The ever increasing grid resources and computational load
likewise increase the demands on the administrator, in charge
of monitoring the grid status and maintaining the job running
process. More generally, the increasing pressure on system
administrators paved the way for an emerging field, Autonomic
Computing (AC) [1]. AC aims at providing system administra-
tors with scalable and high level management tools, with the
long term goal of self-configuring, self-healing, self-protecting
and self-optimizing large computing systems [2].

This paper is more specifically interested in Autonomic
Computing facilities for the EGEE (Enabling Grid for E-
SciencE1) grid. It is one of the largest multi-disciplinary
grid infrastructures in the world, developed in the European
Community Infrastructure Framework. EGEE has been built
to address e-Science computational needs (in e.g., high en-
ergy physics, life sciences, computational chemistry, financial
simulation) through an efficient distributed computing system,
enabling the communalization of resources. Computational
experiments in e-Science require high CPU, large memory
and huge storage capacities. EGEE currently involves 100,000
CPUs with 20 Petabytes of storage. These resources are inte-
grated within the gLite middleware [3], and EGEE currently
supports up to 300,000 jobs per day on a 24×7 basis.

The goal of this paper is to provide the administrator
with some facilities for inspecting the flow of jobs submitted
to EGEE, and the grid reactions. The complex interactions
between the grid middleware and the actual computational

1http://www.eu-egee.org/

queries can hardly be modeled using first-principle based
approaches, at least with regard to the desired level of pre-
cision. Therefore, an empirical approach will be investigated,
exploiting the gLite reports on the lifecycle of the jobs and on
the behavior of the middleware components. Actually, gLite
involves extensive monitoring facilities, generating a wealth of
trace data; these traces include every detail about the internal
processing of the jobs and functioning of the grid. How to
turn these traces in manageable, understandable and valuable
summaries or models is acknowledged to be a key operational
issue [4].

This paper presents an algorithm called GSTRAP achieving
a compact online and offline modeling of the gLite trace
data. The main GSTRAP originality compared with the state
of the art in Grid Monitoring (section II-A) is to focus on
the interpretation of the data, relying on Data Streaming
principles. Data Streaming, a Data Mining field (section II-B),
is concerned with the online exploitation of large data flows
such as generated in the realm of telecommunications, Web
queries, or sensor networks. A Data Streaming algorithm first
presented in [5], STRAP, is extended to form the GSTRAP
algorithm which provides multi-scale analysis facilities to the
grid administrator.

Online, STRAP models the current trace through a set
of representative jobs2 referred to as exemplars. STRAP
seamlessly compares each new job with the exemplars; if
statistically close to an exemplar, the new job is used to update
the exemplar representativity; otherwise, the job is considered
to be an outlier and stored in a reservoir. The critical issue in
Data Streaming is to preserve an efficient tradeoff between
robustness (discarding outliers) and sensitivity (quickly de-
tecting and catching up the changes in the underlying data
distribution). In STRAP, this tradeoff is handled through a
statistical change detection test, the Page-Hinkley (PH) test
[6], [7]. Upon the PH test triggering, the model is rebuilt from
the current exemplars and the most recent outliers.

The online gLite summary thus is made of a set of actual
jobs together with their current representativity, enabling the
administrator e.g., to inspect the percentage of jobs that
are successfully completed with high waiting time, and the

2More precisely, a job is meant as a summary of the job lifecycle in EGEE;
the term job is used for the sake of simplicity.



percentage of jobs with various types of errors. Furthermore,
the model rebuilding sequence indicates how frequently the
underlying distribution was considered to be changed, provid-
ing insights into the dynamics of the grid usage.

The offline summary is provided by GSTRAP, exploiting
the set of exemplars constructed by STRAP in the last months.
Super-exemplars are built from the exemplars and used to
visualize the grid dynamics a posteriori in form of a tapestry
(Fig. 8 and 9), showing the long-run trends in the EGEE traffic,
and any potential regularity in the peaks of usage.

GSTRAP has been empirically validated on a 5-million
job trace, the 5-month log from 39 EGEE Resource Brokers.
On the algorithmic side, the validation criteria regard the
computational scalability, the stability and accuracy of the
model (e.g. whether the jobs associated to a given exemplar
have the same label, successfully finished or failed with
various operational failure codes). On the applicative side,
online modeling is shown to enable the instant detection of
regime drifts (e.g., clogging of LogMonitor); offline modeling
gives further insights on repetitive abnormal behaviors.

The paper is organized as follows. Section II briefly reviews
and discusses related work in grid monitoring, and presents
the state of the art in data streaming. Section III gives
an overview of the GSTRAP algorithm. The experimental
setting is presented in section IV. Section V reports on the
experimental results. The paper concludes with a discussion
and some perspectives for further research.

II. STATE OF THE ART

This section reviews some related work in Grid Monitoring,
and provides a short introduction to Data Streaming.

A. Grid Monitoring

Grid Monitoring involves two main functionalities, respec-
tively acquisition and usage of the relevant information. Ac-
quisition includes sensors that instrument grid services or
applications, and data collection services that filter, centralize
and/or distribute the sensor data to the usage functionality.
Acquisition raises challenging scalability and implementation
issues. A plethora of architectures have been proposed and
deployed. They provide a distributed information manage-
ment service supporting in principle any kind of sensors.
In the EGEE framework, deployed architectures include R-
GMA [8], Ganglia, Nagios [9], MonALISA [10], gridIce [11],
and SCALEA-G [12]. They aim at job lifecycles (e.g., Job
Provenance [13] and the gLite Logging and Bookkeeping
service [3]) or service and machine availability (e.g., SAM
[14], Lemon [15] and GMS [16]).

Usage, which is more specifically investigated in this paper,
includes consumer services such as real-time presentation and
interpretation. It also includes middleware services as far as
feedback loops are considered, typically in the Autonomic
Computing framework. Many architectures and integration
frameworks such as the EGEE DASHBOARD [17] and Real
Time Monitor [18] also offer advanced presentation, user
interaction and reporting facilities, although no interpretation

facility is provided. Some of them include a software infras-
tructure for plugging analysis and feedback tools.

Actually, data interpretation, meant as revealing meaningful
(compound) features which go beyond elementary statistics,
is much less developed in the grid area. Ontologies about
the grid behavior have been proposed [19], [20], including
a taxonomy of relevant concepts and the structuration thereof.
Although specified in OWL, these ontologies however provide
limited inference capacities at the moment, Interpretation-
wise, Grid Monitoring mostly focuses on feeding schedulers
with educated guesses, e.g. the prediction of the upcoming
workload. The well-known Network Weather Service [21] has
pioneered a supervised learning-based approach, extracting the
parameters of various elementary predictors and combining
them in the spirit of boosting. [22] likewise predicts the
estimated response time (with a given confidence interval)
for batch-scheduled parallel machines. [23] categorizes load
models on shared clusters. The integration of ontologies, mon-
itoring and grid scheduling of work flows has been explored
in the Askalon project [24], [25].

With regard to fault detection and diagnosis, the main
EGEE tool is Service Availability Monitoring (SAM) [14].
Following an end-to-end probing strategy, SAM proceeds by
sending commands, transactions, or service requests from
highly reliable machines, and analyzing their results online.
The critical issue for probing strategies is to define an adaptive
and hierarchical probing scheme [1]. Periodically running a
fixed scheme, which is the pre-planned scheme approach in
SAM for instance, is both hardly efficient3 and intrusive.

[26] and [27] propose more adaptive and thus less intrusive
methods for detecting misbehaving users in volunteer com-
puting grids. Interestingly, [26] is based on sequential testing,
closely related to the change detection used in GSTRAP
(section III-A).

An alternative to probing strategies, referred to as passive
monitoring, exploits the actual traces of the grid activity.
Assuming that the vast majority of grid components are
fully operational and that faulty components have significant
impact on the execution, [16] detects ill-configured computing
elements (CE) as outliers with respect to the distribution of
the CE behaviors, using distributed data mining algorithms.
An elementary usage functionality, implemented in gLite, is
to simply blacklisting the sites reporting a high failure rate.

B. Data Streaming

This paper extends the above mentioned passive monitoring
approaches through Data Streaming. Let us introduce briefly
the field of Data Streaming, referring the interested reader to
[28], [29] for a more comprehensive presentation.

While Data Mining is concerned with extracting knowl-
edge from (very) large databases, Data Streaming is specif-
ically concerned with data flows, typically related to complex
production systems such as telecommunications, Internet or

3While the diagnosis is nothing near instantaneous, only basic functionali-
ties are checked.



electrical power networks [29]. In the general case, data flows
raise two additional issues compared with standard databases.
Firstly, the data acquisition rate is huge such that each
data item can be looked at only once; linear computational
complexity (up to logarithmic terms) is a must. Secondly
and most importantly, the data flow cannot be considered as
generated from a stationary distribution; there are changes in
the system under study or its environment. Data Streaming
thus requires specific algorithms, able to smoothly incorporate
new information and follow the changes in the flow distribu-
tion, through robustly filtering out the outliers and forgetting
outdated information [28]. The main challenge raised by the
flow dynamics is to tell outliers from the first items generated
by a new distribution component. Among the main applicative
goals of Data Streaming are the classification of data items
into classes (supervised learning), their categorization in clus-
ters (unsupervised learning), the detection of anomalies and
extreme events (e.g., intrusion detection), and the detection
of correlations in chronic data. Most above goals rely on
modeling the data distribution, and maintaining this model in
real-time.

Both scalability and adaptability issues are indeed relevant
to mining the gLite traces, characterizing an average 300,000
jobs per day (on the increase) generated by a huge variable
community of users in a variable environment. The goal is
to extract an understandable model of the job distribution
(unsupervised learning; see discussion in section IV).

III. GRID MONITORING WITH GSTRAP

This section describes the GSTRAP system. Its overall
architecture (Fig. 1) includes an acquisition module and two
analysis modules besides the Data Streaming STRAP algo-
rithm, first presented in [5] and briefly summarized thereafter
for the sake of self-containedness.

Fig. 1. Framework of Grid-adapted STRAP

A. The STRAP algorithm

Clustering algorithms can be described as follows. Letting
E denote a set of items {x1, . . . , xN}, a clustering algorithm
aims at partitioning E into (usually) disjoint subsets, called
clusters, such that items in a same cluster are “similar” and
items in different clusters are “dissimilar” in the sense of a
given distance or dissimilarity function.

Affinity Propagation (AP), a clustering algorithm proposed
by Frey and Dueck in 2007 [30], features two desirable proper-
ties. Firstly, AP builds interpretable clusters, each cluster being

represented by an actual item referred to as exemplar; sec-
ondly, contrasting with K-centers (which also builds exemplar-
based clusters), AP enforces the quality and stability of the
clustering solution. Formally, AP associates to each item xi

an exemplar noted xσ(i); the sum of the square dissimilari-
ties d2(xi, xσ(i)) over all items, referred to as distortion, is
minimized using a message passing algorithm. AP involves a
single parameter s∗; the number K of clusters is governed by
the penalty s∗ paid for incrementing the number of exemplars.
The price to pay for these understandability and stability
properties is a quadratic computational complexity (O(N2) up
to logarithmic terms, being N the number of items), practically
forbidding its use on large scale applications.

The first extension, Weighted AP (WAP) was thus proposed
to extend AP to the case of weighted or multiply-defined items
with no loss of generality. WAP was thereafter embedded
into a hierarchical Divide and Conquer approach, splitting the
datasets into subsets and iteratively clustering the exemplars
extracted from the subsets, thereby reducing the computational
complexity to O(N1+ε) (see [5] for more detail).

The second extension, STRAP was proposed to deal with
data flows using a four step process (Alg. 1):
1. Initialization: the model (first set of exemplars) is extracted
from the first bunch of items.
2. Loop: each item is checked against the current exemplars. If
it is statistically different (outlier), it is put into the reservoir,
otherwise the statistics of the model (the nearest exemplar) are
updated accordingly.
3. Change step: a statistical change-point-detection (Page-
Hinkley [6], [7]) test on the outlier frequency is used to detect
whether new clusters are emerging.
4. Rebuild step: upon triggering the PH test, the model is
rebuilt from the current exemplars and the reservoir using
WAP.

Algorithm 1 Grid-adapted STRAP Algorithm
Job stream x1, . . . xt, . . .; parameters ε, ∆
Init

AP(x1, . . . , xT ) → Model STRAP
Reservoir = {}

for t > T do
if Outlier(Model, xt, ε) then

Reservoir ← xt

else
Update STRAP model

end if

if Restart (Page-Hinkley test) then
Model = Rebuild (Model, Reservoir, ∆)
Reservoir = {}

end if
end for

STRAP is parameterized from the outlier threshold ε, and
the memory parameter ∆: exemplars which have not been
visited for a given time period ∆ are discarded in the rebuild



step.

B. The Acquisition Module

The acquisition module, interfaced with either the Real
Time Monitor system (RTM) [18] or standalone files (e.g.
for validation purposes), provides the description of the jobs
through XML records. The RTM system, fully operational
since the beginnings of EGEE, meets the real-time acquisition
constraints; so does STRAP.

Each XML record provides a summary of the job lifecycle,
as depicted in Fig. 2. A job is first submitted, then waiting for
the Workload Management System (WMS) to find a matching
resource. Once a resource is found, the job is ready for transfer,
then transferred to the resource and scheduled, i.e. enqueued in
the local batch system. When selected, the job is running, until
being successfully ended (done OK), or failed (done failed).
Notably, the resource allocation is never reconsidered after the
matching step; upon failure, the job is resubmitted and goes
through the whole process one more time. Early termination
(aborts, cancels) triggered by either the user or the middleware
components can occur at any step in the job lifecycle.

Fig. 2. Life cycle of jobs submitted to Grid

Formally, the timestamp of each event (transition in the
graph, Fig. 2) is recorded by the Logging and Bookkeeping
(L&B) service, i.e. the gLite information system relevant to
active jobs. Each job will thereafter be summarized from the
following six attributes (time durations computed from the
timestamps), centered and normalized:
• Submission Time: time between job registration and

transfer to WMS;
• Waiting Time: time to find a matching resource;
• Ready for Transfer Time: acceptation and transfer de-

lays (waiting + ready time), as reported by the JobCon-
troller (JC);

• Ready for CE accept Time: the same as
Ready for Transfer Time, but as reported by the
LogMonitor (LM)4;

• Scheduled Time: queuing delay;
• Running Time: execution time.

Upon a job failure at any point in the lifecycle, the subsequent
services are not reached and the reported durations are set to 0.

4JC is a standalone logging service while the LM integrates various logs
in the Logging and Bookkeeping database. Although the third and fourth
attributes are redundant in principle, their discrepancies provide valuable
information as will be seen in section V.

To account for this fact and disambiguate the data description,
six additional boolean attributes are considered, indicating
whether the job has reached the corresponding steps of the
lifecycle.

C. Analysis Modules

The online and offline analysis modules provide the ad-
ministrator with multi-scale views of the job flow. The first
module, aimed at online monitoring, firstly displays the in-
stant distribution of the jobs (Fig. 7; see next section). The
model rebuilding sequence (Fig. 4) indicates how fast the job
dynamics is changing and the amplitude of the variations.

The second module aims at offline monitoring. All ex-
emplars built by STRAP over a large period of time are
considered and used by AP to extract “super-exemplars”. The
latter provide a common description visual representation of
the long-term regularities and trends in the job distribution
(Fig. 8,9).

IV. EXPERIMENT GOAL AND SETTINGS

GSTRAP has been empirically validated on the gLite-
operated jobs processed by the EGEE grid from 2006-01-01
to 2006-05-31. The job flow includes 5,268,564 jobs in total,
each one being labeled as good (successfully finished) or after
its error type (e.g. Cancel requested by WM, RB Cannot plan).
The temporal distribution of the jobs is depicted on Fig. 3.

45 types of errors are represented in the job flow, among
which 20 are frequent (more than 1,500 occurrences). The grid
experts nevertheless advocated for an unsupervised learning
approach (the labels are not used in the clustering process),
arguing that the error types cannot be directly interpreted in
terms of failure. For instance, while RB cannot plan means
that WMS was unable to find a matching resource, the cause
might be that WMS was unaware of released resources, or that
the the user’s requests were truly impossible to satisfy.
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Fig. 3. EGEE load: number of jobs (×104) per day

The goal of the experiments regards both the algorithmic
performance of GSTRAP (scalability w.r.t. the time con-
straints; quality of the clusters w.r.t. the error classes, see
below), and the usability of the multi-scale views yielded by
GSTRAP.

All reported results have been obtained as follows. The
distance used by STRAP is the Euclidean distance in IR12

(remind that all numerical attributes are centered and normal-
ized). The stream model is initialized from the first 1,000 jobs



(initial subset); the s∗ parameter is set to the median value
of the distance between any two jobs in the initial subset.
The outlier threshold ε is the average distance between an
item and the associated exemplar in the initial model. The
parameters of the PH test are λ = 50 and δ = .01; whereas
the latter parameter takes a standard value, further research is
concerned with online adjustment of λ (see section VI). The
time parameter ∆ is set to 10,000, with a minimum number
of queries per day of 15,000.

V. EXPERIMENTAL VALIDATIONS

This section first reports on the algorithmic performance
of GSTRAP. Its scalability (10,000 jobs per minute with
Matlab, 40,000 jobs per minute for C/C++) meets the real-
time constraints5. The quality of the clusters with respect to the
classes of errors in the job stream is described and analyzed.
The applicative performance, and the interpretation of the
online and offline monitoring results, are thereafter discussed.

A. Dynamics of the Job Stream
Fig. 4 displays a summary of the model rebuilding sequence,

indicating the number of times the stream model was rebuilt
per day. Interestingly, the dynamics of the stream is not
correlated with its volume (Fig. 3); the high number of
model rebuilding on some days is caused by the apparition
of brand new patterns; on other days, the same patterns keep
disappearing and reappearing. Further study is on-going to
explain this phenomenon.
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Fig. 4. GSTRAP: Number of model rebuilding per day

B. Clustering Quality
Despite the reservations made by the experts about the

interpretation of the labels (section IV), the quality of clusters
is commonly measured in terms of supervised learning, by
comparing the label of the items and the label of the cluster
(the label of the exemplar). Two measures will be considered.
The accuracy is defined as the percentage of jobs which have
the same label as the exemplar they are associated to. The
purity is the average, over all clusters, of the cluster accuracy,
defined as the percentage of jobs in the cluster with the same
label as the majority of jobs in the cluster. The latter measure
is less prone to be biased than the former one, in case of
imbalanced clusters and classes.

5The experiments are run on an Intel 2.66GHz Dual-Core PC with 2 GB
memory. GSTRAP processing rate is actually well above the current capacities
of the gLite middleware regarding the job injection in the system.
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Fig. 5. GSTRAP: Clustering accuracy along time

Experimentally, the clustering accuracy is over 90% for the
first 300,000 jobs; it is consistently above 88% during the
whole period and slowly increases along time (Fig. 5). The
in-depth analysis of the misclassified jobs shows four main
cases of misclassification. The first three associate jobs with
label “Aborted by user”, “Job proxy is expired”, or “Job
RetryCount (3) hit” to exemplars with label “Job RetryCount
(0) hit”. Actually, the last error label (“Job RetryCount (0)
hit”) is a consequence of other types of error: it is triggered
by the job resubmission when the job failed earlier (due to
some unknown types of error), which might explain why
the clustering process does not allow for clearly separating
this class from the others. The fourth misclassification case
associate jobs with label “Successfully Finished” to exemplars
with label “Job proxy is expired”.

The purity, together with the number of clusters, is depicted
in Fig. 6. The high number of clusters (between 50 and
250) is to be taken relatively to the number of jobs per day
(> 15, 000, Fig. 3). Surprisingly, the average clustering purity
is consistently higher than 90% and much better than the
clustering accuracy, despite the fact that purity is known to
be a more pessimistic measure than accuracy in general. This
is explained as most misclassified jobs belong to large clusters
(“Job RetryCount (0) hit” or “Job proxy is expired”); the vast
majority of clusters related to rare error types are accurate.
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Fig. 6. GSTRAP: Clustering purity (measured at each model rebuilding)

C. Online Monitoring

Fig. 7 shows two snapshots yielded by the Online Monitor-
ing module. Each snapshot depicts the current job distribution
as a histogram, where each bar corresponds to a cluster (the



corresponding exemplar is given above), the height of which
indicates the percentage of the jobs falling in this cluster
since the last model rebuilding. For the sake of clarity, only
sufficiently representative clusters (including more than 1% of
the jobs) are displayed.

The top snapshot (Fig. 7.(a)) is typical of the average job
stream distribution. Cluster 4 includes the majority of jobs,
which are successfully finished with moderate waiting times
(exemplar “[8 18 24 30 595 139]”, representing circa 60%
of the jobs). Cluster 5 includes other successfully finished
jobs; these are computationally demanding (execution time
circa 19190s) with a long queuing delay (circa 9728s); this
cluster includes about 10% of the jobs. Two types of errors are
observed: Cluster 2 (exemplar “[7 0 0 0 0 0]”, 10% of the jobs)
includes the early stopped jobs (after registration); Cluster 3
(exemplar “[10 47 54 129 0 0]”, 15% of the jobs) includes
the jobs stopped before arriving at the local computing site.
Cluster 1 (Reservoir) indicates the fraction of outliers (< 3%).
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(a) Snapshot in a typical day
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(b) Snapshot with an anomaly

Fig. 7. GSTRAP: Online Monitoring Day-Views

The bottom snapshot (Fig. 7.(b)) indicates instead an
alarming situation. Cluster 8 (exemplar “[10 18 29 20091
395 276]”, 40% of jobs) reports an exceptionally long
Ready for CE accept time (20,091s, against a few dozen
seconds in general), which shows that the LogMonitor (LM)
is getting clogged, although the Ready for Transfer time
remains moderate (29s). As LM feeds the Logging and
BookKeeping (L&B), this phenomenon can originate from or
result in a temporary failure of the L&B, in fact halting the
corresponding WMS. The LM clogging likely also explains
Cluster 5 (exemplar “[9 18 25 20110 0 0]”), to be compared

with Cluster 4 (exemplar “[10 47 54 129 0 0]”, actually very
close to Cluster 3 in the top snapshot).

The Online Monitoring module thus yields a compact
and understandable summary of the job instant distribution,
providing the administrators with a detailed report on the grid
activity: the snapshots not only indicate the proportion of good
and failed jobs; it also indicates the different time cost of the
grid services.

A summary of the snapshots over each restart, day, week
or month is provided6.

D. Offline Monitoring

All exemplars extracted along the online monitoring process
can be viewed as jobs that were typical at some moment
in the reference period. These exemplars are stored and
further clustered using AP to extract Super Exemplars; the
corresponding clusters likewise are Super Clusters.

Let us first consider the erroneous super-exemplars (with
label other than successfully finished), ordered after the number
of services they reached (the first erroneous super-exemplars
being “[0 0 0 0 0 0]”, no service reached). The frequency
and type of errors along the period can be visualized from
Fig. 8; the x-axis indicates the day whereas the y-axis is
the index of the super-cluster; the gray level of pixel (x, y)
indicates the fraction of jobs associated to (an exemplar
associated to) super-exemplars y on day x (color is used
in the Offline Monitoring for a better visualization; see
http://www.lri.fr/∼xlzhang/Grid_monitor/).
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day

The most frequent super-exemplars are listed in Table I,
where the first column indicates the super-exemplar index in
Fig. 8.

After Fig. 8 and Table I, the Early stopped error occurred
frequently around day10, day32, day78, day106 and day138.
The log file actually shows that from 2006-01-07 to 2006-
01-13, and from 2006-01-30 to 2006-02-03, a large part of
Early stopped errors were due to UI A-17. User Interface

6Other monitoring results (avi format) are visible at
http://www.lri.fr/∼xlzhang/Grid monitor/.

7Identifier omitted for the sake of confidentiality.



TABLE I
OFFLINE MONITORING: MAIN ERRONEOUS SUPER-EXEMPLARS

y Super exemplars Main errors
1 0, 0, 0, 0, 0, 0 early stopped
3 145, 0, 0, 0, 0, 0 Cannot plan

Unable to receive data
4 7, 0, 226508, 0, 0, 0 Submission to condor failed
5 6, 10, 15, 0, 0, 0 Submission to condor failed

transfer failed
7 328, 12, 17, 34, 0, 0 Aborted by user

Job proxy is expired
9 109, 98, 116, 164, 0, 0 Aborted by user

Job proxy is expired
11 611, 2064, 2069, 2077, 0, 0 Job RetryCount (3) hit
12 410, 10, 20, 3638, 0, 0 cannot retrieve match
14 10, 2893, 4567, 10180, 0, 0 cannot retrieve match
15 15, 120, 298, 15300, 0, 0 cannot retrieve match
16 11, 18, 23, 30602, 0, 0 cannot retrieve match
17 401, 21, 27, 34234, 0, 0 cannot retrieve match
18 5, 33449, 33827, 36859, 0, 0 Job RetryCount (0) hit
19 7, 251275, 271470, 383839, 0, 0 cannot retrieve match
20 8, 66, 592459, 592461, 0, 0 Job RetryCount (7) hit
21 6, 33, 37, 41, 207, 0 Job started to run but lost

UI B-1 was instead responsible for the majority of the Early
stopped, and many Job proxy expired errors from 2006-03-16
to 2006-03-21. From 2006-05-17 to 2006-05-19, the early
stopped errors were mostly due to UI D-1 and UI A-1 again.
After Fig. 8, Super-Exemplar 3 (Cannot plan) is among the
most frequent types of error; another one, Super-Exemplar 9
mixes different error labels with same time cost of services.
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Fig. 9. Offline Monitoring: Frequency of Good Super-Exemplars per day

With regard to the good super-exemplars, let the suc-
cessfully finished super-exemplars be ordered by increasing
Ready for CE accept Time. Fig. 9 displays the representativ-
ity of these good super-exemplars in the study period (akin Fig.
8), showing that the most representative ones (Super-Exemplar
1 to 30) are those with smaller Ready for CE accept Time.
Some super-exemplars with huge Ready for CE accept Time
are visible as light spots at the left bottom of Fig. 9. Super-
Exemplar 77 (“[6 11 17 47938 40 49]”) and 79 (“[5 10
15 195017 56 185]”) are represented mostly on days 23 to
27. The log files indeed show that the jobs submitted by

UI A-1 to RB A-2 from Jan. 22nd to 27th have very high
Ready for CE accept Time.

The purity of the super clusters associated to these
good super-exemplars (likewise ordered by increasing
Ready for CE accept Time) is displayed on Fig. 10, together
with the overall size of the super-cluster (in log scale).
Notably, these super-cluster purity is circa 95% (much higher
than the average purity along time, Fig. 6) except for the
last three clusters. The latter super-exemplars have a huge
Ready for CE accept (ranging from 21 hours to 100 hours);
although successfully finished, these jobs are indeed similar
to quite a few bad jobs.
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VI. CONCLUSION

The GSTRAP system presented in this paper is a real-
time Grid Monitoring system, providing the administrator with
online and offline views of the stream of jobs submitted to the
EGEE grid. The main contribution of this work is to actually
provide an intuitive and accurate view of the EGEE load,
along several dimensions. Firstly, the current distribution of
the jobs is displayed as a histogram, amenable to immediate
interpretation and detection of alarms (Fig. 7). Secondly, the
sequence of the model rebuilding gives an intuitive idea of the
load dynamics. Lastly, the Offline Monitoring module offers a
consolidated view of the load, enabling to inspect its long-term
trends a posteriori. Overall, these functionalities can be viewed
as a first step toward extracting manageable, understandable
and valuable summaries from the gLite traces [4].

This system suffers from several limitations. In the short
term, the summary quality can be enhanced by increasing the
cluster accuracy, e.g. by using an educated distance among
jobs; distance metric currently is among the hottest topics
in Supervised Machine Learning [31]. Independently, the λ
parameter actually governs the sensitivity of the STRAP
algorithm and the number of model rebuilding; self-adapting
the sensitivity of the change detection test is a perspective for
further research. In the longer-term, while GSTRAP current
processing rate is circa 40,000 jobs per minute, a better scala-
bility will be needed to face the increase of the computational
load.

Further extensions of GSTRAP are envisioned. A most
straightforward step will be to consider a more comprehen-



sive description of the jobs, e.g., related to User Interface
and Computing Elements. In collaboration with the system
administrators and the operation teams, anomalous situations
will be listed and related to “alarming” exemplars, aiming
at the prevention of anomalies. Independently, the proposed
approach will be extended to aggregate and describe the
computational load at the user level (as opposed to, at the
job level), and at the virtual organization level, in order to
provide customized and more user-friendly services.
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