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Abstract. We present the notion of sequential association rule and in-
troduce Sequential Nuggets of Knowledge as sequential association rules
with possible low support and good quality, which may be highly relevant
to scientific knowledge discovery. Then we propose the algorithm SNK
that mines some interesting subset of sequential nuggets of knowledge
and apply it to an example of molecular biology. Unexpected nuggets
that are produced may help scientists refine a rough preliminary classi-
fication. A first implementation in Java is freely available on the web3.

1 Introduction

Mining the collection of records in a large database to find out association rules is
a classical problem introduced by [1] that has received a great deal of attention.
Association rules are expressions of the form A → B, where A and B are disjoint
itemsets. Frequent sequential patterns mining was introduced in [2] in the case
where the data stored in the database are relative to behavioural facts that occur
over time as a refinement of frequent pattern mining that accommodates ordered
items. It is an active research field in data mining that is applied in various
domains including, among others, analysis of customer shopping sequences, web
usage mining, medical processes, DNA sequences.

In this paper, we introduce the notion of sequential association rule which is
based on the notion of interestingness measure. Unlike common approaches, we
are only interested in producing rules whose consequent belongs to some prede-
fined set of items (target items), disjoint from the set of the items present in the
antecedent. We want to detect tight associations between antecedents of rules
and their consequent rather than rules with high support. Thus as in [14], we
also search for significant rare data that co-occur in relatively high association
with the specific data. Namely discovering close dependencies between facts that
almost always co-occur is informative, even if these facts are not frequent in the
database. In contrast, associations with large support cannot be surprising since
they are relative to a large part of the objects ([3], [8]). Unexpected associations
are interesting because they may reveal an aspect of the data that needs further
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study [7].

We determine the relevance of a rule merely by its value for some interesting-
ness measure. We will consider several interestingness measures because not all
measures are equally good at capturing the dependencies between the facts and
no measure is better than others in all cases [12]. Then we introduce Sequential
Nuggets of Knowledge as sequential association rules that may have a low sup-
port in the database but are highly relevant for some interestingness measure.
Finally, not all Sequential Nuggets of Knowledge, but only the maximal ones
are searched for. The rational is to reduce the number and the length of rules,
assuming that such rules correspond in some way to a typical signature of the
objects, that is, represent concise characteristics of the studied objects. Moreover
they are easier to analyse for human experts.

Maximal Sequential Nuggets of Knowledge could be used for example to
improve the organisation of a web site. Given the log (list of tuples <IP address,
date, visited web page>) of visitors to our university web site, IP addresses could
be used to identify different profiles of users: e.g. students of our university,
researchers from other universities, visitors from the remainder of the world.
If we could discover typical signatures for each profile, we would improve our
web site organisation by adding hyperlinks between different pages and would
simplify the navigation for the users.

In this paper, we present the algorithm SNK which calculates the most gen-
eral Sequential Nuggets of Knowledge and illustrate its use in the domain of
molecular biology, more specifically, in the perspective of protein functional clas-
sification. Sequential Nuggets of Knowledge express context-sensitive sequential
constraints that are mostly verified in a sub-class of objects as opposed to an-
other sub-class. This approach is particularly interesting in biology.

The remainder of the paper is organised as follows. In section 2 we intro-
duce the fundamental concepts underlying the notion of Sequential Nuggets of
Knowledge. We present and study the algorithm SNK (section 3) that computes
these nuggets. We show in (section 4) how this algorithm is useful in an example
of SNK application in the domain of molecular biology. We report related work
and conclude by discussing our results and giving some perspectives (section 5).

2 Basic concepts

2.1 Definitions

We aim at discovering dependencies between the descriptions of objects in terms
of sequences of items in relation with some specific target item. We denote by
IDT the set of identifiers of the objects and by T the set of the target items.
Let I be the set of all items (boolean attributes). The sets I and T are supposed
to be disjoint. An itemset is any subset of I.

The following notion of sequence is borrowed from [2]. A sequence s on I is
an ordered list of itemsets, denoted by 〈E1, E2, ..., El〉, where Ei ⊆ I, 1 ≤ i ≤ l.
Note that an itemset can have multiple occurrences in a sequence.
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The size of a sequence s is the number of itemsets in s and is written |s|.
A sequence s = 〈E1, E2, ..., En〉 is called a subsequence of another sequence
s′ = 〈F1, F2, ..., Fm〉, denoted s v s′, if and only if there exist integers j1, ..., jn,
such that 1 ≤ j1 < j2 < ... < jn ≤ m and E1 ⊆ Fj1 , E2 ⊆ Fj2 , ... , En ⊆ Fjn ,
where ⊆ denotes the classical inclusion between sets. We will say that s′ contains
s. If s and s′ are distinct sequences such that s v s′, we will write s @ s′.

Let s = 〈E1, E2, ..., En〉 and s′ = 〈F1, F2, ..., Fm〉 be two sequences on I. We
will denote by s · s′ the sequence resulting from the concatenation of the two
sequences: s · s′ = 〈E1, E2, ..., En, F1, F2, ..., Fm〉.

We define a categorised sequence database as a set CSD of tuples 〈sid, s, tg〉,
sid ∈ IDT , tg ∈ T , where sid is the object identifier, s the sequence of itemsets
from I describing it and tg the target item associated to it. A tuple 〈sid, s, tg〉
is said to contain a sequence s′ if and only if s′ is a subsequence of s.

Running example:

CSD =

id seq target
{α1 = 〈id1, 〈a, b, f, c, e, f, g〉 , tg1〉,
α2 = 〈id2, 〈a, e, b, h, c, f, g〉 , tg1〉,
α3 = 〈id3, 〈c, e, a, b, e, g, f〉 , tg2〉,
α4 = 〈id4, 〈c, e, a, b, e, g, f, a, e, b, f, d〉 , tg2〉}

In CSD the sequence 〈b, e, f〉 is a subsequence of 〈a, b, f, c, e, f, g〉 and α1 con-
tains the sequence 〈b, e, f〉. In this example all the itemsets are singletons denoted
by their unique element, which is not required in the general definition.

We introduce the notion of sequential association rule as a combination of
classical association rules and sequential patterns. Formally, a sequential associ-
ation rule r on CSD is an implication of the form ANT → CONS, where ANT
is a sequence of itemsets from I and CONS an element of T . We call ANT (resp.
CONS) the antecedent (resp. consequent) of r and write ant(r) (resp. cons(r)).

The support of a sequential association rule r in a database CSD is defined
as the number of tuples of CSD that contain both its antecedent and its conse-
quent. Formally we have: supportCSD(ANT → CONS) =
|{〈sid, s, tg〉 ∈ CSD s.t. (ANT v s) ∧ (CONS = tg)}|.
Note that the items in ANT need not be consecutive in s, in order to be sup-
ported by the tuple.

Example: supportCSD(〈a, b, f〉 → tg1) = 2
The confidence of a sequential association rule r in the database CSD indi-

cates amongst all the tuples of CSD containing its antecedent the fraction in
which its consequent appears. confCSD(ANT → CONS) =

|{〈sid, s, tg〉 ∈ CSD s.t. (ANT v s) ∧ (CONS = tg)}|
|{〈sid, s, tg〉 ∈ CSD s.t. ANT v s}|

Example: confCSD(〈a, b, f〉 → tg1) = 0.5; confCSD(〈a, b, f, g〉 → tg1) = 1.
A sequential association rule r1 is said to contain another rule r2, written

(r2 ¹ r1), if and only if cons(r1) = cons(r2) and ant(r2) v ant(r1). We also say
that r2 is more general than r1. If r1 6= r2 and r2 ¹ r1 we will write r2 ≺ r1.

We now focus on the main notion of this paper, namely Sequential Nuggets
of Knowledge. We introduce them as sequential association rules with possible
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low support but with hight quality. Minimal support is required in order not
to discover strong associations that involve only a few objects, which may come
from noise.

A sequential nugget of knowledge is defined as a sequential association rule r
in CSD such that its support is no less than some threshold and its interesting-
ness measure value (cf. section 2.2) is no less than to some other threshold.

In the applications we have foreseen, objects are merely described by se-
quences of items, so that sequences of itemsets are unnecessarily complicated.
Therefore, in the remainder of the paper, we will consider only sequences where
itemsets have a single item. The definition of subsequence can be rewritten in a
simpler form where inclusion is replaced by equality.

2.2 Interestingness measures

Identifying sequences of variables that are strongly correlated and building rel-
evant rules with those variables is a challenging task. Interestingness measures
help to estimate the importance of a rule: they can be used for pruning low utility
rules, or ranking and selecting interesting rules. Selecting a good measure allows
to reduce time and space costs during the mining process ([12], [7]). As pointed
earlier, all the interestingness measures do not capture the same kind of associa-
tion. For example, using a support-confidence approach, a rule ANT → CONS
may be considered as important, even if CONS is often found without ANT .
In our work we mainly studied, besides confidence, another measure which is
well adapted to our data, Zhang’s measure as it takes into consideration the
counter-examples [16].

[8] and [7] suggest a number of key properties to be examined for selecting
the right measure that best suits the data. Note that while support satisfies
anti-monotonicity (if r ¹ r′ then supportCSD(r′) ≤ supportCSD(r)), not all in-
terestingness measures satisfy monotonicity (if a rule is considered to be relevant
any of its specialisations is relevant too).

2.3 Postfix-projection

The method proposed for mining sequential nuggets of knowledge follows the
approach of [11] for sequential patterns. We recursively project the initial cate-
gorised sequential database into a set of smaller categorised sequential databases,
thus generating projected databases by growing prefixes.

Let CSD be a categorised sequential database, α = 〈sid1, 〈e1...en〉, c1〉 a tuple
of CSD and s′ = 〈e′1...e′m〉 a sequence with m ≤ n. s′ is called a prefix of α if
and only if ∀i, 1 ≤ i ≤ m , e′i = ei.
Example (continued): The sequence 〈a, b, f〉 is a prefix of α1.

Let α = 〈sid, s, tg〉 be a tuple of CSD. We denote id, seq and target the
methods which return respectively the identifier, the sequence and the target of
α: id(α) = sid, seq(α) = s and target(α) = tg.

The notion of s′-projection corresponds to the longest subsequence having
s′ as a prefix. Let α be a tuple and s′ be a sequence such that s′ v seq(α).
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A tuple α′ = 〈id(α′), seq(α′), target(α′)〉 is the s′-projection of α if and only if
(1) id(α′) = id(α), (2) seq(α′) v seq(α), (3) target(α′) = target(α), (4) s′ is a
prefix of α′ and (5) 6 ∃α′′ a tuple s.t. seq(α′) @ seq(α′′) and seq(α′′) v seq(α)
and s′ is a prefix of α′′.
Note that with such a definition only the subsequence of seq(α) prefixed with
the first occurrence of s′ should be considered for α′.

Example (continued):
〈id1, 〈a, b, f, c, e, f, g〉, tg1〉 is an abf-projection of α1, while 〈id1, 〈a, b, f, g〉, tg1〉
is not because (5) is not satisfied. Similarly, 〈id4, 〈a, b, f, a, e, b, f, d〉, tg2〉 is an
abf-projection of α4, while 〈id4, 〈a, b, f, d〉, tg2〉 is not because of (5).
The s′-projection of α, if it exists (i.e. if s′ can be a prefix of a tuple whose
sequence is contained in α) is unique. It is the s′-projection of α.

Let α be a tuple of CSD and let s = 〈e1, ..., en〉 be a sequence on I. Let
α′ = 〈id1, 〈e1, ..., en, en+1, ..., en+p〉, tg1〉 be the s-projection of α, where s is a
prefix of α′. Then γ = 〈id1, 〈en+1, ..., en+p〉, tg1〉 is the s-postfix of α′. If p > 0,
then the s-postfix has a sequence of size > 0: it is said to be not empty and is
denoted by α/s. Note that γ satisfies: seq(α′) = s · seq(γ).

The s-projected database, denoted by s−postfix(CSD), is defined as follows:
s−postfix(CSD) = {(α/s), α ∈ CSD}
Running example :

abf−postfix(CSD) =

id seq target
{〈id1, 〈c, e, f, g〉 , tg1〉,
〈id2, 〈g〉 , tg1〉,
〈id4, 〈a, e, b, f, d〉 , tg2〉}

The recursive principle of our algorithm is based on the following property:
Property 1:
Let CSD be a categorised database. Let s1 and s2 be any sequences on I, and
let r be any sequential association rule. Then:
(i) s2−postfix(s1−postfix(CSD)) = s1 · s2−postfix(CSD)
(ii) supports1.s2−postfix(CSD)(r) = supportCSD((s1 · s2 · ant(r)) → cons(r))
(iii) supportCSD(r) ≥ supports1−postfix(CSD)(r).

3 SNK Algorithm

3.1 Specification and pseudo-code

Now we present SNK, an algorithm which mines the most general sequential
nuggets of knowledge from a categorised sequential database, given some thresh-
olds specified by the user.

SNK method
Parameters:
In: CSD a categorised sequential database; min supp a support threshold; IM
an interestingness measure; min meas an IM value threshold;
Out: RESULTS the set of the most general Sequential Nuggets of Knowledge;
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Method used: SNKrec;
Begin
RESULTS = ∅; ST = the set of all target items of T present in CSD;
Foreach y in ST do

//sequential nuggets of knowledge targeted on y are searched for
Sy = the set of all tuples of CSD having y as a target;
SNKrec(Sy,y,min supp,IM ,min meas,〈〉,RESULTS) endfor end SNK;

SNKrec method
// generates rules r of the form (p · x) → y, where x is any item occurring in
S and p the prefix used; updates RESULTS with r in order to get only the
most general sequential nuggets of knowledge; calls recursively itself on the x-
projected database of S if r has good support but bad interestingness measure
value
Parameters:
In: S a set of tuples having y as a target; min supp, IM , min meas;
p the sequence used as a prefix;
In/Out: RESULTS a set of Sequential Nuggets of Knowledge s.t. 6 ∃r1, r2 ∈
RESULTS with r1 ≺ r2;
Methods used:
add rule; //add rule(r,RES) adds rule r to RES unless if r is less general than
or equal to some rule in RES and removes from RES any rule that is less gen-
eral than r.
measure; // measureIM,CSD(r) evaluates the value of r for IM in CSD
support: // supportS(r) evaluates the support of r in S
Begin SI = the set of all items of I occurring in elements of S;
Foreach x in SI do

if supportS(x → y) ≥ min supp then
if measureIM,CSD((p · x) → y) ≥ min meas then

RESULTS = add rule((p · x) → y,RESULTS)
else if x-postfix(S) 6= ∅ then

SNKrec(x-postfix(S),y,min supp,IM ,min meas,p · x,RESULTS)
endifendifendifendfor end SNKrec;

Running example:
Let min supp = 2, IM = confidence, min meas = 1. SNK yields the set of all
the maximal sequential nuggets of knowledge:
RESULTS = {〈e, e〉 → tg2, 〈e, a〉 → tg2, 〈c, b〉 → tg2, 〈c, a〉 → tg2, 〈g, f〉 →
tg2, 〈b, c〉 → tg1, 〈f, g〉 → tg1, 〈a, c〉 → tg1}.

3.2 Properties of SNK

First the algorithm is sound and complete w.r.t its specification [6]. Formally:
Theorem 2 Let CSD be a categorised sequential database, IM an interest-

ingness measure, min supp a support threshold and min meas an interestingness
measure threshold for IM . Then:
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SNK returns exactly all the most general sequential association rules r on CSD
that satisfy suppCSD(r) ≥ min supp and measIM,CSD(r) ≥ min meas.

The time complexity of SNK is related to the number of target items, and
for each target item, to the number of recursive calls of SNKrec. The worst
case for SNKrec occurs when all the rules generated have good support but bad
measure, leading to a maximal number of recursive calls. Each call requires a
calculation of support and of IM measure, and involves either the cost of a
postfix-projection or that of the add rule method. With our depth-first search
approach all the projected databases need not be stored in memory and they
can be built independently. The analysis shows (see [6] for details) that the
theoretical time complexity is high in the worst case. However, in practice, for
the applications foreseen, the SNK algorithm remains efficient because the size
of the projected databases decreases very quickly.

SNK allows to discover rules describing regularities in a sequential data set.
Moreover, SNK provides the user with a parameterisation process for adapting
the tool to specific needs. The user can select among a dozen measures the mea-
sure that best fits his application field (by default confidence is selected) [7]. A
bootstrap mode is also available, where SNK is run on a categorised sequential
database resampled from the original database as an input in order to check the
consistency of the generated rules. In the data mining mode, SNK runs in about
3 seconds for mining sequential nuggets of knowledge for 760 tuples (described
by sequences of size less than 17 where the set of items has about 35 distinct ele-
ments), 6 seconds for 1200 tuples. SNK is fully implemented in Java and the web
Applet is freely available on SNK website (http://www.lri.fr/∼rance/SNK/).

4 Example

We show how SNK can be useful through the study of a family of bacterial
proteins. Each protein is described by its sequence of motifs (we call “motif”
a functional or well conserved part of the amino acid sequence). We consider
the Phospholipase D (PLD) family of proteins which are present in all species
from virus to eukaryote, and involved in many cell processes. These proteins
are grouped together simply because they carry the PLDc motif repeated once.
They also contain a wide range of other motifs. In [10], a surprising regularity
concerning the C-terminal part of proteins was reported. More precisely, the dis-
tance between the end of the second PLDc motif and the C-terminal end of the
protein (rightmost) was shown to correlate with the known functions of the pro-
teins. Consequently, proteins could be grouped into classes using this distance
as a classification criterion. In the remainder of this section we will refer to the
length of this region as the C-terminal length (this length is either: 40, 60, 72, 82,
100). Each class is then functionally consistent. Using SNK we have investigated
a possible relationship between module architecture, C-terminal length and func-
tion. We have considered all bacterial proteins of the UniProtKB database [4]
which contain two PLDc motifs. The corresponding set of proteins showed a va-
riety of motif combinations involving other protein family signatures as well as
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so-called “low complexity regions” (poorly informative sequences [13]). The total
number of proteins is 676. We first considered the possible existence of a link
between low-complexity regions and C-terminal length. In this first test, pro-
teins were described as successions of PLDc motifs and low complexity regions.
We studied a set of proteins containing all the PLD proteins with C-terminal
length from classes “72” and “82” using Zhang’s interestingness measure. SNK
was performed with a very low support threshold (min supp=15) and with a
good measure threshold (min meas=0.8). Among the 20 most general sequen-
tial nuggets of knowledge obtained, 3 rules were especially interesting. In the
rules presented below, lc denotes low-complexity region and the values between
brackets are respectively support and Zhang’s measure values.
(1a) lc,PLDc,PLDc -> 82, (273,0.80),
(1b) lc,lc,PLDc -> 82, (174,0.68),
(1c) PLDc,PLDc,lc -> 72, (136,0.90)
The sequential association rules returned by SNK are high quality rules. Rule
(1a) and (1c) highlight the importance of the order between modules in the
assignment to a class. The location of low complexity regions is closely linked
to the C-terminal length. Depending on whether lc is in front of or behind the
double PLDc motif, the conclusion of the rule is one or the other class. Simple
association rules could not have expressed such a clear distinction.
In a second test information about protein family signatures as compiled in both
Pfam-A [5] and Pfam-B databases was added. Amongst the rules generated with
min supp=7 and min meas=0.9,
(2a) PLDc,Pfam-B 115,Pfam-B 2786 -> 40, (7,0.90) and
(2b) PLDc,Pfam-B 115,Pfam-B 6054 -> 40, (7,0.93)
are the only rules where PLDc precedes Pfam-B 115 and therefore appear to
characterise class 40. In all other rules where the two entities occur Pfam-B 115
precedes PLDc. A complementary test was performed with the same initial data
set but taking the protein function as a target for SNK (either diacyltrans-
ferase, cardiosyntase, transphosphatidylase or unspecialised phospholipase D).
Amongst the 9 rules (min supp=7, min meas=0.9), one strongly corresponds
to the cardiosyntase function:
(3a) Pfam-B 1038,lc,Pfam-B 115,Pfam-B 2786 -> cardio, (7,1.00)
This rule appears quite similar to one of the rules generated (same thresholds)
for the length criterion
(2c) lc,Pfam-B 115,lc,Pfam-B 2786 -> 60, (15,0.94)
Likewise, (3b) lc,Pfam-B 5151 -> diacyltransferase, (7,0.91)
strongly corresponds to the diacyltransferase function while (3c) Pfam-B 5151
-> 72, (53,1.00) was previously generated for the length criterion.
This generalises the correlation suggested in [10] between length 60 and 72 re-
spectively and the cardiosyntase and diacyltransferase functions. Other rules
generated with the protein function as a target are potentially misleading due
to inconsistencies of the automated assignment of function in these proteins. We
are currently testing the possibility of correcting mistakes using rules generated
with the length criterion.
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5 Related work and discussion

In this paper, we have proposed a definition of sequential association rules and
introduced sequential nuggets of knowledge. Those definitions are based on the
works presented in [11], but unlike classical sequential pattern mining, our ap-
proach focuses on rules with predefined targets as consequents. We have designed
SNK, an algorithm based on a pattern-growth strategy (as PrefixSpan [11]) to
generate the most general sequential nuggets of knowledge using an interesting-
ness measure that evaluates the pertinence of a rule. Other efficient works have
been proposed for sequential pattern mining. SPADE [15] is as fast as PrefixS-
pan but uses a bitmap structure which is better adapted to the study of very
long sequences but less suitable for short sequences. [9] had proposed a method
to generate sequential association rules, but is based on an a priori -like strat-
egy with two steps, a candidate test step and a candidate generation step. This
approach generates many unnecessary candidates that our pattern-growth ap-
proach avoids.
Sequential nuggets of knowledge are defined by a good interestingness measure
value. SNK offers the choice between a dozen of interestingness measures. The
choice of a suitable measure for a given application domain can be guided by the
examination of criteria described in [7] and in [12]. On the other hand, [8] pro-
poses a statistical bootstrap-based method to assess the significance of a measure
(thus avoiding false discoveries) that could be used with SNK. A first implemen-
tation of SNK is freely available on the web with some other functionalities.
Finally we have presented an example in biology involving the PLDc family of
proteins. The link between C-terminal length of a PLDc protein and its func-
tion was investigated. Let us recall that a protein function usually corresponds
to a specific sequence of structural units. Most studies take into account the
combinatorial aspect of the structural composition of proteins. We showed that
the identification of sequential constraints could lead to a refinement of the
functional classification of proteins. As a result, a large class grouped upon one
rough criterion can be subdivided into sub-classes upon explicit and informative
distinctive traits. We are currently testing the possibility of using the rules dis-
covered as a way of automatically correcting mistakes.
We also envisage to use our algorithm in other applications, e.g. on web logs, and
to extend it by adding non-sequential items in the antecedent of a rule. In that
way, it could take into account more expressive descriptions of objects. Since the
projected databases can be considered independently, we also plan to develop a
distributed version for a cluster of PC thereby drastically speeding up SNK.
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