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Abstract. In this paper, we study unsatisfiable queries posed to a
mediator in an information integration system and expressed in the
logical formalism of the information integration system PICSEL®.
First, we characterise conflicts as the minimal causes of the unsat-
isfiability of a query. Then, we produceits set of repairs: arepair is
a query that does not generate any conflict and that has a common
generaisation with theinitial query andis semantically closeto it.

1 Introduction

In recent years, the problem of information integration hasreceived a
lot of attention. In particular, several information integration systems
(e.g., Information Manifold [10], PicseL [9], SIMS[1]) have been
based on amediator architecture which provides a uniformquery in-
terface to multiple and possibly heterogeneous data sources. Users
pose queries in terms of a set of relations designed to capture the
semantics of agiven application domain (e.g., tourism®). Thoserela-
tionsarevirtual inthe sensethat their instancesare not directly avail-
able but stored in the sources. As a consequence, answering a query
means trandating a user's query into a query that refers directly to
the relevant sources, which needs a set of source descriptions. Our
sources are described by a set of views, for which logical constraints
and alogical mapping with domain relations are specified.

Themost important advantageof amediator isthat it enablesusers
to focus on specifying their demand, by freeing them from having to
find the relevant sources and possibly combine data from multiple
sourcesto obtain answers. Users do not have to know which sources
are available. Instead, the mediator takes control of the construction
of the specialised query plans (expressed in terms of views) to be
executed in order to answer the original queries (expressed in terms
of the domain model).

In the setting of data integration systems, the need for a cooper-
ative query answering processis especialy crucial because usersdo
not know the contents of the datasourcesthat are available. In partic-
ular, it may happenthat the user’s query, while being meaningful w.r.t
the domain model, has no answer becauseits transl ation leads to spe-
ciaised query plansthat violate the constraints specifying the actual
contents of the sources. In this case, it isimportant to explain to the
user why his query failed. For instance, he asked for hotels located
in England, and the only sources connected to the mediator provide
hotels located in Germany. In addition, it is very useful to offer him
anew query, called arepair, which is semantically closeto theinitial
one and for which the mediator can provide answers. For instance,
the user could be interested in a source providing Bed& Breakfastsin
England, instead of hotels.
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In this paper, we consider the problem of repairing queries which
do not obtain any answer, dueto aviolation of constraints. Wetake a
logical framework (see section 2) for representing the domain model
and the source description, associated with inference algorithms.
These algorithms are the basis for computing the specialised query
plans, and for checking their compatibility w.r.t the constraints.

Our contribution is twofold. First, as described in section 3, we
characterise the minimal causes of the absence of any answer in
terms of conflicts. Conflicts group together the rules and constraints
responsible of the query’s failure given the domain theory and the
source descriptions. Second, as described in section 4, we build a set
of repairs, such that each repair has a common generalisation with
theinitial query. We show, with examples coming from the tourism
domain, several problemsarising in the mediation context.

2 Representation of Domain, Sources and Queries

First, we specify the logical framework, called the domain theory.
We describe the formalism used to express knowledge, the contents
of the sourcesand queries. In thefollowing, X;,..., X, and Y are
tuples of variables.

2.1 Domain Knowledge

The knowledge domain is expressed by means of a declarative rep-
resentation of object classes (Country, Flight, Stay, Travel...) and of
relations among these classes. The domain is described using atoms,
of the form p(X) where p is arelation nameand X atuple of vari-
ables or constants. We distinguish some unary relations, called con-
cepts. They represent object classes relevant to the application do-
main. C'(z) is caled an atom-concept if C'is aconcept.

The domain knowledge (D, C) containstwo components:

e A set D, composed by rules of the form:
pi(X1) A A pe(Xn) = q(Y), where ¢(Y) and
p1(X1)...pn(Xn) are atoms, and each variable in Y appears in
XiU...UX,.

ex: A flight viaBerlinis aflight having a stop in Berlin.
Flight(x) A Stop(x, y) A Berlin(y) = FlightViaBerlin(x).
We distinguish two kinds of rules:

Dy, describes a hierarchy between the domain concepts, of the
form: C1(z) = C»(=), where Cy and C; are concepts.
ex: A direct flight isaflight.  DirectFlight(X) = Flight(X)

D, describes type-rules of the form p(X) = C(z:) with z; €
X. They specify which concept C' will characterise the arguments
of p(X). ex: the binary relation CityDeparture takes as a first argument
travels and as a second argument geographical places.

CityDeparture(x,y) = Travel(x) CityDeparture(x,y) = GeoPlace(y)

Only rules of D, and D; can have a concept asa conclusion.
Concepts and relations not appearing in rules as conclusions, except



in type-rules, are called base relations.

e A set C, composed by Horn constraints of the form:
C: ll(Xl) FAN /\ln(Xn) = 1.
ex: Thereisno NiceSwimming if there is no beach:
NoBeachPlace(x) A FeasibleLeisure(x, y) A NiceSwimming(y) = L

The Semantics used are standard first order logic semantics. An
interpretation Z contains anon-empty domain ©Z. It assignsan ob-
ject aZ € O to every constant a, and arelation of arity n over the
domain O7 to each relation of arity n.

- T isamodel of arule r if whenever « is a mapping from the
variables of therule r to elementsof O7, suchthat o( X;) € p;” for
every p;, wehavea(Y) € ¢*.

- 7 isamodel of acongtraint c if for every assignment « of the
variables of ¢ with elements from the domain @7, we do not have
smultaneously for every I;: a(X;) € I;%.

- Zisamodd of (D, C) if itisamodel of each of its components.

2.2 Description of the Sources

The contents of a source S; are represented using a vocabulary V
constituted by as many local relations v;;, called views, aswe know
the source S; gives instances of domain base relations. The descrip-
tion of sourcesin terms of views containstwo components:

¢ A logical set of implications D.,, linking each view to a do-
main relation, v; (X) = p(X).
ex: 8 provides instances of the concept Hotel and of the binary re-
lation Located. Vi (z) = Hotel(x) Viz2(z,y) = Located(x, y)

e A set of Horn constraints C, characterising the view in-
stances: i1 (X1) A ... Aln(Xn) = L, wherely .. .1, arebaserda
tions and/or view names or their negation with at most one negation.
ex: instancesfrom V1, arelinked to Vi; and hotelsfrom S; arelo-
cated in the Caribbean : V12(x,y)/\—|V11(x):> L
Vi1(x) A Located(w, y) A =InCaribbean(y) = L

The semanticsfor D, and C,, are the sameasfor (D, C).

2.3 Position of the Problem

We perform conjunctive queries of the form:

Q(X) : pl(Xh Yi,al) VAN /\pn(Xru Yn,an)
where p; are domain relation names appearing in D U C. The vari-
ables X = | JI_, X; arecalled distinguished variables of the query
and represent data, instances expected by the user when posing the
query. Y = [ JI_, Y: arenon-distinguishedvariables, and a1, . . ., ay
are tuples of constants. The variables are existentially quantified.
Classically, answering a query Q(X) is interpreted relatively to a
database D, possibly associated to adomain theory D, and consists
in determining whether:

DB, D |: ElX, ENG [Pl(Xh Yi,al) FANPI /\pn(Xru Yn,an)].

In the case of a positive answer, the answer to the query is the set of
tuplesb = b, U ... U b, suchthat:

DB, D |: ENG [Pl(l;h Yi,al) VAN Apn(gn, Yn,an)]
In fact, in our mediator approach, we do not access the data source
contents. Answering a query consists in searching the different ex-
pansions of this query in terms of views. An expansion of a query
Q(X) isaquery that, usingthedomaintheory 7 =DUDvUCUCy,
logically implies @(X ), and that is satisfiable with 7.
We assumethat 7 & L, T & vX-p(X), p arelation name, and
that the dependency graph of the relations appearingin 7 isacyclic.
Moreover, we limit ourselvesto queries having no constant.

In the PICSEL [9] mediator context, an algorithm that determines
expansionsin terms of views has been developed and implemented
in Java. This algorithm proceeds, using D and Dy, by successive
rewritings Qr (X) of theinitial query @(X ) in abackward chaining
way. Wehave Q= (X), DU Dy | Q(X).

Theserewritings are the nodes of atree rooted by Q. While devel-
oping the tree, for each node Q= , the satisfiability with 7 is tested.
A nodeisaleaf either if Qr(X), TEL, or if Q= cannolonger be
rewritten.

Our problem arises when all the leaves are unsatisfiable with 7.
Our aim is to obtain repairs of Q(X), satisfiablewith 7, and, most
of thetime, that are aleast satisfiable generalisation of Q(X).

It is worth noticing that Q= (X) can simply be the initial query,
detected as unsatisfiable before any expansion step.

Example 1: Assume that we have the following two sources: the
first one offers hotels in the Mediterranean, the second one provides
campsitesin Reunion.

Sl ry11 Vll(l’) = Hotel(x)
rv12 Via(z,y) = Located(z,y)
co11 Viz(z,y) A=Vii(z) = L
cv12 Vi1(x) A Located(z,y) A ~InMediterranean(y) = L
S2: ry21 Vai(w) = Campsite(w)
ry22 Voo(z,y) = Located(z,y)
cv21 Vaa(z,y) A=Var (o) = L
cv22 Va1(x) A Located(z,y) A ~Reunion(y) = L
C c¢1: Campsite(z) A Hotel(z) = L
ca: Reunton(z) A InMediterranean(z) = L
D ro: Campsite(r) = ResidencePlace(x)
Supposethat the user wishesto get an hotel in Reunion:
Q(x) = Hotel(x) A Located(x,y) A Reunion(y).
The mediator providesthe following unsatisfiable rewritings:
Qr, Hotel(x) ANVia(z,y) A Reunion(y)
Qr, Hotel(x) A Vaa(z,y) A Reunion(y).

Our task isto identify the origins of the unsatisfiablity of the given
queries and to propose satisfiable repairs of the initial query Q. In
order to do that, queries Q= given by PICSEL are saturated with 7 to
identify their inconsistency, which is expressed in terms of conflicts
(section 3). How to repair these conflictsis described in section 4.

3 Definition of a Conflict

We note (2; asubset of aconjunctivequery @, D, asubset of DUD,,
and C; asubset of C U C,,.

Definition 3.1: A conflict for a query Q is a triplet (@1, D1,C1)
suchthat @1, D1, C1 | L. (D1, C1) isthe causeof the conflict.

We distinguish conflicts according to two criteria. Thefirst one con-
cerns the query’s atoms appearing in the conflict.

Definition 3.2: A conflict (@1, D1, C1) is Q_minimal if there does
not exist Q> C Q@ (strictly) suchthat @2, D1,C1 = L

Example 2:
C cridx) Ae(x) Af(x) = L c2raX) AbX)= L
D ri:a(x) = d(x) ro: b(X) = &(x) rs: c(x) = f(x)

Q(z): a(x) A b(x) A c(x)

Cf1: ({ax), b(x), ()}, {}.{c2}) Cfa: ({ax), b0} {}{c2})

C for ({ax), b(x), ¢(x) }{r1,r2,r3}{c1}

Because{a(z),b(z)} C {a(z),b(z),c(x)}, C f1 isnot Q_minimal.
The second criterium concerns the knowledge appearing in the

conflict. Thus, we define an operator on the causes of conflicts.



Definition 3.3: The strict inclusion operator on causesis defined
asfollows: (D1,C1) C (D2, C2) if and only if
(Dl C Dy andCl g CQ) or (Dl g D> andCl C CQ)

Definition 3.4: A minimal cause of conflict for an atoms con-
junction @, is a couple (D1, (1) such that there exists no cause
(D27C2) C (Dl,Cl) with Qh DQ,CQ |: L.

From definitions 3.2 and 3.4, we distinguish the relevant conflicts
from among all the detectable ones available.

Definition 3.5: A conflict (@1, D1, Cy) isrelevant if it is Q_minimal
and if (D1, Cy1) isaminimal causeof conflict for ;.

Example 3:
Dy ri father(x) = male(x)
r5 father(x) = adult(x)

C: c1 male(x) A female(x) = L

Q(x) = father(x) A mother(x) A child(x)

Relevant conflicts cf1. ({father(x), mother(x)},{r1,72},{c1})
cf2. ({father(x), child(x)},{rs},{c2})
cf3. ({mother(x), child(x)},{ra},{c2})

Complete and correct methods, as the positive hyperresolution
method defined in [2], let us detect all the relevant conflicts gener-
ated by a given query, focusing on the literal s of the query. Conflicts
could be presented to the user as afirst and rough explanation of his
query’sfailure.

ro mother(x) = female(x)
r4 mother(x) = adult(x)
¢ adult(x) A child(x) = L

4 Repairs

Let usconsider an unsatisfiablequery @( X'). We haveto determinea
set of repairs without conflicts. A repair is asatisfiable query Q'(.X)
such that Q(X) and @' (X) have a close common generalisation.
Our repairs are based on the notion of concept subsumption.

4.1 Concept Generalisation

Definition 4.1: A direct subsumer of a concept € is a concept C’
such that theruleC(z) = C'(z) isin Dy.

A concept can have many direct subsumers.

Definition 4.2 ¢’ isa subsumer of C if ¢’ isadirect subsumer of C
or if thereexists C"' such that €’ isadirect subsumer of " andC” is

a subsumer of C.
GeoPlace
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PlaceWithABeach NoBeachPlace
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Figure1 Geographica Places Hierarchy

Figure 1 presentsafragment of the concept hierarchy D,. The direct
subsumers of Madeira are UnderTheSun and |slandWithNoBeach
while other subsumersare Island, NoBeachPlace and GeoPlace.

Type-rules specify for each argument of the relation, the concept
Cy towhichit could belong. A relevant query verifiestype-rulesif it
only uses atom-concepts more specific than or equal to C .

Definition 4.3: Let Q(X) = AL, A(X)A ATL, €;(X), with
Ai1<i<n anary relation and CJKJSm a concept. Q(X) verifies
atype-ruler, : A;(X) = C’(z), if and only if the concept C’ is one
of the conceptsC; or a subsumer of oneof the C;’s.

Example4: In addition to rules expressedin figure 1, supposethat
Located hastwo type-rules and that Hotel is aplacefor residence:
r16: Located(x, y) = ResidencePlace(x) r17: Located(x,y) = GeoPlace(y)
rig € Dj, : Hotel(x) = ResidencePlace(x)
The query Q(x) = Hotel(x) A Located(x,y) A Madeira(y) verifiesthe
type-rules associated to therelation Located.

Thefollowing definition establishesthe notion of generalisation of
an atom-concept C'(z).

Definition 4.4: Let C be a conceptand €, Ca,...,Cn, its direct sub-
sumers, the direct generalisation G () of the atom-concept C(«)
istheconjunctionCy (z) A C2(x) A ...A Cr(z).

Remarks (i) We use the conjunction of direct subsumersin order to
stay closeto the concept, taking into account all its features.
(i) We havethe following property: C(z), Dr |= Ge(z).

Thanks to the previous definitions, a generalisation of an atom-
conceptsconjunction will be defined.

Definition 4.5: Adirect generalisation G4(x) of an atom-concepts
conjunction Cy () A ... AC;i—1(2) ACi(x) ACig1 ()N ... ACr(x)
is a conjunction of the form Ci(z) A ... ACi—1(z) A Gei(z) A
Cit1(z)N... A Cr(z),1 < i < n,whereG.;(x) isthedirect gener-
alisation of C; ().

Definition 4.6: G(«) isa generalisation of an atom-concepts con-
junctionCoc () if G(x) isadirect generalisationof C..(x) or if there
exists an atom-concepts conjunction G'(x) suchthat G(z) isa direct
generalisation of G'(x) and G’ (=) isa generalisation of Coc (7).

Example 4: A generdisation of InMediterranean(z) A
Island(x) is UnderTheSun(x) A PlaceWithABeach(x) A Island(x).

4.2 Query Repairs

In this section, we show how to usegeneralisationsto repair aconflict
in aquery. We first definethe notion of unsolvable query.

Definition 4.7: A literals conjunction Q(X) is unsolvableiif it is
unsatisfiable, that is, QU DU C = L, or if all theleaves@Qr of its
rewriting tree are unsatisfiablewith 7, that is, Qr U T = L.

Definition 4.8 Let Q(X) = Cac(w) Aq(X) beanunsolvablequery,
where C..(x) is a conjunction of atom-concepts, and ¢( X) a con-
junction of literalswith z € X. R(X) = C..(x) Aq(X) isarepair
of Q(X) if Cl.(x) isageneralisation of Ca.(z) and if R(X) isnot
unsolvable.

Remark We have: Q(X), Pr = R(X). Asrepairs R(X) do not
always verify the type-rules, the notion of relevant repair is needed.

Definition 4.9 Arepair R(X) of aquery@(X) isarelevant repair
if it verifiesthe type-rules associated to its own n-ary relations.

Then, asmany repairs could pretend to satisfy the previous defini-
tions, only minimal relevant repairs have to be given to the user.



Definition 4.10 R(X) isaminimal repair of the unsolvable query
Q(X)if R(X) isarelevant repair of Q(X) andif theredoes not ex-
ist R(X), arelevant repair of Q( X), suchthat R(X), Dy |= R(X).

Example 4 continued: we add the following knowledge:
r19: NiceSwimming(x) = Leisure(X) roq: AssLeisure(x,y) = Leisure(y)
ro1: AssLeisure(x, y) = ResidencePlace(x)
c1: NoBeachPlace(x) A Feasibleleisure(x,y) A NiceSwimming(y) = L
co: ResidencePlace(x) A AssLeisure(x,z) A Located(x,y) A

GeoPlace(y) A — FeasibleLeisure(y, z) = L

and the query, Q(x) = Hotel(x) A Located(x,y) A Madeiraly) A
AssLeisure(x,z) A NiceSwimming(z).

We identify a relevant conflict:  ({Located(x,y), Madeira(y),
AssLeisure(x,z), NiceSwimming(z) }, {rs, 711,715,720}, {c1,c2 }).

Substituting in Q () the atom-concept Madeira(y) by its gener-
alisation, Island(y) A UnderTheSun(y), a minimal repair Q= (x) is
found: Hotel(x) A Located(x,y) A Island(y) A Under TheSun(y) A
AssLeisure(x,z) A NiceSwimming(z).

4.3 Algorithmsfor Calculating Repairs

In [14], Reiter proposes an algorithm to determinate a minimal set
of abnormal components of a system, by computing minimal hitting
sets for the collection of conflicts set. We need to adapt his method.
Instead of simply deleting the literals, we want to generalise them,
if it is possible, taking into account D;,. We construct the minimal
repairs from the set of all minimal conflicts. Repairing aquery means
repairing each of its conflict, and for this, we calculate the set of
atom-rules pairs ar-pairsthat needto be oversteped.

Definition 4.11: Letcf, = (@1, D1, C1) bearelevant conflict. We
defineasmany ar-pairsa — rp, witha € @y andrp C D1 N Dy,
as there exist maximal paths starting from « and associated to r
devel oped during the hyperresol ution process.

Definition 4.12 TheoverstepgeneralisationG._, (), isthegen-
eralisation of awhere all the concepts reached by applying rules of
r,_have been successively replaced by their direct generalisations.

Remark Note that, for a given conflict, oversteping one of its
ar-pairs does not always solve the conflict.

Example 3 continued: the sets of ar-pairs for each relevant con-
flict are: arl= { father-r,, mother-r, }, ar2= {father-rs, child}, ar3=
{mother-r,, child}. Having the following rule, rs adult(x) =
> 10Years(x), the generalisation oversteping father- ry isadult(z)
and the onefor father-rs ismale(z)A > 10Years(z).

Definition 4.13: Let Q(X) = )ANZ @(Y) bea
querywhere X C |J_, z; UY and thea ( ) sareatomconcepts
Leta; —rp; bear-pairs,for 1 <: < n. Thequery overstepingall
ai-rni IN Q(X)iSA_; Ga,—r,, (z) ANNJZ ().

Given an unsolvablequery 2, and given aset of relevant conflicts,
our aim is to obtain the minimal sets of ar-pairs that solve al the
conflicts for @@ together. These sets of pairs are given as leaves of
an Order-Minimal-Repair-Tree. The following algorithm constructs
this OMR-tree ; its input is the set of relevant conflictsfor @ and a
total order O, over ar-pairs for avoiding redundant results.

Definition of a Total Order O, Over Ar-pairs
The order follows first the user's preferences over atoms, by

default, the order of the literals in the query. For pairs having
the same literal, the order follows the decreasing number of rules
|rx]. Then, thelexicographical order over the rule namesisfollowed.

Calculation of an OMR-Tree
Let CS be a set of relevant conflicts. An edge-labeled and node-
labeled tree T is an OMR-tree for CSiff it is a smallest tree with
the following properties:

o Itsroot islabeled by 7/ if CSisempty, otherwiseby CS.

e If nisanodeof T, define EL(n) to bethe set of edgelabelson
thepath in T from the root nodeto .

¢ Thelabel for anodeis the collection of conflicts that have not
been treated while oversteping the ar-pairs E'L(n), if such a collec-
tion exists. Otherwise, n islabeled by /.

o If nisclosed or labeled by +/, it isalesf of T.

¢ Nodes are generated breadth-first and edges are listed from |eft
to right according to the increasing order O, on edges’ |abels.

e Letn beanodelabeledby > C C'S, andn ., anodeof T labeled
by /. If EL(n,/) isasubset of EL(n), n isclosed.

¢ If n istheroot, for each ar-pair ar associatedto 3, n hasasuc-
cessor noden .. Otherwise, nisissued from apreviousedge labeled
arp, andit has, for each ar-pair ar greater than ar,,, asuccessor node
nqr. Eachnoden . islinked to n by an edge labeled by ar.

o If ar = a-ry,, is such that there exist ar-pairs {a-rpy, ..., a-
rax} in EL(nar), where |Jl_, rni = ', rai\ra,, for some
Jj € [1..k], then n,, isclosed.

Remark Such a tree lets us first find a repair close to the
query in terms of generalisationssteps and quickly get arepair close
to the user’s preferences (05).

Theorem 1 Let Q be an unsolvable query and let T' be the OMR-
tree associated to it. By overstepingin Q all ar-pairs EL(1) givenby
oneleaf! labelled by ” /” inT', weget aminimal repair of the query.
Conversely, every minimal repair can be obtained in this way.

Example 3 continued: five ar-pairs are calcul ated:
child, mother-r,, mother-r4, father-ry, father-rs.

of1 [cfz o3 ) [ o1, cfz] (dac3) ((dncs)
mother/r2), father-r1 or4 \ fatheri3 | fatherrl | father-r3
C) (s ) () ()
father-r3 i father-r3

V]

Figure 2. OMR-tree for example 3

Figure 2 presentsthe 4 minimal sets of ar-pairs to be oversteped:
1. child, mother-r; 3. mother-{rz, r4 }, father-rs
2. child, father-ry 4. mother-ry4, father-{ry,rs }.
Thus, the four following minimal repairs can be proposed:
1. father(x) 3. male(x) A > 10Y ears(z)A child(x)
2. mother(x) 4. female(x) A > 10Y ears(z)A child(x).

These repairs are obtained by oversteping the pairs computed us-
ing the OMR-tree. For example, (1.) is obtained removing child
which has no direct subsumer, and by replacing mother by adult,
which is not kept becauseit subsumesfather.



4.4 Other Query Repairs

We give some indications of how to define new repairs since repair-
ing using concept generalisation is not always quite satisfactory.

¢ When repairs do not verify the type-rules, we also have to
modify their concerned binary atoms R(z, y). For Q(z) = C1(=)
AR(z,y) A C2(y) which does not verify thetype-ruler: : R(z, y)
= Cs(z), because of the exclusion-constraint ¢, : C1(z) A Cs(z)
= 1, two kinds of repairs (caled type-repairs) are possible,
depending on whether we favor the binary relation or the concepts:

- the first one keeps the atom R(X, y) and consists in correctly
typing the associated concept, replacing C'1 (z) by Cs(x).

- the second one keeps the concepts and consists in replacing the
relation R by an atoms chain which correctly links C; (z) to C» (y).
The research of such a chain needs to study the binary relations
associated to the considered concepts or their subsumers. The
new repair must verify the type-rules associated to its new binary
relations. We are restricted to chains having at most two relations.

Example 4 continued : with the added following knowledge,
roo : FeasibleLeisure(x, y) = GeoPlace(x)
cs . ResidencePlace(x) A GeoPlace(x) = L
Supposethe user’s query is:
Q(x) = Hotel(z) A Feasible Leisure(x, y) A Nice Swimming(y)
This query is incompatible with the domain structure because
a hotel is a ResidencePlace whereas FeasibleLeisure needs a
GeoPlace. Moreover, the repair using concept generalisations that
modify the concept Hotel cannot verify ro,.
Thetype-repairsare asfollows : favoring Feasibleleisure:
R1(z) : GeoPlace(x) A Feasiblel eisure(x, y) A NiceSwimming(y),
favoring Hotel and NiceSwimming:
R2(z) : Hotel(x) A AssLeisure(x, y) A NiceSwimming(y).

¢ We continue Example 1, described in section 2.3, to present
the problems encountered because of the sources. In addition, the
domain theory containsthe rulesexpressed in figure 1.
Each rewriting contains a conflict, respectively :

Qr, : cfi ({Via(z,v), Reunion(y)} {rvi2} {cv11,cv12,¢2})
Qr, : cf ({Hotel(x), Vaz(x,y) } {rv21, rv2s fi{c1}).

Two repairsshould befound: Hotel(z) A Located(z,y) AUnder T he-
Sun(y) A IslandWithBeach(y), for thefirst conflict; Residence-
Place(r) A Located(z,y) A Reunion(y) for the second.

5 Conclusion and Per spectives

Our objective is to help a user to reformulate his query detected as
unsatisfiable. This paper has presented a formal framework that lets
us characterise the minimal causes of the query’s unsatisfiability in
terms of conflicts. It has introduced the notion of minimal repairs
of a query by means of concept generalisations. Moreover, an a-
gorithm to calculate these repairs has been proposed, and is being
implemented in Java.

Our study is related to work done in diagnosis[14] but differs as
we have identified different subsetsin the domain theory (type rules,
source descriptions, etc.), so that we can give the user significant
explanations for why his query failed, and propose repairs that meet
his requirements, as closely as possible.

Dueto alack of place, we succinctly present related research de-
veloped in a deductive databases context.

Motro [11] introduces minimal failing sub-queries(MFS) that fail
because of the domain constraints or the real data. He modifies the
query by deleting literals or by relaxing, to a certain degree, some of
its conditions. He doesnot have to detect all the conflictsbeforehand,
but, instead, he must often consult the effective data of the sources.

Godfrey [8] shows that looking for al the MFS and finding all
their repairs are NP-hard problems, which can become polynomial
when exhaustivenessis not necessary.

Wewereinterested in an algorithm that gives some outputs, known
as minimal, without having to wait for all the solutions to be calcu-
lated firgt, that is, our OMR-Tree algorithm.

Gal [7] givesthe user integrity constraints that have been violated
by a query, as we do, but she does not offer any repairs. Gaaster-
land [5][6] modifiesthe query either to get more information, which
isrelevant for the user, or to repair the query if it fails. She describes
how to relaxe each predicate and its constant arguments. Asthere are
many possibilities, relaxations are generated in breadth first, and at
each level, they are submitted to the user, who hasto decide, interac-
tively, which relaxation he prefers.

The work we have presented should be extended in order to take
into account the full expressiveness of the formalism CARIN [13],
language used in the PICSEL project and which combinesHorn rules
with description logics. It could be interesting, first, to go further
in exploiting the analogies with diagnosis, trying to map other a-
gorithms [3], [4], and second, to investigate the links between our
notion of generalisation and the generality quasiorders used in the
Inductive Logic Programming field [12]. On the other hand, we have
to formalise other methodsto obtain repairs when generalisationsare
not quite satisfactory, that is, when the atoms of the query are badly
typed or when the available sources are not relevant for the user. At
last, some optimisations could be introduced, (i) to order and group
the repairs according to their meaning, (ii) to avoid calculating irrel-
evant conflicts, generated by the type-rules for example, during the
hyperresolution process.
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