
“Syntactic” AC-Unification?

Alexandre Boudet and Evelyne Contejean

LRI, CNRS URA 410
Bât 490, Université Paris-Sud, Centre d’Orsay

91405 Orsay Cedex, France

Abstract. The rules for unification in a simple syntactic theory, using
Kirchner’s mutation [15, 16] do not terminate in the case of associative-
commutative theories. We show that in the case of a linear equation, these
rules terminate, yielding a complete set of solved forms, each variable
introduced by the unifiers corresponding to a (trivial) minimal solution
of the (trivial) Diophantine equation where all coefficients are 1. A non-
linear problem can be first treated as a linear one, that is considering two
occurrences of a same variable as two different variables. After this step,
one has to solve the equations between the different values that have
been obtained for the different occurrences of a same variable. We show
that one can restrict the search of the solutions of these latter equations
to linear substitutions. This result is based on the analysis of how the
minimal solutions of a linear Diophantine equation can be built-up using
the solutions of the trivial Diophantine equation associated with the
linearized AC-equation. This provides a new AC-unification algorithm
which does not make an explicit use of the solving of linear Diophantine
equations.

1 Introduction

The syntactic theories were defined in ’85 by Kirchner as those collapse-free equa-
tional theories which admit a finite resolvent presentation, this being a presen-
tation where any equality proof can be performed with at most one application
of an axiom at the root [15, 16]. At that time, the unification community was
not aware that there were many syntactic theories on top of commutativity and
its variants. The main advantage of syntacticness is that one can nondetermin-
istically guess which axiom of a resolvent presentation will possibly apply at the
root. This provides top-down strategies for solving word problems or unification
problems which are complete but not terminating in general.

In ’90, it turned out that a lot of theories of interest were syntactic. Kirchner
and Klay noticed that a collapse-free theory E over a signature F is syntactic if

and only if all the general equations of the form f(x1, . . . , xn)
?
= g(y1, . . . , ym),

where f, g ∈ F , have a finite complete set of E-unifiers Σf,g [17]. In this case,
the equations f(x1, . . . , xn)σ = g(y1, . . . , ym)σ, where σ belongs to Σf,g, form a
resolvent presentation of E. In particular, the associative-commutative theories

? This research was supported in part by the Esprit Working Group CCL.



having finitary unification, are syntactic, as shown with a nice geometric inter-
pretation by Nipkow [20]. This led to a growing interest in syntactic theories,
but Klay showed that it is not decidable whether a theory is syntactic, worse:
the word problem is not decidable in general in syntactic theories [18].

A large class of theories for which unification can be decided by syntactic
means has been given by Comon, Jouannaud and Haberstrau [6]. The authors
dropped the assumption that the theories are collapse-free, and introduced the

notion of cycle-syntacticness for solving the cycles of the form x
?
= u[x]. They

have shown that the shallow theories, i.e. the theories which have a presentation
where all the variables in the axioms are at depth at most 1, are syntactic and
cycle-syntactic, and have a decidable first-order theory.

Syntacticness has been used for unification modulo one-sided distributivity
[22]. In this work, no mention is made of syntacticness, nevertheless the authors
do actually show that the presentation reduced to the distributivity axiom is
resolvent and that in this particular case, the unification process terminates.

Surprisingly, while associativity-commutativity is doubtless the theory for
which unification has been the most extensively investigated [19, 21, 15, 9, 10, 12,
5, 4, 3, 1, 14, 8, 2], it has not been taken advantage of the syntacticness for AC-
unification. The problem is that the syntactic method, while it constructs all
the AC-solutions, does not terminate. Actually, an attempt has been made by
Franzen and Henschen in ’88 who already use a resolvent presentation of AC
for unification [11]. There, the authors give a criterion for pruning the search
space which ensures the termination, and they conjecture that the completeness
is preserved. Their conjecture is that one can avoid the recursive calls which
are not strictly smaller than the input problem for the ordering which compares
first the maximal number of occurrences of a same variable in the equation,
and second the size of the equation. We lack space for developing a counter-
example, but the reader can check that their algorithm will not find the solution
{x 7→ v1 + v1 + v2 + v3, y 7→ v1 + v1 + v1 + v2, z 7→ v2 + v3 + v3 + v3} of the

equation x + x + x
?
= y + y + z. In the following, we give another criterion, we

prove that the completeness is preserved, and give a control for which the rules
terminate, hence providing a new AC-unification algorithm which does not make
an explicit use of the solving of linear Diophantine equations.

Let us make clear that our goal was not to give an efficient algorithm which
could compete with the existing methods, but instead to understand how the
axioms of a resolvent presentation of AC do indeed solve linear Diophantine
equations.

2 Syntactic Theories and AC-Unification

In this section we recall some basic concepts about syntactic theories and AC-
unification. We assume the reader is familiar with term rewriting and unification,
and we use the notations of [7]. For instance, T (F ,X ) is the free F-algebra over a
set X of variables, t|p is the subterm of t at position p and t[u]p the term t where
the subterm at position p has been replaced by u. Λ is the empty (root) position



of a term. For any syntactic object o, V (o) is the set of variables occurring in o.
The reader is referred to [13] for a state-of-the-art survey of unification.

2.1 Syntactic Theories

Definition 1. Given a set E = {l1 = r1, . . . , ln = rn} of axioms (or identities),
where li, ri ∈ T (F ,X ), the equational theory =E generated by E is the least
congruence on T (F ,X ) containing all the instances of the axioms. The theory
=E is consistent if the set of its equivalence classes is not a singleton. E is called
a presentation of the equational theory =E. Equivalently, =E is the symmetric,
reflexive, transitive closure

∗↔E of the relation ↔E defined by s ↔E t if there
exists an axiom l = r of E, a position p and a substitution θ such that s|p ≡ lθ
and t ≡ s[rθ]p. s↔E t is called a proof step and if p = Λ, we call it a Λ-step.

The equational theory that we will study here is =AC , the theory presented
by the two axioms of associativity (A): (x + y) + z = x + (y + z), and commu-
tativity (C): x+ y = y + x, on T ({+},X ).

By abuse of notation, we will often confuse the equational theory and one of
its presentations, hence writing “the theory AC”.

Definition 2. [15, 16] Let ≈ be a collapse-free equational theory i.e. a theory
such that there is no equality x ≈ u[x]p with x ∈ X and p 6= Λ. The theory ≈ is
syntactic if it has a finite resolvent presentation E, that is a presentation such
that every equality s ≈ t has a proof s

∗↔E t with at most one Λ-step.

It happens that AC is a syntactic theory, but the presentation given above
is not a resolvent presentation. Indeed, two Λ-steps are necessary to prove the
equality (x+ y) + (z+ t) =AC (x+ z) + (y+ t), using only the associativity and
commutativity axioms. The following five axioms form a resolvent presentation of
AC, which may be obtained from the (most general) AC-solutions of the general
equation x+y = u+v [17, 11], or by an analysis of the possible exchanges between
the left and right subterms of the root [20]:

(x+ y) + z = x+ (y + z) A
x+ y = y + x C

(x+ y) + z = (x+ z) + y RC
x+ (y + z) = y + (x+ z) LC

(x+ y) + (z + t) = (x+ z) + (y + t) MC

2.2 AC-unification

Definition 3. A unification problem is a (disjunction of) formula(s) of the

form T , F , or P ≡ (∃y1, . . . , yp) s1
?
= t1 ∧ · · · ∧ sn

?
= tn, where si, ti ∈ T (F ,X )

for 1 ≤ i ≤ n. A substitution σ is an E-unifier (or E-solution) of P if Pσ is

valid when
?
= is interpreted as the equational theory =E. If in addition every

E-unifier θ is equal (modulo E) to σρ for some substitution ρ, then σ is called a



most general E-unifier of P . Every substitution is a solution of T , while F has
no solution. Two unification problems are E-equivalent if they have the same set
of E-unifiers.

A unification problem is in a solved form if P ≡ T , or P ≡ F or

P ≡ (∃y1, . . . , yp) x1
?
= t1 ∧ · · · ∧ xn

?
= tn, where the xis are free variables and

have exactly one occurrence in P .

A term t (resp. an equation s
?
= t) is linear if each of its variables has only one

occurrence.

It is well-known that solved forms (other than T and F ) represent their own

most general unifier: if P ≡ (∃y1, . . . , yp) x1
?
= t1 ∧ · · · ∧ xn

?
= tn is in a

solved form, then the substitution σ = {x1 7→ t1, · · · , xn 7→ tn} is a most general
E-unifier of P for every consistent equational theory E.

Definition 4. A complete set of solved forms of P is a set {P1, . . . , Pn} of
solved forms such that P and P1 ∨ · · · ∨ Pn are equivalent. For 1 ≤ i ≤ n, Pi
is called a solved form of P . The set of E-unifiers associated with a complete set
of solved forms is called a complete set of E-unifiers of P 1.

We briefly recall how one can derive a mutation rule for unification in a syn-

tactic theory [11, 17]. Consider the equation f(s1, . . . , sn)
?
= g(t1, . . . , tm) to be

solved in a theory E. After applying variable abstraction immediately under the
root on both sides of the equation, one gets the E-equivalent problem:

(∃x,y)f(x1, . . . , xn)
?
= g(y1, . . . , ym)

∧n
i=1 xi

?
= si

∧m
j=1 yj

?
= tj

where x,y denote the new variables introduced by the variable abstraction. We

can solve the general equation f(x1, . . . , xn)
?
= g(y1, . . . , ym) and, if Σf,g is a

finite complete set of E-unifiers, we get the finite disjunction:∨
σ∈Σf,g

((∃x,y, z)
∧n
i=1 xi

?
= xiσ

∧m
j=1 yj

?
= yjσ

∧n
i=1 xi

?
= si

∧m
j=1 yj

?
= tj)

where z denotes the new variables introduced by σ. Term replacement can now
be applied to the equations of the two first conjunctions of each disjunct, yield-
ing:∨

σ∈Σf,g
((∃x,y, z)

∧n
i=1 xi

?
= xiσ

∧m
j=1 yj

?
= yjσ

∧n
i=1 xiσ

?
= si

∧m
j=1 yjσ

?
= tj)

Now, the existentially quantified variables appearing only as a left-hand side of

an equation x
?
= s are irrelevant, and we can remove such equations, thus ob-

taining the following problem which is E-equivalent to the original equation:∨
σ∈Σf,g

((∃z)
∧n
i=1 xiσ

?
= si

∧m
j=1 yjσ

?
= tj)

Hence, the mutation rule for the theories having finite complete sets

1 Here, we restrict our attention to the theories having finite complete sets of unifiers.



of unifiers Σf,g of the general equations f(x1, . . . , xn)
?
= g(y1, . . . , ym):

Mutate

f(s1, . . . , sn)
?
= g(t1, . . . , tm) ∧ P →

∨
σ∈Σf,g

((∃z)

n∧
i=1

xiσ
?
= si

m∧
j=1

yjσ
?
= tj ∧ P )

where Σf,g is a complete set of E-unifiers of f(x1, . . . , xn)
?
= g(y1, . . . , ym),

and the variables of z are the new variables introduced by σ.

Applied to AC, this rule allows us to transform the equation s1 +s2
?
= t1 + t2

into the AC-equivalent disjunction of the seven problems:

(∃v1, v2) s1
?
= v1 ∧ s2

?
= v2 ∧ t1

?
= v1 ∧ t2

?
= v2 (Id)

(∃v1, v2) s1
?
= v1 ∧ s2

?
= v2 ∧ t1

?
= v2 ∧ t2

?
= v1 (C)

(∃v1, v2, v3) s1
?
= v1 + v2 ∧ s2

?
= v3 ∧ t1

?
= v1 ∧ t2

?
= v2 + v3 (A→)

(∃v1, v2, v3) s1
?
= v1 ∧ s2

?
= v2 + v3 ∧ t1

?
= v1 + v2 ∧ t2

?
= v3 (A←)

(∃v1, v2, v3) s1
?
= v1 + v2 ∧ s2

?
= v3 ∧ t1

?
= v1 + v3 ∧ t2

?
= v2 (RC)

(∃v1, v2, v3) s1
?
= v1 ∧ s2

?
= v2 + v3 ∧ t1

?
= v2 ∧ t2

?
= v1 + v3 (LC)

(∃v1, v2, v3, v4) s1
?
= v1 + v2 ∧ s2

?
= v3 + v4 ∧ t1

?
= v1 + v3 ∧ t2

?
= v2 + v4 (MC)

The reader has recognized the use of the five axioms of the resolvent presenta-
tion of AC given above in paramodulations followed by decomposition. (The first
problem corresponds to the case where no Λ-step is needed, and associativity
can be used from left to right or from right to left.)

Of course, the Mutate rule is not sufficient by itself for computing a (disjun-
ction of) solved form(s). In order to have a unification algorithm, we need some
additional rules (given in figure 1) which are all well-known and whose correct-
ness is straightforward. Some of these rules are redundant, but we want to define
the largest class of algorithms, depending on the possible controls. These rules
are complete for the simple syntactic theories, a simple theory being a theory
which has no equality of the form u =E s[u]p with p 6= Λ.

Lemma 1. The irreducible problems for S are solved forms.

Unfortunately, the rules of S do not terminate in general. Consider the problem:

x + x
?
= y + y. Mutate will yield (among others) the problem obtained by

applying MC:

(∃v1, v2, v3, v4) x
?
= v1 + v2 ∧ x

?
= v3 + v4 ∧ y

?
= v1 + v3 ∧ y

?
= v2 + v4

Merge, applied to x will build the equation v1 + v2
?
= v3 + v4. One solved form

of this equation is v1
?
= v3 and v2

?
= v4. But now, identifying v1 and v3 on one

hand, v2 and v4 on the other hand in the remaining equations turns them into

y
?
= v1 + v1 ∧ y

?
= v2 + v2. Merge, applied to these equations yields a renaming

of the original problem.



Mutate

f(s1, . . . , sn)
?
= g(t1, . . . , tm) ∧ P →

∨
σ∈Σf,g

((∃z)

n∧
i=1

xiσ
?
= si

m∧
j=1

yjσ
?
= tj ∧ P )

where Σf,g is a complete set of E-unifiers of f(x1, . . . , xn)
?
= g(y1, . . . , ym), and the

variables of z are the new variables introduced by σ.

Merge

x
?
= s ∧ x

?
= t → x

?
= s ∧ s

?
= t

if x ∈ X and s, t /∈ X

Var-Rep (Variable Replacement)

(∃z1, . . . , zn) x
?
= y ∧ P → (∃z1, . . . , zn) x

?
= y ∧ P{x 7→ y}

if x, y ∈ V (P ) and x is existentially quantified or y is free.

Rep (Replacement)

(∃y1, . . . , yn) x
?
= s ∧ P → (∃y1, . . . , yn) x

?
= s ∧ P{x 7→ s}

if x ∈ V (P ), and s /∈ X , and x /∈ V (s) or
if s ∈ X , and s 6≡ x and x, s ∈ V (P ).

Check∗

x1
?
= t1[x2]p1 ∧ x2

?
= t2[x3]p2 ∧ · · · ∧ xn

?
= tn[x1]pn → F

if some pi 6= Λ.

EQE (Existential Quantifiers Elimination)

(∃x, y1, . . . , yn) x
?
= s ∧ P → (∃y1, . . . , yn) P

if x /∈ V (s) ∪ V (P ).

Fig. 1. The set of rules S for unification in simple syntactic theories



Before we show how the rules of S can be used, after all, for AC-unification,
we introduce a convenient notation for AC-unification problems and we recall
the well-known result [19, 21], about the “semantic” method for AC-unification.

Definition 5. Consider the table:

x1 · · · xi · · · xn
t1 a11 · · · a1i · · · a1n
t2 a21 · · · a2i · · · a2n
· · · · · · · · · · · · · · · · · ·
tm am1 · · · ami · · · amn

where x1, . . . , xn ∈ X , t1, . . . , tm ∈ T ({+},X ), and the aijs are natural numbers,
and for 1 ≤ i ≤ n, Σm

j=1aij 6= 0.
We shall use such a table as a notation for the unification problem:

P ≡
n∧
i=1

xi
?
= t1 + · · ·+ t1︸ ︷︷ ︸

a1i times

+ · · ·+ tm + · · ·+ tm︸ ︷︷ ︸
ami times

The admissible subproblems of P are the problems corresponding to a subtable
(in the sense that some lines have been removed), still verifying that the sum of
the coefficients of each column is non-zero.

Using the above notation we can reformulate the well-known result on AC-
unification [19, 21].

Theorem 1. Given a unification problem s
?
= t, where s, t are terms of

T ({+},X ), let V (s, t) = {x1, . . . , xn}, and for xi ∈ V (s, t), let αi be the number
of occurrences of xi in s minus its number of occurrences in t. Let {s1, . . . , sm}
be the set of minimal (for the ordering >n), positive, non-null solutions of the
linear Diophantine equation Σn

i=1αizi = 0, where each sj is a vector of integers
(aj1, . . . , ajn). Then, the admissible subproblems of

x1 · · · xi · · · xn
z1 a11 · · · a1i · · · a1n
· · · · · · · · · · · · · · · · · ·
zj aj1 · · · aji · · · ajn
· · · · · · · · · · · · · · · · · ·
zm am1 · · · ami · · · amn

where z1, . . . , zm are new variables, form a complete set of solved forms of s
?
= t.

3 Syntactic AC-Unification

fact[theorem]Fact assumption[theorem]Assumption

We take advantage of the fact that the unification problems x + s
?
= x + t

and s
?
= t are AC-equivalent. Indeed, adding (or removing) an occurrence of a

variable to (from) both sides of an equation does not change the coefficient of
the corresponding integer variable in the associated linear Diophantine equation.

We assume that the input problem is an equation s
?
= t with V (s)∩V (t) = ∅.



Definition 6. Two unification problems P and Q are strongly equivalent if they
are the same modulo

– the associativity and commutativity of ∧ and ∨ ,
– the distributivity of ∧ with respect to ∨ ,

– the commutativity of
?
=,

– the associativity and commutativity of +,
– a renaming of the existentially quantified variables.

Lemma 2. Let P ≡ x1 + · · · + xn
?
= y1 + · · · + ym be an equation where

x1, . . . , xn, y1, . . . , ym are pairwise distinct variables.
Assume that some rules of S are applied to P , yielding a problem Q. Assume that
two rules R1 and R2 of S, other than Check∗ may be applied to Q, yielding the
problems Q1 and Q2, respectively. Then there exist two strongly equivalent prob-
lems Q′1 and Q′2 which are respectively obtainable from Q1 and Q2 by applying
one rule of S.

Proof. Let us first show by induction on the number of applications of the rules
that every variable has at most two occurrences in the non-quasi-solved part of

Q. The quasi-solved part of Q is of the form v1
?
= t1 ∧ . . . vk

?
= tk where the

vis (1 ≤ i ≤ k) are pairwise distinct and can only occur in some tj , j < i, and
nowhere else in Q. By hypothesis, this is true for P . For the inductive step, note
first that the quasi-solved part is never made unsolved by an application of a
rule.

– When Mutate is applied to a problem satisfying the property, the new vari-
ables introduced by the rule have exactly two occurrences, and the already
existing variables keep the same number of occurrences.

– When Merge turns two equations x
?
= s and x

?
= t into x

?
= s and s

?
= t,

by induction hypothesis, x occurs nowhere else in the non-quasi-solved part.

Hence the equation x
?
= s is now in the quasi-solved part, and the previous

occurrences of the variables of s and t in x
?
= s and s

?
= t are now in the

equation s
?
= t.

– When Rep (or Var-Rep) is applied to x
?
= s ∧ P (or x

?
= y ∧ P ),

the equation had to be in the non-quasi-solved part and it is now in the
quasi-solved part. In both cases, by induction hypothesis, x had at most
one occurrence in the non-quasi-solved part, and the new occurrences of the

variables of s (or y) replace those in the equation x
?
= s (or x

?
= y).

– Finally, the result is straightforward for Check∗ and EQE which do not
create any new equation.

Now, the reader can easily check that neither Q1 and Q2 are in normal
form, and two different applications of a rule to Q commute, modulo strong
equivalence, since S \ {Check∗} does not contain any failure rule. The only
non-straightforward case is two different possible applications of Merge on a

same variable. This case can never occur, since if Merge can apply to x
?
= s



and x
?
= t, by the previous result, x has no further occurrence in Q, and this is

the only possible application of Merge on x.

Definition 7. The similarity is the reflexive, symmetric and transitive closure
of the variables renaming and the variable abstraction ≡V A defined on the uni-
fication problems:

∃vP ≡V A ∃u,vP{y 7→ u} ∧ y
?
= u

if y ∈ Var(∃vP ) and y does not appear in P as a member of an equation.

Lemma 3. Let P ≡ x1 + · · · + xn
?
= y1 + · · · + ym be a linear equation with

n,m ≥ 2.
The rules of S terminate, starting with P , and the disjuncts in the irreducible
problem are (up to similarity) all the admissible subproblems of the problem:

x1 x2 · · · xn y1 y2 · · · ym
v1 1 0 · · · 0 1 0 · · · 0
v2 1 0 · · · 0 0 1 · · · 0
... · · ·

. . .

vm 1 0 · · · 0 0 0 · · · 1
vm+1 0 1 · · · 0 1 0 · · · 0
vm+2 0 1 · · · 0 0 1 · · · 0
... · · ·

. . .

v2m 0 1 · · · 0 0 0 · · · 1
· · · · · · · · ·
· · · · · · · · ·
v(n−1)m+1 0 0 · · · 1 1 0 · · · 0
v(n−1)m+2 0 0 · · · 1 0 1 · · · 0
... · · ·

. . .

vnm 0 0 · · · 1 0 0 · · · 1

where the vis are new variables.

Proof. We proceed by induction on the number of variables n+m of the equation.
If n = m = 2, Mutate yields exactly the admissible subproblems of

x1 x2 y1 y2
v1 1 0 1 0
v2 1 0 0 1
v3 0 1 1 0
v4 0 1 0 1

By lemma 2, it suffices to show the result for a particular control. Assume n > 2
and m ≥ 2.

Let us treat the equation x1 + · · ·+ xn−2 + (xn−1 + xn)
?
= y1 + · · ·+ ym like

x1 + · · ·+ xn−2 + x′
?
= y1 + · · ·+ ym, that is considering (xn−1 + xn) as a vari-

able. By induction hypothesis, we get admissible subproblems of



x1 x2 · · · (xn−1 + xn) y1 y2 · · · ym
v1 1 0 · · · 0 1 0 · · · 0
v2 1 0 · · · 0 0 1 · · · 0
... · · ·

. . .

vm 1 0 · · · 0 0 0 · · · 1
vm+1 0 1 · · · 0 1 0 · · · 0
vm+2 0 1 · · · 0 0 1 · · · 0
... · · ·

. . .

v2m 0 1 · · · 0 0 0 · · · 1
· · · · · · · · ·
· · · · · · · · ·
v′(n−2)m+1 0 0 · · · 1 1 0 · · · 0

v′(n−2)m+2 0 0 · · · 1 0 1 · · · 0
... · · ·

. . .

v′(n−1)m 0 0 · · · 1 0 0 · · · 1

Now, all the equations are solved, except maybe an equation between (xn−1+xn)
and a subterm of v′(n−2)m+1+v′(n−2)m+2+· · ·+v′(n−1)m. By induction hypothesis

the rules applied to this equation yield the admissible subproblems of

xn−1 xn v
′
(n−2)m+1 v

′
(n−2)m+2 · · · v′(n−1)m

v(n−2)m+1 1 0 1 0 · · · 0
v(n−2)m+2 1 0 0 1 0

...
...

...
...

. . .
...

v(n−1)m 1 0 0 0 1
v(n−1)m+1 0 1 1 0 · · · 0
v(n−1)m+2 0 1 0 1 0

...
...

...
...

. . .
...

vnm 0 1 0 0 1

Now, applying Rep and EQE to v′(n−2)m+1, v
′
(n−2)m+1, . . . , v

′
(n−1)m yields some

admissible subproblems of the problem given in the lemma. The set of rules
being complete (i.e. all the minimal solutions are constructed), all the admissible
subproblems are obtained since they form a minimal complete set of AC-unifiers
as shown in theorem 1.

3.1 A new (inefficient) algorithm for solving a linear Diophantine
equation

The following is the key theorem. Indeed, we have seen that when a non-linear
equation is treated like a linear one, a problem is obtained, where the new
variables correspond to the solutions of the trivial Diophantine equation where
all the coefficients are 1. Now, a solution of the linear Diophantine equation
associated with a non-linear AC-equation can be obtained as the sum of a subset
of the solutions of the trivial Diophantine equation of the linearized AC equation:



Theorem 2. Let e be the linear Diophantine equation
a1x1 + · · ·+ anxn = b1y1 + · · ·+ bmym

where the ais and bjs are positive integers. Let us write e in the form

x1 + · · ·+ x1︸ ︷︷ ︸
a1 times

+ · · ·+ xn + · · ·+ xn︸ ︷︷ ︸
an times

= y1 + · · ·+ y1︸ ︷︷ ︸
b1 times

+ · · ·+ ym + · · ·+ ym︸ ︷︷ ︸
bm times

and let us write a solution (c1, . . . , cn, cn+1, . . . , cn+m) under the form

(c1, . . . , c1︸ ︷︷ ︸
a1 times

, . . . , cn, . . . , cn︸ ︷︷ ︸
an times

, cn+1, . . . , cn+1︸ ︷︷ ︸
b1 times

, . . . , cn+m, . . . , cn+m︸ ︷︷ ︸
bm times

)

Let E be the set of (Σn
i=1ai +Σm

j=1bj)-tuples of integers of the form

(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0)

where all the components are 0, except on the kth and lth components which are
1, with 1 ≤ k ≤ Σn

i=1ai and Σn
i=1ai < l ≤ Σn

i=1ai +Σm
j=1bj).

The minimal solutions of e are the componentwise sums of the minimal (wrt
inclusion) subsets of E, which have a same value in each component correspond-
ing to a same variable.

Proof. First, every componentwise sum of a subset of E which agrees on different
components correponding to a same variable is a solution since each vector of
E adds 1 to both sides of the equation. Second, every greater (wrt inclusion)
subset satisfying the same condition will obviously correspond to a non-minimal
solution.

Let us write a minimal solution c of e in the form
x1 = sc1(0), . . . , xn = scn(0), y1 = scn+1(0), . . . , ym = scn+m(0)

Since c is a solution, there is a one-to-one mapping β between the occurrences
of the symbol s in

sc1(0) + · · ·+ sc1(0)︸ ︷︷ ︸
a1 times

+ · · ·+ scn(0) + · · ·+ scn(0)︸ ︷︷ ︸
an times

and in scn+1(0) + · · ·+ scn+1(0)︸ ︷︷ ︸
b1 times

+ · · ·+ scn+m(0) + · · ·+ scn+m(0)︸ ︷︷ ︸
bm times

Let βij be the number of occurrences of the symbol s in an xi which are mapped
by β onto an occurrence of the symbol s in an yj . Since c is a minimal solution,
it is not greater (for >n+m) than the solution

(0, . . . , 0, bj , 0, . . . , 0, ai , 0, . . . , 0)
↑ ↑
i-th (n+ j)-th

hence βij ≤ ai×bj . But there are exactly ai×bj vectors of E which have the value
1 in a component corresponding to an xi and in a component corresponding
to an yj . For every (xi, yj), let Eij be a set of βij such vectors. Now c is the
componentwise sum of

⋃
ij Eij .



3.2 The criterion

Theorem 3. Let P ≡ s
?
= t be a unification problem, with V (s) ∩ V (t) = ∅.

Assume that in a first step the rules of S are applied to P as long as possible,
yielding Q, except that two distinct occurrences of a variable in V (s) ∪ V (t) are
considered as distinct variables. (By lemma 3, this first step terminates.)
Let V be the set V (Q) \ V (P ) of variables introduced by this first step. Assume
now that the rules of S are now applied to Q with the additional rule:

Prune
x

?
= t → F

if x ∈ V and t is not a linear term.

The process described above is still complete, i.e. every solved form of a com-
plete set of solved forms of P will be computed.

In other words, if in a first step Merge is never applied to the variables of
the input equation, in a second step, the equations built by Merge can be solved
while discarding the non-linear substitutions for the variables introduced at the
first step.

Proof. We develop an example (using this font) in parallel with the proof.

Let P ≡ x1 + · · · + xn
?
= y1 + · · · + ym be an equation where the xis (and the

yjs) are not necessarily pairwise different variables.

Our example will be P ≡ x+ x+ x
?
= y + y + u.

By lemma 3, the first step terminates and the disjuncts in the irreducible problem
are all the admissible subproblems of the problem:

Q ≡

x1 x2 · · · xn y1 y2 · · · ym
v1 1 0 · · · 0 1 0 · · · 0
v2 1 0 · · · 0 0 1 · · · 0
... · · ·

. . .

vm 1 0 · · · 0 0 0 · · · 1
vm+1 0 1 · · · 0 1 0 · · · 0
vm+2 0 1 · · · 0 0 1 · · · 0
... · · ·

. . .

v2m 0 1 · · · 0 0 0 · · · 1
· · · · · · · · ·
· · · · · · · · ·
v(n−1)m+1 0 0 · · · 1 1 0 · · · 0
v(n−1)m+2 0 0 · · · 1 0 1 · · · 0
... · · ·

. . .

vnm 0 0 · · · 1 0 0 · · · 1



where several occurrences of a same variable may occur in x1, . . . , xn and
y1, . . . , ym.

In the example, we have

Q ≡

x x x y y z

v1 1 0 0 1 0 0
v2 1 0 0 0 1 0
v3 1 0 0 0 0 1
v4 0 1 0 1 0 0
v5 0 1 0 0 1 0
v6 0 1 0 0 0 1
v7 0 0 1 1 0 0
v8 0 0 1 0 1 0
v9 0 0 1 0 0 1

By theorem 1, a complete set of solved forms of P is made of problems of the
form

S ≡

x1 · · · xn y1 · · · ym
z1 c11 · · · c1n c1(n+1) · · · c1(n+m)

z2 c21 · · · c2n c2(n+1) · · · c2(n+m)

· · · · · · · · · · · · · · · · · · · · ·
zp cp1 · · · cpn cp(n+1) · · · cp(n+m)

where for 1 ≤ i ≤ p, si = (ci1, . . . , ci(n+m)) is a minimal positive, non-null
solution of the linear Diophantine equation e associated with P , and the compo-
nentwise sum of the coefficients in each column is non-zero. (Here the columns
corresponding to the different occurrence of a same variable have been dupli-
cated).

In the example, we consider the solution obtained from the minimal solutions
(2, 3, 0) and (1, 1, 1) of the Diophantine equation 3α = 2β + γ. The table

S ≡
x x x y y z

z1 2 2 2 3 3 0
z2 1 1 1 1 1 1

corresponds to the unifier {x 7→ z1+z1+z2, y 7→ z1+z1+z1+z2, z 7→ z2}.

The lines of Q being the vectors of the set E described in theorem 2, each si
(written as an n+m-uple) is the componentwise sum of the lines correponding
to a subset V(si) of {v1, . . . , vnm}.

In the example, s1 = (2, 2, 2, 3, 3, 0), and s2 = (1, 1, 1, 1, 1, 1).
For instance, we choose V(s1) = {v1, v2, v4, v5, v7, v8} and V(s2) =
{v1, v5, v9}.
Note that for V(s2), we could as well have chosen the subset {v3, v4, v8}.

For 1 ≤ i ≤ n×m, let W(vi) = {zj ∈ {z1, . . . , zp} | vi ∈ V(sj)}.



In the example, W(v3) = W(v6) = ∅, W(v1) = W(v5) = {z1, z2},
W(v2) =W(v4) =W(v7) =W(v8) = {z1} and W(v9) = {z2}.

Let us call useful the variables vi of {v1, . . . , vnm} such that W(vi) 6= ∅. For
each useful variable vi, let ti be a term of T ({+},X ) such that V (ti) = W(vi),
each variable having one occurrence. The subproblem Q′ obtained by keeping
the lines of Q correponding to useful variables is, by construction, an admissible
subproblem of Q.

In the example, The variables that are not useful are v3 and v6, and Q′ is
obtained from Q by removing the two corresponding lines.
We have t1 = t5 = z1 + z2, t2 = t4 = t7 = t8 = z1 and t9 = z2.

By construction, the values for the input variables in the problem obtained from
Q′ by replacing each vi by ti are equal modulo AC as those in S. Note that
the tis are linear terms because the minimal solutions of the linear Diophantine
equation are the sum of a subset of the lines of Q, and not of a multiset.

In the example,we obtain the problem

x x x y y z

z1 + z2 1 0 0 1 0 0
z1 1 0 0 0 1 0
z1 0 1 0 1 0 0
z1 + z2 0 1 0 0 1 0
z1 0 0 1 1 0 0
z1 0 0 1 0 1 0
z2 0 0 1 0 0 1

At this point, we have shown that the equations created by applying Merge to
the variables of the original problem can be solved while restricting the values of
the new variables of V to linear terms, without loosing the completeness. Since
the rules of S are complete, these linear solutions will be computed, hence the
result.

3.3 An algorithm for “syntactic” AC-unification

We give a control, using our criterion for pruning some branches which might
not terminate otherwise, and show that each step terminates with our control.

To solve the equation s
?
= t, where s and t have no common variable

1. Apply as long as possible the rules of S except that two distinct occurrences
of a variable in V (s)∪V (t) are considered as distinct. By lemma 3, this step
terminates, and as we have seen in the proof of lemma 2, there are at most
two occurrences of each new variable.

2. As long as possible, apply (Var-Rep)∗ in order to make possibl;e an applica-
tion of Merge to a variable of V (s)∪ V (t) and solve the resulting equation.

The equation s
?
= t created by applying Merge to x

?
= s ∧ x

?
= t is linear,

as shown by lemma 3. Hence, this step terminates.



3. Apply Prune to the equations v
?
= t where v /∈ V (s) ∪ V (t) and t is not

linear, and apply Check∗ if possible. (This can be done in parallel with
the previous step). This step obviously terminates. Now, for every variable

v /∈ V (s) ∪ V (t), we have at most two equations v
?
= s and v

?
= t.

4. As long as possible, apply Merge to v
?
= s and v

?
= t, with v /∈ V (s)∪ V (t),

solve the resulting equation s
?
= t, apply Rep to the equations of the solved

form, and apply Prune and Check∗ if possible. This step terminates, by
lemma 3 since every equation that will be solved is linear, and the number
of possible applications of Merge decreases.

4 Conclusion

We have given the first AC-unification algorithm based on the use of the re-
solvent presentation of AC. Again, we do not claim that this algorithm can
compete, regarding efficiency, with the existing algorithms based on the solving
of linear Diophantine equations. However, our method might turn out to have
some advantages

– It is easy to avoid computing some solutions that are symmetric, or to have
a compact representation of symmetric solutions. For instance, when com-

puting the solutions of x+ y
?
= t, one can avoid to apply the commutativity

at the root, and represent sets of substitutions under the form

{{x, y} 7→ {u1, u2}, . . .}

standing for {{x 7→ u1, y 7→ u2, . . .}, {x 7→ u2, y 7→ u1, . . .}}.
– We do not know what would be in practice the efficiency of our method

for computing just one solution, rather than a complete set. This would be
worth experimenting.

– Our algorithm is easy to implement: it does not require to have a linear
Diophantine equations solver, nor to search the subsets of the set of minimal
solutions. It may be advantageous to use it, for instance in a prototype.

Some problems remain:

– Some solutions are not minimal: The reader can check that our algorithm,

applied to x + x
?
= y + z, using the axiom MC twice, yields the solution

{x 7→ v1 + v2 + v3 + v4, y 7→ v1 + v1 + v2 + v3, z 7→ v2 + v3 + v4 + v4}, which
is an instance of {x 7→ v1 + v + v4, y 7→ v1 + v1 + v, z 7→ v + v4 + v4}.

– Some solutions are computed several times: for instance when two variables
simultaneously introduced by Mutate are later identified.

– Is it possible to relax the control, and to apply Prune as soon as a new
variable gets a non-linear value? This is our conjecture.



References

1. Mohamed Adi and Claude Kirchner. AC-unification race: the system solving ap-
proach. In Proc. Int. Symposium on Design and Implementation of Symbolic Com-
putation Systems, LNCS 429, 1990.

2. Alexandre Boudet. Competing for the AC-unification race. Journal of Automated
Reasoning, 11:185–212, 1993.

3. Alexandre Boudet, Evelyne Contejean, and Hervé Devie. A new AC-unification
algorithm with a new algorithm for solving diophantine equations. In Proc. 5th
IEEE Symp. Logic in Computer Science, Philadelphia, June 1990.

4. Hans-Jurgen Bürckert, Alexander Herold, Deepak Kapur, Jorg H. Siekmann,
Mark E. Stickel, Michael Tepp, and Hantao Zhang. Opening the AC-unification
race. Journal of Automated Reasoning, 4(4):465–474, December 1988.

5. Jim Christian and Patrick Lincoln. Adventures in associative-commutative uni-
fication. Technical Report ACA-ST-275-87, MCC, AI Program Austin, Austin,
October 1987.

6. Hubert Comon, Marianne Haberstrau, and Jean-Pierre Jouannaud. Decidable
properties of shallow equational theories. In Proc. 7th IEEE Symp. Logic in Com-
puter Science, Santa Cruz, 1992.

7. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages 243–
309. North-Holland, 1990.

8. Eric Domenjoud. AC unification through order-sorted AC1 unification. Journal of
Symbolic Computation, 14(6):537–556, December 1992.

9. François Fages. Associative-commutative unification. Journal of Symbolic Com-
putation, 3(3), June 1987.

10. A. Fortenbacher. An algebraic approach to unification under associativity and
commutativity. In Proc. Rewriting Techniques and Applications 85, Dijon, LNCS
202. Springer-Verlag, May 1985.

11. M. Franzen and L.J. Henschen. A new approach to universal unification and its
application to AC-unification. In Lusk and Overbeek eds., Proc. 9th int. Conf. on
Automated Deduction. Springer-Verlag, May 1988.

12. Alexander Herold and Jorg H. Siekmann. Unification in abelian semi-groups. Jour-
nal of Automated Reasoning, 3(3):247–283, 1987.

13. Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract alge-
bras: A rule-based survey of unification. In Jean-Louis Lassez and Gordon Plotkin,
editors, Computational Logic: Essays in Honor of Alan Robinson. MIT-Press, 1991.

14. D. Kapur and P. Narendran. Double-exponential complexity of computing a com-
plete set of ac-unifiers. In Proc. 7th IEEE Symp. Logic in Computer Science, Santa
Cruz, June 1992.

15. Claude Kirchner. Méthodes et outils de conception systématique d’algorithmes
d’unification dans les théories equationnelles. Thèse d’Etat, Univ. Nancy, France,
1985.

16. Claude Kirchner. Computing unification algorithms. In Proc. 1st IEEE Symp.
Logic in Computer Science, Cambridge, Mass., pages 206–216, 1986.

17. Claude Kirchner and Francis Klay. Syntactic theories and unification. In Proc. 5th
IEEE Symp. Logic in Computer Science, Philadelphia, June 1990.

18. Francis Klay. Undecidable properties of syntactic theories. In Proc. 4th Rewriting
Techniques and Applications, LNCS 488, Como, Italy, 1991.



19. M. Livesey and Jorg H. Siekmann. Unification of bags and sets. Research report,
Institut fur Informatik I, Universität Karlsruhe, West Germany, 1976.

20. T. Nipkow. Proof transformations for equational theories. In Proc. 5th IEEE
Symp. Logic in Computer Science, Philadelphia, June 1990.

21. M. Stickel. A unification algorithm for associative-commutative functions. Journal
of the ACM, 28(3):423–434, 1981.

22. Erik Tiden and Stefan Arnborg. Unification problems with one-sided distributivity.
Journal of Symbolic Computation, 3:183–202, 1987.


