E-Unification of Higher-order Patterns

Alexandre Boudet

Evelyne Contejean

LRI Orsay France

Motivations

- Higher-order unification is undecidable (Huet)
- Unification of higher-order patterns is decidable (Miller)

- Combination of algebraic and functional programming paradigms
- Local confluence of HRSs

Unification of higher-order patterns modulo equational theories

 \Downarrow

PatternsFirst-Order TermGeneral High-Order Term $\overbrace{X \ Y \ Z}$ \overbrace{F}_{G}

Definition Pattern:

- term of the simply-typed λ -calculus in β -normal form
- the arguments of a free variable are η -equivalent to distinct bound variables.

PatternsNot patterns $\lambda xyz.f(H(x,y), H(x,z))$ $\lambda xy.G(x,x,y)$ $\lambda x.F(\lambda z.x(z)) =_{\eta} \lambda x.F(x)$ $\lambda xy.H(F(x),y)$

No equational theory, but α, β, η .

Theorem (Miller)

In the case of patterns, unifiability is decidable

unifiability is decidable there is an algorithm for computing a mgu.

E-unification of Patterns

Definition

 $E = \{l_1 \simeq r_1, \dots, l_n \simeq r_n\}$: set of First-Order axioms. Equational theory $=_E$: least congruence containing all the $l_i \sigma \simeq r_i \sigma$ (context, application and abstraction)

Definition

Equation :s = t, pair of patterns of the same type.Unification problem : \top , \perp or $P \equiv s_1 = t_1 \land \cdots \land s_n = t_n$.*E*-unifier of *P* :substitution σ such that $\forall i, s_i \sigma =_{\beta \eta E} t_i \sigma$.

Theorem (Tannen) $\forall u, v \ u =_{\beta \eta E} v \iff u \uparrow_{\beta}^{\eta} =_E v \uparrow_{\beta}^{\eta}$.

Aim : unification of patterns modulo

eta, η

$E_1 \quad \ldots \quad E_i \quad \ldots \quad E_n$

Aim : unification of patterns modulo

Naive approach

Aim : unification of patterns modulo

Naive approach

Counter-Example (Qian & Wang) with E = AC(+): $\lambda xy \cdot F(x,y) = \lambda xy \cdot F(y,x)$ has the solutions $\forall n \in \mathbb{N} \ \sigma_n = \{F \mapsto \lambda xy \cdot G(H_1(x,y) + H_1(y,x), \dots, H_n(x,y) + H_n(y,x))\}$

Aim : unification of patterns modulo

Realistic approach

Aim : unification of patterns modulo

Realistic approach

Algorithms for patterns unification modulo the E_i s are assumed to be given. In practice, Ø, AC, ACU, ACUN, AG

Splitting the unification problem

Definition

Theory of f, algebraic symbol, or of x, bound variable $Th(f) = E_i, E_i$ such that $f \in F_i$ $Th(x) = E_{\emptyset}$ Alien subterm u in $t[u]_p$: u argument of f and $Th(f) \neq Th(head(u))$.

VA

 $\lambda \overline{x}.t[\mathbf{u}]_{\mathbf{p}} = \lambda \overline{x}.s \quad \rightarrow \exists \mathbf{H} \ \lambda \overline{x}.t[\mathbf{H}(\overline{y})]_{\mathbf{p}} = \lambda \overline{x}.s \land \lambda \overline{y}.\mathbf{H}(\overline{y}) = \lambda \overline{y}.\mathbf{u}$ if \mathbf{u} is an alien subterm of $t[\mathbf{u}]_{\mathbf{p}}, \overline{y} = \mathcal{FV}(u) \cap \overline{x}$, and \mathbf{H} new variable.

Split

$$\lambda \overline{x}.\gamma(\overline{s}) = \lambda \overline{x}.\delta(\overline{t}) \rightarrow \begin{array}{c} \exists \mathbf{F} \quad \lambda \overline{x}.\mathbf{F}(\overline{x}) = \lambda \overline{x}.\gamma(\overline{s}) \land \\ \lambda \overline{x}.\mathbf{F}(\overline{x}) = \lambda \overline{x}.\delta(\overline{t}) \end{array}$$

if γ and δ not free variables, $Th(\gamma) \neq Th(\delta)$, and \mathbf{F} new variable.

Split unification problem

A unification problem in NF wrt VA and Split:

$$P \equiv P_F \land P_0 \land P_1 \land \cdots \land P_n$$

- P_F contains all the Flex-Flex equations $\lambda \overline{x}.F(\overline{x}) = \lambda \overline{x}.F(\overline{x}^{\pi}).$
- P_0 is pure in E_0 , with no $\lambda \overline{x} \cdot F(\overline{x}) = \lambda \overline{x} \cdot F(\overline{x}^{\pi})$.
- P_1 is a pure unification problem in E_1 .
- P_n is a pure unification problem in E_n .

Notation

 $\lambda \overline{x}.F(\overline{x}^{\pi}): \lambda x_1 \dots \lambda x_n.F(x_{\pi(1)}, \dots, x_{\pi(n)})$, where π is a permutation over $\{1, \dots, n\}$.

A combination algorithm through don't know non-determinism

Guess the actual arguments of a variable

Definition

Constant preserving substitution: $\sigma = \{F \mapsto \lambda \overline{x}.s\}, \lambda \overline{x}.s$ in NF and every x_i of \overline{x} has a free occurrence in s. Projection: $\sigma = \{F \mapsto \lambda \overline{x}.F'(\overline{y}) \mid \{\overline{y}\} \subseteq \{\overline{x}\}\}$

Lemma σ a substitution, then $\sigma \uparrow^{\eta}_{\beta} = (\pi\theta) \uparrow^{\eta}_{\beta}$ with π projection and θ constant-preserving substitution.

Project
$$P \rightarrow \exists F' \; F = \lambda \overline{x} \cdot F'(\overline{y}) \land P\{F \mapsto \lambda \overline{x} \cdot F'(\overline{y})\}$$

where F' is a new variable and $\{\overline{y}\} \subset \{\overline{x}\}$

A combination algorithm through don't know non-determinism

Guess the flex-flex equations

 $\begin{array}{l} \mathsf{FF}_{\neq} P \rightarrow F = \lambda \overline{x}.G(\overline{x}^{\pi}) \land P\{F \mapsto \lambda \overline{x}.G(\overline{x}^{\pi})\} \\ \text{where } \pi \text{ is a permutation, types of } F \text{ and } G^{\pi} \text{ are compatible, } F \neq G \text{ and } F \\ \text{and } G \text{ occur in } P. \end{array}$

Guess the permutations over the arguments

FF=
$$P \rightarrow \lambda \overline{x} \cdot F(\overline{x}) = \lambda \overline{x} \cdot F(\overline{x}^{\pi}) \wedge P$$

where *F* is a free variable of *P*, types of *F* and F^{π} are compatible.

A combination algorithm through don't know non-determinism

Find a representative for each variable

Apply as long as possible

Coalesce $\lambda \overline{x}.F(\overline{y}) = \lambda \overline{x}.G(\overline{z}) \land P \rightarrow F = \lambda \overline{y}.G(\overline{z}) \land P\{F \mapsto \lambda \overline{y}.G(\overline{z})\}$ if $F \neq G$ and $F, G \in \mathcal{FV}(P)$, where \overline{y} is a permutation of \overline{z} .

Guess the theory of the representatives

Guess an ordering on representatives

Dealing with $\lambda \overline{x}.F(\overline{x}) = \lambda \overline{x}.F(\overline{x}^{\pi})$ by freezing

Example (Qian & Wang) E = AC(+):

$$\lambda xy \cdot F(x,y) = \lambda xy \cdot F(y,x)$$

has the solutions

 $\sigma_n = \{F \mapsto \lambda xy \cdot G(H_1(x, y) + H_1(y, x), \dots, H_n(x, y) + H_n(y, x))\}$ for all $n \in \mathbb{N}$.

In addition σ_{n+1} is strictly more general than σ_n (nullary theory).

Solving the pure problems, compatiblity with frozen equations

Definition Solve rule for E_i : algorithm

- input: P_i , pure problem in E_i and P_F frozen equations output: P'_i and P'_{iF} such that
 - 1. $P'_i \equiv \sigma_{E_i}$, is a solved form without flex-flex equations.
 - 2. P'_{iF} is equal to P_F plus some additional $\lambda \overline{x} \cdot F(\overline{x}) = \lambda \overline{x} \cdot F(\overline{x}^{\pi})$.
 - 3. *F* instantiated by σ_{E_i} only if E_i is the chosen theory of *F*
 - 4. the value of F may contain G only if $F <_{oc} G$, for the chosen ordering
 - 5. for all the equations s = t of P_i and P_F , $s\sigma_{E_i}$ and $t\sigma_{E_i}$ can be proven E_i -equal (by using the equations in P'_{iF}).

Example: AC(+)

Input :

 $\lambda xy.F(x,y) + G(x,y) = \lambda xy.2H(x,y) \land \lambda xy.H(x,y) = \lambda xy.H(y,x)$ Output : $F = \lambda xy.F'(x,y) + 2F''(x,y)$ $G = \lambda xy.F'(x,y) + 2F''(y,x) \land \lambda xy.F'(x,y) = \lambda xy.F'(y,x)$ $H = \lambda xy.F'(x,y) + F''(x,y) + F''(y,x)$

In order to prove that $\lambda xy.H\sigma(x,y) =_{AC} \lambda xy.H\sigma(y,x)$, that is

 $\lambda xy.F'(x,y) + F''(x,y) + F''(y,x) =_{AC} \lambda xy.F'(y,x) + F''(y,x) + F''(x,y),$ we need $\lambda xy.F'(x,y) = \lambda xy.F'(y,x).$

Solving the pure problems, compatiblity with frozen equations

Proposition s = t a pure equation in E_i , and σ such that $s\sigma =_E t\sigma$. Then there exists $P_{perm} = \{\lambda \overline{x}^{\pi} \cdot F(\overline{x}) = \lambda \overline{x}^{\varphi} \cdot F(\overline{x})\}, \sigma_{E_i}$ and θ such that

- $\sigma =_E \sigma_{E_i} \theta$.
- σ_{E_i} pure in E_i ,
- θ *E*-solution of *P*_{perm}.
- for all pure equations s' = t' (in particular s = t) such that $s'\sigma =_E t'\sigma$, $s'\sigma_{E_i}$ and $t'\sigma_{E_i}$ can be proven E_i -equal (using the equations of P_{perm}).

The algorithm

Algorithm for pattern unification modulo $E_0 \cup \cdots \cup E_n$

- 1. Apply as long as possible the rules VA and Split.
- 2. Perform successively the steps of guessing.
- 3. Apply a **Solve** rule for theory E_i to each P_i .
- 4. Return $P'_0 \wedge P'_1 \wedge \cdots \wedge P'_n \wedge P_F \wedge \bigwedge_{1 \le i \le n} P'_{iF}$.

Main Theorem

Given an equational theory $E = E_0 \cup \cdots \cup E_n$, where the E_i s are defined over disjoint signatures $\mathcal{F}_0, \ldots, \mathcal{F}_n$ and a unification problem P, containing only algebraic symbols of $\mathcal{F}_0 \cup \cdots \cup \mathcal{F}_n$,

- The above algorithm returns a constrained DAG-*E*-solved form of *P*.
- Every *E*-unifier of *P* is a solution of a constrained DAG-solved form computed by the above algorithm.

Theories with a **Solve** rule

- the free theory
- AC, ACU, ACUN, AG
- decomposable syntactic theories, C, DI

Conclusion and perspectives

- more theories (BR?)
- combination of unification algorithms lifted from First-Order terms to Patterns (need of a Solve rule for each FO theory for patterns).