# E-Unification of Higher-order Patterns 

Alexandre Boudet

Evelyne Contejean

LRI Orsay France

## Motivations

- Higher-order unification is undecidable (Huet)
- Unification of higher-order patterns is decidable (Miller)
- Combination of algebraic and functional programming paradigms
- Local confluence of HRSs
$\square$

Unification of higher-order patterns
modulo equational theories

## Patterns

First-Order Term


General High-Order Term


## Patterns



## Definition Pattern:

- term of the simply-typed $\lambda$-calculus in $\beta$-normal form
- the arguments of a free variable are $\eta$-equivalent to distinct bound variables.

$$
\begin{array}{ll}
\text { Patterns } & \text { Not patterns } \\
\lambda x y z \cdot f(H(x, y), H(x, z)) & \lambda x y \cdot G(x, x, y) \\
\lambda x \cdot F(\lambda z \cdot x(z))=_{\eta} \lambda x \cdot F(x) & \lambda x y \cdot H(F(x), y)
\end{array}
$$

No equational theory, but $\alpha, \beta, \eta$.

## Theorem (Miller)

In the case of patterns, unifiability is decidable there is an algorithm for computing a mgu.

## E-unification of Patterns

## Definition

$E=\left\{l_{1} \simeq r_{1}, \ldots, l_{n} \simeq r_{n}\right\}$ : set of First-Order axioms.
Equational theory $=_{E}$ : least congruence containing all the $l_{i} \sigma \simeq r_{i} \sigma$ (context, application and abstraction)

## Definition

Equation: $\quad s=t$, pair of patterns of the same type.
Unification problem : T, $\perp$ or $P \equiv s_{1}=t_{1} \wedge \cdots \wedge s_{n}=t_{n}$.
$E$-unifier of $P: \quad$ substitution $\sigma$ such that $\forall i, s_{i} \sigma={ }_{\beta \eta E} t_{i} \sigma$.
Theorem ( Tannen) $\forall u, v u=_{\beta \eta E} v \Longleftrightarrow u \uparrow_{\beta}^{\eta}={ }_{E} v \uparrow_{\beta}^{\eta}$.

## How to split when $E=E_{1} \cup \ldots \cup E_{n}$ ?

Aim : unification of patterns modulo

\[

\]

## How to split when $E=E_{1} \cup \ldots \cup E_{n}$ ?

Aim : unification of patterns modulo

$$
\begin{array}{lllll} 
& & & \beta, \eta & \\
& & & & \\
E_{1} & \ldots & E_{i} & \ldots & E_{n} \\
\hline
\end{array}
$$

Naive approach

## How to split when $E=E_{1} \cup \ldots \cup E_{n}$ ?

Aim : unification of patterns modulo


Naive approach

Counter-Example (Qian \& Wang) with $E=A C(+)$ :
$\lambda x y \cdot F(x, y)=\lambda x y \cdot F(y, x)$ has the solutions
$\forall n \in \mathbb{N} \sigma_{n}=\left\{F \mapsto \lambda x y \cdot G\left(H_{1}(x, y)+H_{1}(y, x), \ldots, H_{n}(x, y)+H_{n}(y, x)\right)\right\}$

## How to split when $E=E_{1} \cup \ldots \cup E_{n}$ ?

Aim : unification of patterns modulo


Realistic approach

## How to split when $E=E_{1} \cup \ldots \cup E_{n}$ ?

Aim : unification of patterns modulo


Realistic approach

Algorithms for patterns unification modulo the $E_{i} \mathrm{~s}$ are assumed to be given. In practice, $\emptyset, A C, A C U, A C U N, A G$

## Splitting the unification problem

## Definition

Theory of $f$, algebraic symbol, or of $x$, bound variable
$T h(f)=E_{i}, E_{i}$ such that $f \in F_{i} \quad \operatorname{Th}(x)=E_{\emptyset}$
Alien subterm $u$ in $t[u]_{p}: u$ argument of $f$ and $T h(f) \neq \operatorname{Th}(\operatorname{head}(u))$.

```
VA
\lambda\overline{x}.\textrm{t}[\mathbf{u}\mp@subsup{]}{\textrm{p}}{}=\lambda\overline{x}.\textrm{s}}->\exists\textrm{H}\lambda\overline{x}.\textrm{t}[\textrm{H}(\overline{y})\mp@subsup{]}{\textrm{p}}{}=\lambda\overline{x}.\textrm{s}\wedge\lambda\overline{y}.\mathbf{H}(\overline{y})=\lambda\overline{y}.\mathbf{u
if \mathbf{u}}\mathrm{ is an alien subterm of t[u] 
```


## Split

$\lambda \bar{x} \cdot \gamma(\bar{s})=\lambda \bar{x} \cdot \delta(\bar{t}) \rightarrow \exists \mathbf{F} \quad \lambda \bar{x} \cdot \mathbf{F}(\bar{x})=\lambda \bar{x} \cdot \gamma(\bar{s}) \wedge$ $\lambda \bar{x} \cdot \mathbf{F}(\bar{x})=\lambda \bar{x} . \delta(\bar{t})$
if $\gamma$ and $\delta$ not free variables, $T h(\gamma) \neq T h(\delta)$, and $\mathbf{F}$ new variable.

## Split unification problem

A unification problem in NF wrt VA and Split:

$$
P \equiv P_{F} \wedge P_{0} \wedge P_{1} \wedge \cdots \wedge P_{n}
$$

- $P_{F}$ contains all the Flex-Flex equations $\lambda \bar{x} \cdot F(\bar{x})=\lambda \bar{x} \cdot F\left(\bar{x}^{\pi}\right)$.
- $P_{0}$ is pure in $E_{0}$, with no $\lambda \bar{x} \cdot F(\bar{x})=\lambda \bar{x} \cdot F\left(\bar{x}^{\pi}\right)$.
- $P_{1}$ is a pure unification problem in $E_{1}$.
- $P_{n}$ is a pure unification problem in $E_{n}$.


## Notation

$\lambda \bar{x} . F\left(\bar{x}^{\pi}\right): \lambda x_{1} \ldots \lambda x_{n} . F\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$, where $\pi$ is a permutation over $\{1, \ldots, n\}$.

A combination algorithm through don't know non-determinism

## Guess the actual arguments of a variable

## Definition

Constant preserving substitution: $\sigma=\{F \mapsto \lambda \bar{x} \cdot s\}, \lambda \bar{x} . s$ in NF and every $x_{i}$ of $\bar{x}$ has a free occurrence in $s$.
Projection: $\sigma=\left\{F \mapsto \lambda \bar{x} \cdot F^{\prime}(\bar{y}) \mid\{\bar{y}\} \subseteq\{\bar{x}\}\right\}$

Lemma $\sigma$ a substitution, then $\sigma \downarrow_{\beta}^{\eta}=(\pi \theta) \downarrow_{\beta}^{\eta}$ with $\pi$ projection and $\theta$ constantpreserving substitution.

$$
\begin{aligned}
& \text { Project } P \rightarrow \exists F^{\prime} \quad F=\lambda \bar{x} \cdot F^{\prime}(\bar{y}) \wedge P\left\{F \mapsto \lambda \bar{x} \cdot F^{\prime}(\bar{y})\right\} \\
& \text { where } F^{\prime} \text { is a new variable and }\{\bar{y}\} \subset\{\bar{x}\}
\end{aligned}
$$

## A combination algorithm through don't know non-determinism

Guess the flex-flex equations

```
FF
where \pi}\mathrm{ is a permutation, types of F and G}\mp@subsup{G}{}{\pi}\mathrm{ are compatible, F}\not=G\mathrm{ and }
and G occur in P.
```

Guess the permutations over the arguments
$\mathbf{F F}=P \rightarrow \lambda \bar{x} \cdot F(\bar{x})=\lambda \bar{x} \cdot F\left(\bar{x}^{\pi}\right) \wedge P$
where $F$ is a free variable of $P$, types of $F$ and $F^{\pi}$ are compatible.

A combination algorithm through don't know non-determinism

Find a representative for each variable

Apply as long as possible

$$
\begin{aligned}
& \text { Coalesce } \\
& \lambda \bar{x} \cdot F(\bar{y})=\lambda \bar{x} \cdot G(\bar{z}) \wedge P \rightarrow F=\lambda \bar{y} \cdot G(\bar{z}) \wedge P\{F \mapsto \lambda \bar{y} \cdot G(\bar{z})\} \\
& \text { if } F \neq G \text { and } F, G \in \mathcal{F V}(P) \text {, where } \bar{y} \text { is a permutation of } \bar{z} .
\end{aligned}
$$

Guess the theory of the representatives

Guess an ordering on representatives

## Dealing with $\lambda \bar{x} \cdot F(\bar{x})=\lambda \bar{x} \cdot F\left(\bar{x}^{\pi}\right)$ by freezing

Example (Qian \& Wang) $E=A C(+)$ :

$$
\lambda x y \cdot F(x, y)=\lambda x y \cdot F(y, x)
$$

has the solutions

$$
\sigma_{n}=\left\{F \mapsto \lambda x y \cdot G\left(H_{1}(x, y)+H_{1}(y, x), \ldots, H_{n}(x, y)+H_{n}(y, x)\right)\right\}
$$

for all $n \in \mathbb{N}$.

In addition $\sigma_{n+1}$ is strictly more general than $\sigma_{n}$ (nullary theory).

## Solving the pure problems, compatiblity with frozen equations

## Definition Solve rule for $E_{i}$ : algorithm

input: $\quad P_{i}$, pure problem in $E_{i}$ and $P_{F}$ frozen equations output: $P_{i}^{\prime} \quad$ and $P_{i F}^{\prime}$ such that

1. $P_{i}^{\prime} \equiv \sigma_{E_{i}}$, is a solved form without flex-flex equations.
2. $P_{i F}^{\prime}$ is equal to $P_{F}$ plus some additonnal $\lambda \bar{x} \cdot F(\bar{x})=\lambda \bar{x} \cdot F\left(\bar{x}^{\pi}\right)$.
3. $F$ instantiated by $\sigma_{E_{i}}$ only if $E_{i}$ is the chosen theory of $F$
4. the value of $F$ may contain $G$ only if $F<_{o c} G$, for the chosen ordering
5. for all the equations $s=t$ of $P_{i}$ and $P_{F}, s \sigma_{E_{i}}$ and $t \sigma_{E_{i}}$ can be proven $E_{i}$-equal (by using the equations in $P_{i F}^{\prime}$ ).

## Example: AC(+)

Input:
$\lambda x y \cdot F(x, y)+G(x, y)=\lambda x y \cdot 2 H(x, y) \wedge \lambda x y \cdot H(x, y)=\lambda x y \cdot H(y, x)$
Output :
$F=\lambda x y \cdot F^{\prime}(x, y)+2 F^{\prime \prime}(x, y)$
$G=\lambda x y \cdot F^{\prime}(x, y)+2 F^{\prime \prime}(y, x)$
$H=\lambda x y \cdot F^{\prime}(x, y)+F^{\prime \prime}(x, y)+F^{\prime \prime}(y, x)$

In order to prove that $\lambda x y \cdot H \sigma(x, y)={ }_{A C} \lambda x y \cdot H \sigma(y, x)$, that is
$\lambda x y \cdot F^{\prime}(x, y)+F^{\prime \prime}(x, y)+F^{\prime \prime}(y, x)={ }_{A C} \lambda x y \cdot F^{\prime}(y, x)+F^{\prime \prime}(y, x)+F^{\prime \prime}(x, y)$, we need $\lambda x y \cdot F^{\prime}(x, y)=\lambda x y \cdot F^{\prime}(y, x)$.

## Solving the pure problems, compatiblity with frozen equations

Proposition $s=t$ a pure equation in $E_{i}$, and $\sigma$ such that $s \sigma={ }_{E} t \sigma$. Then there exists $P_{\text {perm }}=\left\{\lambda \bar{x}^{\pi} . F(\bar{x})=\lambda \bar{x}^{\varphi} \cdot F(\bar{x})\right\}, \sigma_{E_{i}}$ and $\theta$ such that

- $\sigma=E_{E} \sigma_{E_{i}} \theta$.
- $\sigma_{E_{i}}$ pure in $E_{i}$,
- $\theta$ E-solution of Pperm.
- for all pure equations $s^{\prime}=t^{\prime}$ (in particular $s=t$ ) such that $s^{\prime} \sigma={ }_{E} t^{\prime} \sigma$, $s^{\prime} \sigma_{E_{i}}$ and $t^{\prime} \sigma_{E_{i}}$ can be proven $E_{i}$-equal (using the equations of $P_{p e r m}$ ).


## The algorithm

## ALGORITHM FOR PATTERN UNIFICATION MODULO $E_{0} \cup \cdots \cup E_{n}$

1. Apply as long as possible the rules VA and Split.
2. Perform successively the steps of guessing.
3. Apply a Solve rule for theory $E_{i}$ to each $P_{i}$.
4. Return $P_{0}^{\prime} \wedge P_{1}^{\prime} \wedge \cdots \wedge P_{n}^{\prime} \wedge P_{F} \wedge \wedge_{1 \leq i \leq n} P_{i F}^{\prime}$.

## Main Theorem

Given an equational theory $E=E_{0} \cup \cdots \cup E_{n}$, where the $E_{i}$ s are defined over disjoint signatures $\mathcal{F}_{0}, \ldots, \mathcal{F}_{n}$ and a unification problem $P$, containing only algebraic symbols of $\mathcal{F}_{0} \cup \cdots \cup \mathcal{F}_{n}$,

- The above algorithm returns a constrained DAG- $E$-solved form of $P$.
- Every $E$-unifier of $P$ is a solution of a constrained DAG-solved form computed by the above algorithm.


## Theories with a Solve rule

- the free theory
- AC, ACU, ACUN, AG
- decomposable syntactic theories, C, DI


## Conclusion and perspectives

- more theories (BR?)
- combination of unification algorithms lifted from First-Order terms to Patterns (need of a Solve rule for each FO theory for patterns).

