
E-Unification of Higher-order Patterns

Alexandre Boudet

Evelyne Contejean

LRI Orsay France

Motivations

• Higher-order unification is undecidable (Huet)
• Unification of higher-order patterns is decidable (Miller)

• Combination of algebraic and functional programming paradigms
• Local confluence of HRSs

⇓

Unification of higher-order patterns
modulo equational theories

2

Patterns

First-Order Term
A
A
A
A
A
A
A
A
A�

�
�
�
�
�
�
�
�

x y z

Pattern
A
A
A
A
A
A
A
A
A�

�
�
�
�
�
�
�
�

FG H
x y z

General High-Order Term
A
A
A
A
A
A
A
A
A�

�
�
�
�
�
�
�
�

F
GH

Definition Pattern:
• term of the simply-typed λ-calculus in β-normal form
• the arguments of a free variable are η-equivalent to distinct bound variables.

Patterns
λxyz.f(H(x, y), H(x, z))
λx.F (λz.x(z)) =η λx.F (x)

Not patterns
λxy.G(x, x, y)
λxy.H(F (x), y)

No equational theory, but α, β, η.

Theorem (Miller)
In the case of patterns, unifiability is decidable

there is an algorithm for computing a mgu.

3

Patterns

First-Order Term
A
A
A
A
A
A
A
A
A�

�
�
�
�
�
�
�
�

x y z

Pattern
A
A
A
A
A
A
A
A
A�

�
�
�
�
�
�
�
�

FG H
x y z

General High-Order Term
A
A
A
A
A
A
A
A
A�

�
�
�
�
�
�
�
�

F
GH

Definition Pattern:
• term of the simply-typed λ-calculus in β-normal form
• the arguments of a free variable are η-equivalent to distinct bound variables.

Patterns
λxyz.f(H(x, y), H(x, z))
λx.F (λz.x(z)) =η λx.F (x)

Not patterns
λxy.G(x, x, y)
λxy.H(F (x), y)

No equational theory, but α, β, η.

Theorem (Miller)
In the case of patterns, unifiability is decidable

there is an algorithm for computing a mgu.

4

E-unification of Patterns

Definition

E = {l1 ' r1, . . . , ln ' rn} : set of First-Order axioms.
Equational theory =E : least congruence containing all the liσ ' riσ

(context, application and abstraction)

Definition
Equation : s = t, pair of patterns of the same type.
Unification problem : >, ⊥ or P ≡ s1 = t1 ∧ · · · ∧ sn = tn.
E-unifier of P : substitution σ such that ∀i, siσ =βηE tiσ.

Theorem (Tannen) ∀ u, v u =βηE v ⇐⇒ u lηβ=E v lηβ.

5

How to split when E = E1 ∪ . . . ∪ En?

Aim : unification of patterns modulo

�
�
�
�β, η

�
�

�
�E1 . . . Ei . . . En

Naive approach

Counter-Example (Qian & Wang) with E = AC(+):
λxy · F (x, y) = λxy · F (y, x) has the solutions
∀n ∈ N σn = {F 7→ λxy ·G(H1(x, y) +H1(y, x), . . . , Hn(x, y) +Hn(y, x))}

6

How to split when E = E1 ∪ . . . ∪ En?

Aim : unification of patterns modulo

�
�
�
�β, η

�
�

�
�E1 . . . Ei . . . En

Naive approach

Counter-Example (Qian & Wang) with E = AC(+):
λxy · F (x, y) = λxy · F (y, x) has the solutions
∀n ∈ N σn = {F 7→ λxy ·G(H1(x, y) +H1(y, x), . . . , Hn(x, y) +Hn(y, x))}

7

How to split when E = E1 ∪ . . . ∪ En?

Aim : unification of patterns modulo

�
�
�
�β, η

�
�

�
�E1 . . . Ei . . . En

Naive approach

Counter-Example (Qian & Wang) with E = AC(+):
λxy · F (x, y) = λxy · F (y, x) has the solutions
∀n ∈ N σn = {F 7→ λxy ·G(H1(x, y) +H1(y, x), . . . , Hn(x, y) +Hn(y, x))}

8

How to split when E = E1 ∪ . . . ∪ En?

Aim : unification of patterns modulo

� �
β, η

��
�
��
��
��
�
��

��
��
�
��
��
��
�
��

E1 . . . � �Ei . . .
HH

HH
HH

H
HH

H
HH

HH
HH

H
HH

HH
HH

H
HH

En

Realistic approach

Counter-Example (Qian & Wang) with E = AC(+):
λxy · F (x, y) = λxy · F (y, x) has the solutions
∀n ∈ N σn = {F 7→ λxy ·G(H1(x, y) +H1(y, x), . . . , Hn(x, y) +Hn(y, x))}
Algorithms for patterns unification modulo the Eis are assumed to be given. In

practice, ∅, AC, ACU, ACUN, AG

9

How to split when E = E1 ∪ . . . ∪ En?

Aim : unification of patterns modulo

� �
β, η

��
��
��
�
��
�
��

��
��
�
��
��
��
�
��

E1 . . . � �Ei . . .
HH

HH
HH

H
HH

HH
H

HH
HH

HH
HH

H
HH

H
HH

En

Realistic approach

Counter-Example (Qian & Wang) with E = AC(+):
λxy · F (x, y) = λxy · F (y, x) has the solutions
∀n ∈ N σn = {F 7→ λxy ·G(H1(x, y) +H1(y, x), . . . , Hn(x, y) +Hn(y, x))}

Algorithms for patterns unification modulo the Eis are assumed to be given.
In practice, ∅, AC, ACU, ACUN, AG

10

Splitting the unification problem

Definition
Theory of f , algebraic symbol, or of x, bound variable
Th(f) = Ei, Ei such that f ∈ Fi Th(x) = E∅
Alien subterm u in t[u]p : u argument of f and Th(f) 6= Th(head(u)).

VA
λx.t[u]p = λx.s → ∃H λx.t[H(y)]p = λx.s ∧ λy.H(y) = λy.u

if u is an alien subterm of t[u]p, y = FV(u) ∩ x, and H new variable.

Split

λx.γ(s) = λx.δ(t) → ∃F λx.F(x) = λx.γ(s) ∧
λx.F(x) = λx.δ(t)

if γ and δ not free variables, Th(γ) 6= Th(δ), and F new variable.

11

Split unification problem

A unification problem in NF wrt VA and Split :

P ≡ PF ∧ P0 ∧ P1 ∧ · · · ∧ Pn

• PF contains all the Flex-Flex equations λx.F (x) = λx.F (xπ).
• P0 is pure in E0, with no λx.F (x) = λx.F (xπ).
• P1 is a pure unification problem in E1.
• Pn is a pure unification problem in En.

Notation
λx.F (xπ): λx1 . . . λxn.F (xπ(1),. . .,xπ(n)), where π is a permutation over {1,. . .,n}.

12

A combination algorithm through don’t know non-determinism

Guess the actual arguments of a variable

Definition

Constant preserving substitution: σ = {F 7→ λx.s}, λx.s in NF and
every xi of x has a free occurrence in s.

Projection: σ = {F 7→ λx.F ′(y) | {y} ⊆ {x}}

Lemma σ a substitution, then σ lηβ= (πθ) lηβ with π projection and θ constant-
preserving substitution.

Project P → ∃F ′ F =λx.F ′(y) ∧ P{F 7→λx.F ′(y)}
where F ′ is a new variable and {y} ⊂ {x}

13

A combination algorithm through don’t know non-determinism

Guess the flex-flex equations

FF 6= P → F =λx.G(xπ) ∧ P{F 7→λx.G(xπ)}
where π is a permutation, types of F and Gπ are compatible, F 6= G and F
and G occur in P .

Guess the permutations over the arguments

FF= P → λx.F (x)=λx.F (xπ) ∧ P

where F is a free variable of P , types of F and Fπ are compatible.

14

A combination algorithm through don’t know non-determinism

Find a representative for each variable

Apply as long as possible
Coalesce
λx.F (y)=λx.G(z) ∧ P → F =λy.G(z) ∧ P{F 7→λy.G(z)}
if F 6= G and F ,G ∈ FV(P), where y is a permutation of z.

Guess the theory of the representatives

Guess an ordering on representatives

15

Dealing with λx.F (x) = λx.F (xπ) by freezing

Example (Qian & Wang) E = AC(+):

λxy · F (x, y) = λxy · F (y, x)

has the solutions

σn = {F 7→ λxy ·G(H1(x, y)+H1(y, x), . . . , Hn(x, y)+Hn(y, x))}

for all n ∈ N.

In addition σn+1 is strictly more general than σn (nullary theory).

16

Solving the pure problems, compatiblity with frozen equations

Definition Solve rule for Ei: algorithm

input: Pi, pure problem in Ei and PF frozen equations
output: P ′i and P ′iF such that

1. P ′i ≡ σEi, is a solved form without flex-flex equations.

2. P ′iF is equal to PF plus some additonnal λx.F (x)=λx.F (xπ).

3. F instantiated by σEi only if Ei is the chosen theory of F

4. the value of F may contain G only if F <oc G, for the chosen ordering

5. for all the equations s = t of Pi and PF , sσEi and tσEi can be proven
Ei-equal (by using the equations in P ′iF).

17

Example: AC(+)

Input :
λxy.F (x, y) +G(x, y) = λxy.2H(x, y) ∧ λxy.H(x, y) = λxy.H(y, x)

Output :
F = λxy.F ′(x, y) + 2F ′′(x, y)
G = λxy.F ′(x, y) + 2F ′′(y, x)
H = λxy.F ′(x, y) + F ′′(x, y) + F ′′(y, x)

∧ λxy.F ′(x, y) = λxy.F ′(y, x)

In order to prove that λxy.Hσ(x, y) =AC λxy.Hσ(y, x), that is

λxy.F ′(x, y) +F ′′(x, y) +F ′′(y, x) =AC λxy.F
′(y, x) +F ′′(y, x) +F ′′(x, y),

we need λxy.F ′(x, y) = λxy.F ′(y, x).

18

Solving the pure problems, compatiblity with frozen equations

Proposition s = t a pure equation in Ei, and σ such that sσ =E tσ. Then there
exists Pperm = {λxπ.F (x)=λxϕ.F (x)}, σEi and θ such that

• σ =E σEiθ.

• σEi pure in Ei,

• θ E-solution of Pperm.

• for all pure equations s′ = t′ (in particular s = t) such that s′σ =E t′σ,
s′σEi and t′σEi can be proven Ei-equal (using the equations of Pperm).

19

The algorithm

ALGORITHM FOR PATTERN UNIFICATION MODULO E0 ∪ · · · ∪ En
1. Apply as long as possible the rules VA and Split .
2. Perform successively the steps of guessing.
3. Apply a Solve rule for theory Ei to each Pi.
4. Return P ′0 ∧ P ′1 ∧ · · · ∧ P ′n ∧ PF ∧

∧
1≤i≤nP

′
iF .

20

Main Theorem

Given an equational theoryE = E0∪· · ·∪En, where theEis are defined over dis-
joint signatures F0, . . . ,Fn and a unification problem P , containing only algebraic
symbols of F0 ∪ · · · ∪ Fn,

• The above algorithm returns a constrained DAG-E-solved form of P .

• EveryE-unifier of P is a solution of a constrained DAG-solved form computed
by the above algorithm.

21

Theories with a Solve rule

• the free theory

• AC, ACU, ACUN, AG

• decomposable syntactic theories, C, Dl

22

Conclusion and perspectives

• more theories (BR?)

• combination of unification algorithms lifted from First-Order terms to Patterns
(need of a Solve rule for each FO theory for patterns).

23

