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1. INTRODUCTION

With clusters of PCs or multiprocessor PCs,
low cost parallel machines are now available.
Most programming efforts concerns the
parallelization considering the two different
models (shared memory inside nodes and
message-passing between nodes). But, to exploit
any type of available parallelism, it is
worthwhile to investigate the impact of SIMD
parallelism that exists now in most of modern
microprocessors on numerical applications.

The SIMD extensions to general purpose
microprocessor instruction sets were introduced
in 1995 to improve the performance of
multimedia and DSP applications. The first
extensions were able to process 64-bit integer
vectors: Sun VIS [SUN95], HP MAX [LEE95],
MIPS MDMX [KIL96] and Intel MMX
[INT97]. The introduction of SIMD instructions
that process single precision floating point

vectors is more recent: AMD 3D Now [CAS98]
and Intel SSE [INT99]. Motorola introduced
Altivec in 1999 [APP99]. With the Pentium 4,
Intel introduced SSE2 [INT-AP, INT-IR] which
enables double precision floating point SIMD
computation. If multimedia and DSP
applications remain the major applications that
can profit from SIMD extensions, the double
precision extensions can also be used for
numerical applications. In the rest of the paper,
we will use “double” as an abbreviation for
double-precision floating point number. The
Pentium 4 XMM registers are 128-bit long and
can pack two doubles. The SSE2 instructions
provide a large set of floating point SIMD
operations, either on 4 packed floats or 2 packed
doubles. Equivalent scalar operations are
provided to access or compute the lowest float
or the lowest double of the XMM registers. As
Pentium 4 microprocessors are suitable to build
low-cost clusters of PCs, it is worthwhile to
examine the impact of the SSE2 instructions on
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the performance of numerical benchmarks or
applications.

Vectorization is the terminology used by
Intel for the compiler use of SIMD instructions.

Intel has published application notes for
trivial examples as saxpy or daxpy functions
[INT-AP]. Bik et al provide a high level
overview of the parallelization and vectorization
methods used in the C++/FORTRAN Intel
compilers and give some performance results for
dot products, LU-factorization and Linpack
[BIK01a]. The same authors present other
results with automatic vectorization for a
Pentium 4 processor in [BIK01b]. The results
concern the dot products, saxpy and daxpy and
preliminary results on SPEC CPU2000. In this
paper, we consider the NAS benchmarks [NAS-
P], which are kernels or pseudo-applications
more representative of numerical applications.
They are widely used for testing parallel
machines.

To evaluate the potential performance
improvement of SSE2 numerical codes, we first
measure the impact of compiler vectorization on
the execution times of each benchmark, by
enabling and disabling the vectorizer. Further
optimization requires the use of assembly code
for functions that are not vectorized. This leads
to a significant methodology issue. Most of the
numerical codes are FORTRAN codes and there
is no simple method to insert assembly code
within FORTRAN code. The only possibilities
are by calling C functions containing inline
assembly code from the FORTRAN code, or by
linking an assembly object file with the
FORTRAN object code. Neither solution can be
used for our purpose: the overhead of function
calls would forbid significant measures in the
first case, and assembly code should be used at
loop levels inside one function and not at a
module or file level for the second case. To
evaluate the impact of assembly coded
optimizations, the only solution is to use a C
version of the different benchmarks. This is why
we have used the NAS benchmarks, for which
the two versions are available, rather than the
SPEC2000.

Vectorization issues are not exactly the same
for C and FORTRAN programs. When using C
or C++, the compiler has to worry about
aliasing considerations. It cannot optimize a loop
if it cannot ascertain whether the array
references in a loop overlap. This problem
doesn’t exist for FORTRAN code. To check if
aliasing issues significantly change the
performance of the NAS benchmarks when
using C versions, we have measured the
execution times of the two versions for several
optimization levels. We have compared the
number of vectorized loops for each version of
each benchmark and we have evaluated the
impact of the vectorized loops on the overall
execution times. Even if the number of
vectorized loops is different for C and
FORTRAN versions, the vectorization that is
realized by the C and FORTRAN compilers has
no significant impact on the overall performance
of each version. This implies that the vectorized
loops are not the time consuming loops. We will
give some more details on this disappointing
result. But it allows us to claim that the
assembly coded optimization results that we
present for the C version of the NAS
benchmarks would be roughly the same for the
FORTRAN version.

After this introduction, the second section
presents the methodology that we use. The third
section presents the execution times of the C and
FORTRAN versions of the NAS benchmarks
and gives detailed results on the compiler
vectorization and vectorization efficiency. The
fourth section details the most time consuming
functions for each NAS benchmark. The fifth
section presents the assembly coded
optimizations and the corresponding
performance improvement. Section 6 presents
the related works. After the conclusion, the
appendix gives details on some semantics issues
when optimizing random generator functions.
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2. METHODOLOGY

2.1 Measures

All the results correspond to measures on a
Dell PC. The CPU was a 1.4 GHz Pentium 4
with 512 MB RDRAM running under Windows
2000 Professional. We have used the Microsoft
Visual C++ environment with the 5.0 version of
the Intel C/C++ compiler, the 5.0 version of the
Intel FORTRAN compiler, and the Intel VTune
profiler [INT-VT]. For each compiler, we have
used the “maximize speed” (basically O2+QxW)
and “high level optimization” (O3+QxW). The
QxW option generates specialized code for the
Pentium 4. Each tested program has been
measured at least 5 times and we have taken the
averaged value. All the measures have been done
with only one running application (Visual C++).
The results are provided either as execution time
(sec) or as speed-ups, defined as old_execution
time/new_execution time.

2.2 The NAS benchmarks

There is a large spectrum of high-end
numerical applications and choosing some
benchmark is always debatable. We have used

the NAS benchmarks because they are one of
the widely used and acknowledged benchmarks
for which both FORTRAN and C versions are
available. The FORTRAN version is the
NPB2.3 serial version [NAS-P]. We have used
the C OpenMP version of the NAS benchmarks
[NAS-C] and removed all OpenMP directives to
get a serial version. Although this version is
probably not the best C serial code, it can be
considered as a good reference for comparisons.
We used the FP kernels (CG, FT and EP) and
the FP pseudo applications (BT, LU and SP)
with class A.

3. INITIAL PERFORMANCE
OF THE FORTRAN AND C
VERSIONS

Table 1 gives the execution times of the
different benchmarks according to three different
criteria: language (C versus FORTRAN),
optimization level (O3 versus O2) and
vectorization (with vectorization referred to as V
and without vectorization referred to as NV). All
the other options are similar: the compiler
generates “Exclusively Streaming SSE2
extensions” (QxW option).

BT CG EP FT LU MG SP
FORTRAN-O2-QxW-V 586.0 6.65 147.0 34.41 388.6 11.19 501.4
FORTRAN-O2-QaxW-V 595.5 6.50 148.1 33.83 394.1 11.57 506.8
FORTRAN O2-QxW-NV 592.5 6.55 387.8 12.31 494.9
FORTRAN O3-QxW-V UNS 6.63 147.3 34.72 368.1 11.32 UNS
FORTRAN O3-QxW-NV 586.8 6.54 369.9 12.30 UNS
C-O2-QxW-V 618.7 7.24 179.4 30.64 410.0 11.62 481.7
C-O2-QaxW-V 619.8 7.00 154.5 29.66 410.5 11.61 478.0
C-O2-QxW-NV 6.60 409.8 11.63 489.4
C-O2-QaxW-NV 6.47 410.2 11.61 486.0
C-O3-QxW-V 643.0 7.28 179.3 30.50 412.4 10.11 481.9
C-O3-QxW-NV 6.60 412.9 11.62 489.5

Table 1: Execution time (sec) of the different benchmarks according to language, compiler, and vectorization options: O2
and O3 are the standard compiler options, QxW and QaxW are the specific P4 compiler options, V and NV stand for
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vectorized and non-vectorized options, UNS corresponds to “unsuccessful” results and blank entries correspond to
benchmarks without any vectorized loop for which V and NV execution times are identical.

Table 2 gives the number of vectorized loops
when the vectorizer is on.

BT CG EP FT LU MG SP
FORTRAN
-O2

6 18 0 0 3 15 41

FORTRAN
-O3

6 18 0 0 3 15 41

C-O2 0 13 0 0 6 1 44
C-O3 0 13 0 0 6 1 44

Table 2: Number of vectorized loops for FORTRAN and
C versions.

In Table 1, we have covered most of the
configurations according to main features of the
C++ and FORTRAN Intel compilers:
a) Optimization levels: O2 and O3 are the

standard compiler options and O2 and O3
names are used in the FORTRAN compiler.
O2 corresponds to the Maximize Speed
option in the C/C++ compiler and O3 to the
CUSTOMIZE option. With the C compiler,
we have used the ot, oa, og and oi sub-
options that corresponds to “assume no-
aliasing”, “intrinsic functions”, “favor fast
code” and “global optimization”.

b) Code specialization: when compiling code for
a Pentium 4 processor there are two different
options. Either you compile using only the
P4 specific code with SSE2 extensions
(QxW option) or you compile two versions
of the code including both generic IA32 code
and P4 specific code (QaxW option) and the
final choice is done at run-time. On a P4
machine, the two options should be
equivalent, with a slight disadvantage for the
QaxW option due to the overhead of the run-
time choice. It turns out that the present
implementations of the versions lead
sometimes to opposite results. This is why
we measured both.

c) Vectorization option: the compiler with QxW
or QaxW options automatically tries to
vectorize loops. The vectorization can be
disabled, globally in the FORTRAN
compiler and globally or at a loop by loop
level in the C compiler. This option is useful

to evaluate the efficiency of the compiler
vectorization.
Figure 1 compares the execution time for the

best versions of FORTRAN and C. BT, EP and
LU execute faster with FORTRAN whereas FT,
MG and SP are faster with C. CG has
equivalent performance with the two languages.
Except for FT, the difference is less or equal to
10%. The larger difference for FT probably
originates from the FORTRAN implementation
of double complex numbers.

Figure 1: FORTRAN execution time/C execution time
(the best version is used for each language). A ratio less
than 1 means than FORTRAN executes faster.

Figure 2 shows the effect of the O3 option
compared to O2. The O3 C version of BT is
nearly 5% slower than O2 and the O3
FORTRAN version of LU is 5% faster than O2.
Otherwise, there is no significant difference
between the two options. Non-vectorized and
vectorized ratios are quite similar. We have used
the non-vectorized version to overcome one
vectorization problem with BT (FORTRAN) for
which the vectorized version is “unsuccessful”
when the non-vectorized one is “successful”. For
SP (FORTRAN), both vectorized and non-
vectorized versions are unsuccessful.

Figure 3 examines the effect of “automatic
dispatch” with QaxW option versus the “P4
only” QxW option. As previously mentioned, the
results are opposite to our expectations for CG
and FT (C and FORTRAN) and EP and SP (C).
For EP, the difference is more than 10%.
Otherwise, the differences are not significant.
According to [ANS01], the two options don’t
exactly use the same heuristics to determine
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whether to do certain optimizations or not. One
important case is the CMOV optimization.
There are situations where QaxW will not
perform CMOV optimization in certain routines
where QxW normally would. CMOV's can be
pretty expensive on a P4 due to their long
latencies.

Figure 4 examines the compiler vectorization
efficiency. Only the FORTRAN version of MG
exhibits a spectacular effect, with a near 10%
speedup with 15 vectorized loops. On the other
hand, vectorizing the C version of CG induces a
10% slow-down. For all the other benchmarks
where loops are vectorized, the impact of
vectorization is less than 2%. Unfortunately, the
impact is either positive or negative.

Figure 2: O3 execution time/O2 execution time with
QxW and non-vectorized options. A ratio less than 1
means that O3 version executes faster. O3 version
doesn’t exist for the FORTRAN SP benchmark
(unsuccessful result).

Figure 3: QxW execution time/QaxW execution time
with O2 and vectorized options for FORTRAN and C. A
ratio less than 1 means that QxW is more efficient.

Our examination of the FORTRAN and C
versions of the NAS benchmark execution times
according to the compiler options shows a
different behavior for each benchmark.
However, for most of the benchmarks and each

language, the results of the O2 option, QxW and
non-vectorized version are close to the best
results. We will choose candidate benchmarks
for assembly in-lining code after bottleneck
detection. For these benchmarks, we will clarify
the gap between O2+QxW+NV version and the
best one.

Figure 4: Vectorized execution time/non-vectorized
execution time with O2 and QxW options. A ratio less
than 1 means that the vectorization is efficient.

4. HOT SPOTS IN NAS
BENCHMARKS

4.1 VTune profiling

The profiling has been done with the Intel
VTune profiler in “released” mode, which means
with O2+QxW optimized code, to outline both
the most time consuming C functions and the
specific C statements within these functions that
use most clock cycles. The hot spots for the
NAS benchmarks in class A are given in Table
3. The hot spots are evaluated as the percentage
of used clock cycles for each benchmark.

The figures in Table 3 show two different
situations. Some benchmarks (CG, EP and FT)
have clearly one function that consumes most of
the clock cycles: conj_grad (CG) is close to
95%, while vranlc (EP) and fftz2 (FFT)
represent more than 50 % of the clock cycle
samples. On the other hand, the execution time
for BT, LU, and SP is spread all over different
functions. BT is a good example with six
different functions that sums for 2/3 of the
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overall samples, but no one exceeds 17% of the
samples. MG exhibits an intermediate situation.

Program FUNCTION % OF SAMPLES
BT mat_mul sub 16.7%

binvcrhs 15.3%
lhsy 13.7%
compute_rhs 11.9%
lhsx 11.1%
lhsz 9.3%

CG conj_grad 94.4 %
EP vrancl 53.9 %

main 46.1 %
FT vranlc 35.9 %

Compute_inde
xmap

21.6%

fftz2 18.8 %
cftts3 9.5 %
cftts2 6.4%
cftts1 2.8 %

LU rhs 19.9%
jacld 19.0%
jacu 18.6%
buts 18.6%
blts 17.6%

MG main 59.7%
vranlc 39.7%

SP compute_rhs 28.5%
y_solve 15.2 %
x_solve 13.2%
z_solve 9.6%
lhsx 9.5%
lhsy 8.5%
lhsz 7.3%

Table 3: Hot spot functions in NAS benchmarks (class A)

A deeper examination of the different
functions reveals the functions themselves also
exhibit the same behaviour: some functions
(vranlc, conj_grad, fftz2) spend most of the time
in a few C statements while others have the
execution time spread all over the function. The
four benchmarks that are candidate to assembly
in-lining code are EP and MG (vranlc), CG
(conj_grad) and FFT (fftz2). Two of them have
C as the best version and only one has a best
FORTRAN version. The O2+QaxW+NV
version is the best one for CG, EP, and FT. The

O3+QxW+V version is the best for MG1. These
versions will be our reference.

BENCH
MARK

BEST
VERSION

O3/
O2

QXW/
QAXW

NV/V

CG = = QaxW NV
EP FORTRAN = QaxW =
FT C = QaxW =
MG C O3 V

Table 4: Behavior of the C candidate benchmarks to
manual coding according to language and compiler
options. Bolded entries outline sharp differences.

5. PERFORMANCE SPEED-
UP WITH ASSEMBLY
CODING

We consider now the further steps in loop
vectorization that can be done by using assembly
code. As previously explained, this hand coding
is done with the C version of the NAS
benchmarks. According to previous results, we
only use assembly coding for CG, EP and FT.
The other applications could be improved also,
but the difficulty appears much greater.
Examination of the hot spots shows little room
for “SIMDing” the code.

NAS benchmarks have some attractive
features for testing and debugging the modified
versions with some assembly code. First, all the
benchmarks measure the execution time.
Second, all benchmarks test the numerical
results. Correct code delivers a “successful”
result whereas incorrect code delivers an
“unsuccessful” one. All the “modified” versions
which we have measured deliver “successful”
results: the results are the same as for the
original C version of the program. There is only
one exception that we describe below.

Several benchmarks use a pseudo-random
generator (vranlc function). EP (Embarrassingly

1 Figure 2 that compares O3 and O2 execution times with
non-vectorized loops shows no advantage for the C O3
version of MG. However, MG is the only case where
O3 gives a significant advantage to the vectorized
version versus the O2 version. This is why we use
O3+QxW+V version as the reference one for MG.



. 7

Parallel) just generates random numbers. Some
benchmarks use the generator for Monte Carlo
simulations, while others use it to initialize
variables. The optimization of vranlc would
benefit several benchmarks. SSE2 instructions
can be used to generate simultaneously two
different sequences of “random” numbers, one in
the lower double and the other on the upper
double of an XMM register. The other option is
to generate a single sequence, with the numbers
of even rank in the lower double and of odd rank
in the upper double. In the first case, we
generate two times more numbers in the same
time compared to the original case, but the
function is now different as it should be
initialized with two different values and the
function call is also modified. In the second
case, we generate a same length sequence using
half of the original time. This second approach
does not change the function call. In this case,
for reasons that we detail in the appendix, the
resulting sequence is different from the sequence
that is used in the NAS benchmarks. Since the
“successful” results of the benchmarks using
vranlc correspond to the specific original
sequence used in the NAS benchmarks,
changing the vranlc functions leads to
“unsuccessful” results. This is the only case for
which the execution times of “unsuccessful”
results are presented. We took care to check that
all the “modified” codes were “successful” with
C version of vranlc before modifying the vranlc
function.

5.1 Optimization of random
generators (Vranlc)

Figure 5 shows the code for vranlc loop
body. The critical issue is the double to integer
conversions. This conversion implies rounding
towards zero instead of rounding to nearest that
is the commonly used rounding mode. A non
optimized x86 code changes the rounding mode,
which needs changing of the processor control
word. The corresponding instruction serializes,
which leads to a significant performance
degradation. The 5.0 version of the C compiler
with QxW option combines x87 code with

cvttsd2 instruction, which is one of the
“double to integer with truncation” conversion
instructions that have been introduced with
SSE2 instructions. The execution time is
referred as to the C version of Table 1.

        t1 = r23 * x;
        x1 = (int)t1;
        x2 = x - t23 * x1;
        t1 = a1 * x2 + a2 * x1;
        t2 = (int)(r23 * t1);
        z = t1 - t23 * t2;
        t3 = t23 * z + a2 * x2;
        t4 = (int)(r46 * t3);
        x = t3 - t46 * t4;
        y[i] = r46 * x;

Figure 5: loop body of vranlc

A first level of optimization consists of
coding the loop body with the scalar version of
the SSE2 instructions. This version of vranlc
(referred to as S1) only uses the lower “double”
of the XMM registers, using them as 64-bit
registers instead of using the floating point stack
of the IA-32 architecture. A second level of
optimization consists of using packed doubles to
generate two random numbers per iteration. We
only consider the version (called S2) that is
compatible with the original function call (one
single sequence). It needs a prologue to generate
the second number from the initial value before
using packed instructions and an epilogue to
generate the last random number when the
sequence length is even.

Table 5 presents the execution times for
generating an array of 8192 random numbers
and the corresponding execution time per
iteration. The C version and the modified
versions have been compiled with the O2 +
QaxW options. The SSE2 scalar version is 1.77
times more efficient than the C version. Two
factors explain this result: the latencies of the
SSE2 instructions are slightly less than the
latencies of the corresponding x87 instructions
and communication between the FP stack and
the XMM register banks probably introduce
some overhead. The SSE2 packed version (S2)
is 1.75 times more efficient than the scalar
version (S1). The overhead for computing the
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first and the last numbers prevents a perfect
speed-up.

EXECUTION
TIME

TIME PER
ITERATION

Speed-up

C 1.55 s 190 ns
S1 0.88 s 107 ns 1.77
S2 0.50 s 61 ns 3.11

Table 5: Execution time of the vranlc function (8192
random numbers)

5.2 Optimization of EP

As most EP execution time is spent in the
vranlc function, we only evaluate EP execution
times for the different versions of vranlc.
Compared to the C version of vranlc (154.5 s),
the speed-up is 1.20 with the S1 version (128.9
s) and 1.54 with the S2 version (100.4 s).

5.3 Optimization of MG

For MG, we also only consider the impact of
vranlc function. The best C, S1, and S2 version
execution times (O3+QxW+V) are respectively
10.12 s, 10.11 s, and 10.11 s. The speedup is
negligible.

5.4 Optimization of CG

The hot spot for CG corresponds to the code
presented in Figure 6.

for (j = 1; j <= lastrow-firstrow+1; j++) {
            sum = 0.0;

    for (k = rowstr[j]; k < rowstr[j+1]; k++) {
sum = sum + a[k]*p[colidx[k]];}

            w[j] = sum;}

Figure 6: Critical code for conjugate gradient

The inner loop looks like a dot product, but
the elements of the second array are accessed
indirectly, which prevents the direct
vectorization of the loop. We tested two levels of
optimizations. The first level uses SSE2
instructions to compute the dot product, except
that the lower double and the higher double of
p[colidx[k]] and p[colidx[ k+1]] are
loaded sequentially. This version is called S2.

The second level of optimization unrolled the S2
version by a factor of 2. It is called U2S2.

Another issue with code presented in Figure
6 is the loop index boundaries. The first and last
elements of the inner loop are unknown at
compile time. For efficient memory accesses, the
SSE2 move instructions between XMM registers
and 16-byte memory words should be aligned,
which means specific conditions on the
addresses of the first and last doubles that use
XMM registers. For both versions, trivial C
prologue and epilogue have been used to insure
that the iterations that use assembly code with
SSE2 instructions have correctly aligned
addresses.

For CG class A, the different versions of
vranlc have no significant impact on the
performance. We only present the results when
using the original C version of vranlc. The
execution times for the C, S2 and U2S2 versions
are respectively 6.47 s, 6.71 s and 6.58 s.
Assembly coding slows down, with a “speed-up”
of  0.96 (S2) and 0.98 (U2S2).

5.5 Optimization of FT

The main feature of the FT benchmark is
that it uses complex numbers that are declared
as a structure with a double real part and a
double imaginary part. As this structure is laid
out in memory as two consecutive 64-bit words,
it is suitable for SSE2 memory accesses (two
doubles to and from XMM registers) and SSE2
computations.

We have optimized several functions of the
FT benchmark which constitute hot spots. Code
of the fftz2 function is shown in Figure 7. The
corresponding loops are typical of FFT
computation. Figure 8 shows one limited part of
cffts1 code: it basically transfers data between
two matrices. Only the two inner loops have
been implemented with assembly code. The
remaining part of the code that has been
optimized is similar. The code for cffts2 and
cffts3 is similar.
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for (k = 0; k < lk; k++) {
    for (j = 0; j < ny; j++) {

double x11real, x11imag;
double x21real, x21imag;
x11real = x[i11+k][j].real;
x11imag = x[i11+k][j].imag;
x21real = x[i12+k][j].real;
x21imag = x[i12+k][j].imag;
y[i21+k][j].real = x11real + x21real;
y[i21+k][j].imag = x11imag + x21imag;
y[i22+k][j].real = u1.real * (x11real –x21real)
    - u1.imag * (x11imag - x21imag);
y[i22+k][j].imag = u1.real * (x11imag –

               x21imag)
    + u1.imag * (x11real - x21real);}}

Figure 7: fftz2 function to optimize

for (k = 0; k < d[2]; k++) {
for (jj = 0; jj <= d[1] - fftblock; jj+=fftblock) {

     for (j = 0; j < fftblock; j++) {
for (i = 0; i < d[0]; i++) {
    y0[i][j].real = x[k][j+jj][i].real;
    y0[i][j].imag = x[k][j+jj][i].imag;}} }}

Figure 8: part of cffts1 code to optimize

C VERSION 29.65 s
a fftz2 28.09 s
b cfftz + cffts1, cffts2, cffts3 28.09 s
c fftz2 + cfftz + cffts1, cffts2, cffts3 26.94 s
d fftz2 + cfftz + cffts1, cffts2, cffts3 +

vranlcS1
26.17 s

e fftz2 + cfftz + cffts1, cffts2, cffts3 +
vranlcS2

25.26 s

Table 6: Execution time of the different C versions of FT
(O2+QaxW+NV) according to assembly coded functions

We have measured several versions of the
program. The original version corresponds to C
code. The second version uses SSE2 instructions
for the fftz2 function. The third version uses
SSE2 instructions for cffts1, cffts2, cffts 3 and
cfftz functions. The fourth version combines the
second and third versions. The fifth version
corresponds to version four together with the
replacement of the C version of vranlc by the S1
version. Finally the last version is version four
with the S2 vranlc function. Table 6 gives the
execution times and Figure 9 shows the impact
of the successive optimizations. The overall
speed-up is 1.17.

Figure 9: Speed-up from the C version according to the

different assembly coded functions indicated in Table 6

5.6 Overall results

We summarize the overall results in Figure
10. As already mentioned, there is no speed-up
for BT, LU, MG, and SP. Only EP, which is a
very specific application, exhibits a significant
speed-up when using SSE2 instructions. It
mainly comes from the random generator, for
which SSE2 instructions double the number of
generated numbers and better perform floating
point to integer conversions with truncation. The
only benchmark that actually profits from the
SIMD operations on two doubles is FT, for
which real and imaginary parts fit in the 16-byte
SIMD operation width. For FT, the overall
speed-up is 1.17 when considering the new
implementation of the random generator, but is
limited to 1.09 when only considering the SIMD
approach.
Figure 10: Speed-up for the best version with assembly

code versus the best C version for the 4 considered NAS
benchmarks.
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5.7 Some more remarks

Some parts of code allow SIMD operations.
Figure 11 shows a part of EP code that can use
SSE2 instructions. Vectorization cannot be
applied to the whole loop. However, the
following sets of statements can operate in
SIMD mode: (X1, X2, T1), (T3, T4, L) and
(SX, SY). We have compared the overall
execution time of the program with the ASM
SSE2 version of Figure 11 with the execution
time of the original C code: the speed-up is 0.98!

for (i = 0; i < NK; i++) {
            x1 = 2.0 * x[2*i] - 1.0;
            x2 = 2.0 * x[2*i+1] - 1.0;
            t1 = pow2(x1) + pow2(x2);
            if (t1 <= 1.0) {

t2 = sqrt(-2.0 * log(t1) / t1);     /non simd
t3 = (x1 * t2); /* Xi */
t4 = (x2 * t2); /* Yi */
l = max(fabs(t3), fabs(t4));
qq[l] += 1.0; /* counts */
sx = sx + t3; /* sum of Xi */
sy = sy + t4; /* sum of Yi */

            }
}

Figure 11: Extract from EP code

A systematic use of SIMD operations can be
counter-effective for floating point
computations. There is one fundamental reason.
There are no significant differences in the
Pentium 4 latencies between the SSE2 double
precision operations and the corresponding IA-
32 x87 ones: 4/5 for ADD, 6/7 for MUL with
the same throughput: 2. When the code only
consists of chains of instructions with true data
dependencies (as in the code shown in Figure
11), SSE2 instructions cannot exhibit a perfect
speed-up of 2. The two x87 instructions needed
for each packed SSE2 instruction are pipelined:
we have two chains of x87 instructions with the
same data-dependencies that the SSE2
instructions have. Compared to the SSE2 chain,
the second x87chain is delayed by the sum of
latency differences between the two types of
instructions plus the pipeline delay between each
chain. This is far less than the data dependency
delay of the SSE2 instructions. “Reduction”

operations are another issue. In the present
implementation of SSE2 extensions, there are no
instructions to operate on different parts of an
XMM register. These operations, corresponding
to the reduction in parallel programming, need
several data dependent SSE2 instructions and
the corresponding overhead could be greater
than with x87 instructions.  Finally, unaligned
packed memory accesses are costly compared to
aligned ones. Unfortunately, it is often
impossible to guarantee aligned accesses in
actual programs.

6. RELATED WORKS

This section discusses some related works in
SIMD instruction set evaluation. Most of the
published results consider multimedia
benchmarks using integers or single precision
floating point data. Most of them use simulated
architectures. In [YAN98], Yang and al studied
the impact of paired SIMD single precision
floating point instructions and 4-way SIMD
floating point instructions on 3D geometry
transformations. In [RAN99], Ranganathan and
al studied the performance of several integer
image processing kernels by simulation. In
[NGU99], Nguyen and al considered a small
number of micro kernels with AltiVec
extensions. In [BEC00], Bechennec and al
presented preliminary results about AltiVec
performance on floating point multimedia
kernels. The results have been extended in
[SEB01], which focuses on the impact of
memory hierarchy (latency and bandwidth) on 9
integer and floating point micro kernel using
AltiVec. As mentioned, all the results presented
in these papers are based on simulations.

In [BHA98], Bhagarva and al measured the
execution times of their benchmarks on a
Pentium processor by using the same
methodology as we have used in this paper:
Visual C++ compiler, VTune profiler, etc. They
have considered DSP kernels and JPEG. When
the research was done with MMX technology,
only the integer SIMD extension was available.
In this paper, we consider the impact of SIMD
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double precision floating point instructions of
Intel SSE2 extensions on the performance of
numerical benchmarks. Bik and al [BIK01a and
BIK01b] presented Intel results on some kernels
(dot products, saxpy/daxpy, LU factorization),
Linpack and SPEC CPU2000. Our results are
far less spectacular.

7. CONCLUSION

We have shown that the Intel C and
FORTRAN compilers at present do not
efficiently use the SSE2 instructions for the
floating point code of the NAS benchmarks. On
most benchmarks, they only “vectorize” loops
that do not significantly impact the overall
execution time. By considering the time
consuming functions in every NAS benchmark,
we have observed that very few parts of code are
candidates for an efficient use of SIMD
operations. Code using complex numbers can be
slightly accelerated by SIMD operations. For the
FT benchmark class A, we measured a 10%
speed-up. All the code that uses Monte Carlo
methods can benefit from improved random
generators. On EP, which generates random
numbers, we have obtained a 60% speed-up by
generating two times faster the sequence of
random numbers. The speed up obviously
depends on the benchmarks. Even with
significant improvement in “SIMD technology”
for compilers, it would appear that the speed-up
that can be expected from SIMD floating point
operations on numerical applications is limited.
Beyond the classical vectorization issues, the
main reasons are 1) the large latencies of
floating point operations that reduce the impact
of packed instructions versus scalar ones in
cases of data dependent instructions and 2) some
weaknesses in the currently available SSE2
extensions (cost of unaligned accesses, lack of
intra-register operations).

8. APPENDIX: VRANLC
FUNCTIONS

The vranlc routine generates N uniform
pseudo-random double precision numbers in the
range (0,1) by using the linear congruential
generator  x[k+1] = a* x[k] (mod 246) where a
and x[k] ranges are (0, 246).

According to the previous formula, x[k+2] =
a2* x[k] (mod 246) can be used to generate the
sequence of every other number from an initial
value. Starting from x[0], after generating x[1]
with the initial formula, the second formula
allows us to simultaneously generate at each
iteration x[2p]  and x[2p+1] for p between 0 and
N/2-1. The choice of a and of x[0] is important
to get a good sequence of random numbers. The
vranlc function of the NAS benchmarks uses the
largest odd 32-bit integer value. Obviously, we
cannot use the same value as a2 cannot fit into a
32-bit integer. Thus the same sequence cannot
be obtained, which explains why NAS
benchmarks with a “modified” sequence deliver
an “unsuccessful” result. However, a careful
choice of a value of a less than the square root
of the largest odd 32-bit integer value should
lead to a good sequence of random numbers.
Choosing this value of a is out of the scope of
this paper. We just want to show this method
which can significantly speedup the generation
of random numbers does not change the function
interface.
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