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Abstract. Flocking is the ability of a group of robots to follow a leader
ar head whenever it moves in a plane (two dimensional Cartesian space).
In this paper we propose and prove correct an architecture for a self-
organizing and stabilizing focking system, Contrary to the existing work
on this topic our flocking architecture does not rely on the existence of
a specific leader a priori known to every robot in the network. In our
approach robots are uniform, start in an arbitrary configuration and the
head of the group is elected via algorithmic tools.

Our coutribution is threefold. First, we propose novel probabilistic so-
lutions for leader election in asynchronous settings under bounded sched-
ulers. Additionally, we prove the impossibility of deterministic leader
clection when robots have no common coordinates and start in an ar-
bitrary configuration. Secondly, we propose a collision free determinis-
tic algorithm for circle formation designed for asynchronous networks.
Thirdly, we propose a deterministic flocking algorithm totally indepen-
dent of the existence of an a priori known leader. The proposed algorithm
also works in asynchronous networks,

1 Introduction

Several applications like large-scale constructions, hazardous waste cleanup.
space missions or exploration of dangerous or contaminated area motivate the
research related to self-organized robot networks (multi-robot systems). The lif

erature proposed so far a significant amount of research towards the operation of
a single remote robot, however more work is required towards the operation ol
networks of autonomous robots. These systems provide interesting solutions 1o
many real problems: manipulation of large objects, system redundancy, reducing,
time complexity for the targeted tasks, however they bring in discussion some
specific difficulties. In particular, these robots should achieve their tasks without
human intervention based only on the information provided by the robots in the
same group. Moreover, they have to explore unknown or quasi unknown envi

rouments while avoiding collisions among themselves. Additionally, they have to

be able to reorganize whenever one or more robots in the group stop to behave
correctly.

In this paper we propose a self-organized and stabilizing flocking architee
ture. Flocking is the ability of a group of robots to follow a leader or a flock
head whenever this one changes its position in plane. Our work is developed in
T, Masnzawa and 3. Tixeuil (Eds.): 885 2007, LNCS 4838, pp. 52-66, 2007,
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Corda model [1,2] one of the two theoretical models proposed so far for robot
networks. The first model proposed in the literature was introduced by Suzuky
and Yamashita [3,4,5]. In this model robots are oblivious and perform a cycles
of elementary actions as follows : observation (the robot observes the environ-
ment), computation (the robot computes its next position based on the informa-
tion collected in the observation phase) and motion (the robot changes its posi-
tion by moving to the coordinates returned by the computation phase). In this
model robots cannot be interrupted during the execution of a cycle. The Corda
model breaks the execution cycle:in elementary actions. That is, a robot can
be activated/turned off while executing a cycle. Hence, robots are not anymore
synchronized.

In both Corda and Suzuki-Yamashita model several problems have been stud-
{ed under different assumptions on the environment (e.g. schedulers, fault-
tolerance), robots visibility, accuracy of compasses: circle formation, pattern
formation, gathering [6,7.8,9,10,11,12]. The flocking problem although largely
discussed for real robots ([13,14] and [15]) was studied from theoretical point
of view principally by Prencipe [16,17]. The authors propose non-uniform al-
gorithms where robots play two roles: leader or follower. The leader is unique
and all the followers know it. Obviously, when the leader crashes, disappears or
duplicates the flock cannot finish its task. Our approach is different, the leader
is not known a priory but it is elected via algorithmic tools. When the current
leader disappears from the system another leader is elected and the network can
finish its task. In order to be sound our flocking architecture includes as basic
building block a leader election module.

The leader election problem has been studied under a broad class of models.
Recent works propose solutions in the population protocol model, [18,19]. The
same problem has also been studied in the mobile agents model [20]. These mod-
els may seem similar to the robots model however, in these models agents either
have a point to point interaction with simultaneous change of their respective
state or assume a specific topology of the network guesting the agents (e.g. rings)
or make additional assumptions like the existence of whiteboards on the nodes
visited by agents. In the robot networks there is no such assumptions since robots
1ove in a Cartesian two dimensional space helped only by the information they
can collect at each activation.

In robot networks leader election have been mainly studied in [5]. The authors
propose a solution where robots share the same coordinate system. Further in
[21] is proposed an algorithm for leader election based on Lyndon words which
works if the number of robots is prime and robots are not disposed in a regular
u-gon. The previously cited works focus the Suzuki-Yamashita model. In [22] the
author prove the leader election impossibility in Corda model when the number
of robots is even.

Our contribution. In this paper we propose and prove correct an architecture
for a self-organizing and stabilizing flocking system. Contrary to existing work




ol 1y, Canepa and M. (iradinariu Potop-Butucaru

on Lhis topic onr flocking architecture does not rely on the existence of a specific
Jeadder « priory known to every robot in the network. I our approach robots
e nniforid, start in an arbitrary configuration and the head of the group is
clected via algorithmic tools. Our architecture includes three modules: a leadoer
clection module, a preprocessing module and a motion module. The leader elec
Lion module returns to each robot its status : leader or follower. The prepro
cossing module outputs a moving formation. The motion module provides the
ules that will make the robots in the moving formation to change their po-
citions whenever the leader moves. Every modification of robots position pre
serves the moving formation. For each of these modules we pPropose determin:
istic or probabilistic algorithms (in the case when a deterministic solution i»
impossible). Moreover, We prove their correctness in Corda model. The correct
ness! of the probabilistic algorithms considered in this paper assumes bounded
schedulers.

2 Model

The notions and the maodel description presented in this section are borrowod
from [1.11,16]. We consider a system of autonomous mobile robots that work
the Corda model [1]. Bach robot is capable of observing ite surrounding, comput-
ing a destination based on what it observed. and moving towards the computed
destination: hence it performs an (endless) cyele of observing, computing, and
moving. Each robot has its own local view of the world. This view includes &
local Cartesian coordinate systemn having an origin, a wnit of length, and the
directions of two coordinate axes (which we will refer to as the x and ¥ axes),
together with their orientations, identified as the positive and negative sides ol
the axes.

The robots are modeled as processes with computational capabilities, which
are able to freely move in the plane. They are equipped with sensors that let cach
robot observe the positions of the others with respect to their local coordinale
svstern. Each robot is viewed as a point, and can sce all the other robots in the
systern.

The robots act totally independently and asynchronously from each other,
and do not rely on any centralized directives, nor on any commnon notion ol
time. Furthermore, they are oblivious, meaning that they do not remember any
previous observation nor computations performed in the previous steps. Note
that this feature gives to the algorithms designed in this model the nice properly
of self-stabilization [24]: in fact, every decision taken by a robot cannot depend
on what happened in the system previously, and hence -annot be based on
corrupted data stored in its local memory. The robots are anonymous, meaning,
that they are a priory indistinguishable by their appearances. & nd they do not
have any kind of identifiers that can be used during the computation. Moreover,
there are no explicit direct means of communication; hence the only way they

Due to space restrictions, most of the proofs are proposed in the extended version
of this work [23].
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have to acquire information from their fellows is by observing their positions.
The robots are uniform, meaning that they execute the same algorithm, which
takes as input the observed positions of the robots, and returns a destination
point towards which the executing robot moves.

Schedulers. A scheduler decides at each configuration the set of robots allowed
to perform their actions. A scheduler is fair if, in an infinite execution, a robot
is activated infinitely often. In this paper we consider the fair version of the
following schedulers:

_ k-bounded: between two consecutive activations of a robot, another robot
can be activated at most k times;
— arbitrary: at each configuration an arbitrary subset of robots is activated.

In short, robots move asynchronously, are oblivious, anonymous and uniform.
Additionally, their activation is managed by a scheduler who decides in each
configuration the set of active robots. That is, in this paper we consider the
Corda model refined with the above mentioned fair scheduling strategies (i.e.
k-bounded and arbitrary).

3 Leader Election and Flocking Problems

Leader election creates an asymmetry whatever the initial configuration. Robots
may be in one of the following states: leader or follower and the leader should
be unigue in the system.

Definition 1 (Leader Election). A system of robots verifies the leader elec-
tion specification iff the following two properties hold:

— Sgfety: The system is in a legal configuration where there is an unique robot
i) the state leader and all the other robots are in the state follower.
— Liveness: The legal configuration is reached in a finite number of steps.

Leader election is the building block for a large class of problems. In this pa-
per we focus on the flocking problem. Intuitively, a flock is a group of robots
that moves in the plane in order to execute a task while maintaining a specific
formation. The most current definition of the flocking implicitly assumes the
existence of an unique leader of the group that will lead the group during the
task execution. Robots have as input the same pattern representing the flock to
be maintained which is described as a set of coordinates in the plane, relative to
n point representing the leader.

Obviously, in order to achieve flocking robots need to re-organize their forma-
tion whenever the leader changes its position. Therefore the definition of flocking
has to capture the mobility of the flock.

Formally, the flocking problem can be defined as follows:

Definition 2 (Flocking). Let S be a system of robots and let P be the flocking
pattern. S verifies the flocking specification iff the robots satisfy P infinitely often.




ol 1), Canepa and M. Gradinariu Potop-Butucaru

4 Architecture of a Flocking System

Ih the following we define a possible architecture for a flocking system. The
architecture is composed of three modules : the leader election module, the
preprocessing module and the flocking module.

The leader election module is the base of the architecture. This module
accepts as input a set of robots arbitrarily distributed in the plane and
olocts a leader. Results related to the impossibility of leader election and
detailed description of probabilistic solutions for leader election are proposed
in Scetion 5.

The preprocessing module prepares the group of robots for the moving for-
mation. All robots but the leader are placed on the smallest enclosing circle.
Then, all robots on the smallest enclosing circle form a circular moving for-
mation using as reference point the leader computed by the leader election
module. One robot in this set will further act as the head of the flock. The
preprocessing module is propose in Section 6.

— The flocking module receives as input a moving formation which initially
has a circular form defined by a refercnce robot and a head and provides
the necessary rules to move this formation in the plane whenever the head
changes its position. The objective of the flocking module is to ensure the
formation moving while keeping its properties. The algorithms for moving
the formation are proposed in Section 7.

5 Leader Election Module

In this section we prove the impossibility of deterministic leader election. Gener-
ally, the impossibility results can be circumvent by using randomization. In the
following we show that probabilistic leader election is impossible for 2 robots
.ems. However, the probabilistic leader election is possible for systems of size

ereater than 3.

5.1 Impossibility Results for Leader Election
In this section we prove the deterministic leader election impossible in Suzuki-
Yamashita and Corda models.?

Theorem 1. Delerministic leader election is impossible.

Proof (sketch). Lets consider n robots forming a regular n-gon with the local
x — y coordinates of each robot such that the y positive axis is directed towards
the next robot in clockwise. Assume also the x positive axis is such that the
n-gon has no value of z less than 0. Consider all robots have the same unit
of length. Without restraining the generality we consider in the following an
equilateral triangle. For a deeper comprehension, lets consider Figure 1.

2 Note that in [22] is proved the impossibility of leader election for n even, while in
[21] is shown that leader election can be deterministically solved for n prime and
robots not disposed in a n-gon.

T p—
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Fig. 1. Symmetric Configuration

Each robot can see a robot in (0,0) (itself) and other two robots in (%%gu)
and in (u, 0). Note that the three robots have the same view.

Assume a configuration such that the leader is the robot in (u,1). In our
example for ry the leader is 72, for ro the leader is r5 and for ry the leader is 71.
Each robot sees a different leader. Therefore, the safety property is violated.

Assume an initial configuration where there is no leader. In order to reach a
legal leader election configuration robots should move. Assume the algorithm ex-
ecuted by each robot makes them move towards a point (z’, y') of their system of
coortlinates and assume the scheduler chooses all robots to move concurrently.
The system reaches a configuration where the n-gon structure is maintained.
Moreover, in the new configuration robots have the same view. So, each deter-
ministic movement from a symmetric configuration leads to a symmetric config-
uration. Hence, the system never converges to a legal configuration.

Lemma 1. There is no probabilistic 9-robots leader election.

5.2 Probabilistic Leader Election

In this section we propose probabilistic solutions for leader clection for systems
with three or more robots.

Probabilistic leader election with 3 robots. The algorithm idea is to exploit
the asymmetry of a triangle. We choose as leader candidate the robot with the
smallest angle or the robot different from the other two robots in the case of




o 1. Canepa and M. Gradinariu Potop-Butncar

A isosceles triangle. The randomization is used only to break the symmetry ol
this particnlar case we use randomization in order to

equitateral triangles. Tor
hich we apply the method described above.

Creade an asymmelric t.ri:ulgh‘. O w

Iy Corupute the angle between every two robots.
21 if my_angle is the smallest then become Leader.
3) else if my_angle is not the smallest but the other two are identical
then become Leader.
1) else if All the angles are identical
then move perpendicular to segroent linking the other
two robots in opposite direction witll probability l;

Algorithm 5.1. Leader election algorithm

Lemma 2. Algorithm 5.1 converges to the leader election specification in finile
number of steps in expectation in the Corda model refined with a k-bounded

scheduler.

Probabilistic leader election with more than 3 robots. In the following
we propose a leader election algorithm for systems with more than three robots.
[ntuitively, the leader robot will be the robot whose position is the closest to the
center of the smallest enclosing circle (S FC). Additionally, we would like the ’
leader to define a second reference together with the center of SEC. Therefore,

the leader should not be placed on the center position. If a robot is initially
positioned in the center of the smallest enclosing circle then a preprocessing
phase is executed. The robot in the center moves to a free position chosen non-
deterministically inside the SEC. The leader election algorithm idea is as follows.
Robots randomly change their positions until only one of them is the closest to

the SEC.

1) Compute the smallest enclosing circle SEC.
2) Compute the distance d mysel f to the center of SEC.
3) if (domysel f < di ¥k mysel f, where 1<k<n )
then { become leader:
exit; }
4) if (domysel f < di ¥ k& mysel [, where 1<k<n )
then { move to the center of SEC with probability p = } of a
distance domyself -p)}

Algorithm 5.2. Leader election in systems of size n > 3

Definition 3 (Leader election legitimate configuration). A legitimate
configuration for Leader Election is a configuration with an unique robot closest
1o the center of the smallest enclosing circle.
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configuration for the leader

Lemma 3. Algorithm 5.2 converges to @ legitimate
ctation in the Corda model

election problem in a finite number of steps in €xrpe
refined with a k-bounded scheduler. :

6 Preprocessing Module: Setting a Moving Formation

set the motion pattern used further in the flocking
leader election algorithms proposed in Section
First, all robots but the leader are placed
the circle will be placed in

In this section we gradually
algorithm. We build on top of the
5.2. The construction takes two phases.
on the smallest enclosing circle. Then, the robots on

their final positions for motion.

6.1 Phase 1: Placement on the Smallest Enclosing Circle

[n this section we propose an algorithm for placing robots on the smallest en-

closing circle. This algorithm uses as building block the leader election algorithm
proposed in the previous section. Once this algorithm is stabilized all robots but
the leader are placed on the <mallest enclosing circle. Note that the leader does
not change during this phase.
The algorithm works “in waves” . First, the robots closest to the bounds of
the smallest enclosing circle are placed. Then, recursively all the other robots
but the leader are placed. The robots that should occupy a position that is
already occupied by another robot will be placed on a free position between the
robot that occupied their position and the next one on the smallest enclosing
circle. We assume the robots agree on the same direction of the Ox axis given
by the center of SEC and the leader position and the same direction of Oy axis.
Our algorithm is collision free and works in the Corda model with arbitrary fair
scheduler. Note that in [25] the authors propose similar deterministic solutions
forrSum]ki»Yamashita model. Interestingly, our algorithm has the same time
complexity as the solution proposed in [25].
The following definitions introduce key functions used by Algorithm 6.1.

Definition 4 (FreeToMove). Let FreeToMove be the set of robots without
robots between themselves and the SEC (including the border) along the radius
passing through them, and that do not belong to the border of S EC.

Definition 5 (Placed). Let Placed be the set of robots belonging to the border
of the SEC'.

Definition 6. A legitimate configuration for Algorithm 6.1 is a configuration
where all robots but the leader are Placed.

Note that the algorithm does not change the leader position neither the position
of Placed robots. Moreover, there is no robot between the leader and the SEC.
Otherwise this robot is the closest to the center of the SEC hence the real leader.
The correctness of Algorithm 6.1 comes from the following lemmas.
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Yr, compule the value of the radius passing through r;. Let rad,, be the value
of the angle between my radius (radmysery — 0) and the radiusg of robot r, in
clockwise direction

W, eompute the value of distr. distance of the robot r; to the border of the
smallest enclosing circle (SEC)

Predicates:
Leader(myself) = ¥r; with @ # mysel f, disty < distimyself

Functions:

Oceupied! dosition(radnyse ) @ returns v, i # mysel f disty, = 0 and rad,, =
radmysel f otherwise L

NertToMove : returns the set of closest robots r to the SEC with dist, # 0

1) if ( ~Leader(mysel ) A mysel f € FreeToMove)

then { move to SEC with distance distmyself b

2) if (—~Leader(myself) A (mysel f & NextToMove) A (Freel'oMove =
) A (OccupiedPosttion(radmyeel e L)

then { Move to the middle point of the arc between  robot
OccupiedPosition(radmyser ¢) and robot r; belonging to the SEC such
that rad; is minimum. }

Algorithm 6.1. Positioning Algorithm executed by robot my_sel f

Lemma 4. If two robots ry and r; belong to the set FreeToMove, then themr
final position will be different.

Lemma 5. A robot always moves towards a free position on the SEC.

Lemma 6. Algorithm 6.1 is collisions free (two robots never move towards the
same free position).

Lemma 7. Algorithm 6.1 converges in a finite number of steps, O(n), to a
legitimate configuration.

6.2 Phase 2: Setting the Flocking Configuration

In this section we propose an algorithm that starting from the final configuration
of Algorithm 6.1 reaches a flocking pattern or moving formation having the
singularity property detailed later.

Initially, we place robots in a circular moving formation then in the final
moving formation. The circular moving formation has the following shape: ry
is inside SEC (the one computed by Algorithm 6.1) and all the other robots
are placed on its border. These robots are placed as follows: a robot 71 15 in the
position SECN[O, 7o) and the others, uniformly disposed on the semi-circle that
does not contain r; and that ends in the points given by the intersection of 5 EC
with the perpendicular on [0, rg) that passes throu gh O (SECN(L[O,70) on O)).
In the following this configuration will be referred as circular moving formation
(see Figure 2 for a seven robots example).
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Fig. 2. Circular moving formation

In order to construct the circular moving formation we use the concept of

oriented configuration [21]:

Definition 7 (oriented circular configuration). A configuration is called

circular oriented if the following conditions hold:

1. AN robots are at distinct positions on the same circle SEC, except only one

of them, called 7o, located inside SEC ;
2. 1o 1s not located at the center of SEC;

Note Algorithm 6.1 verifies point 1 of the above definition and is collisions free
contrary to the solution proposed in [21]. Note also the leader election algorithm
chooses a leader such that it is the closest to the center of SEC without reaching
this center. If the leader is initially in the center, we recall that a preprocessing
is performed in order to take care of this particular case. The leader election
algorithm is executed only after the end of the preprocessing phase.

We now describe Algorithm 6.2. The algorithm makes use of the following
function: FinalPositions(SEC, p1). This function returns, when invoked by a
robot, the set of positions in the circular moving formation with respect to SEC
and the point p;. p; is the intersection between the segment [0, o) and the circle
SEC. The order of positions and robots is given clockwise starting with position

p1. Started in an oriented configuration Algorithm 6.2 eventually converges to
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a configuration where robots are disposed on SEC following the restrictione
imposed by the Final Positions function.

Functions:
get_number{mysel [} returns the number of robots between mysel f and
position p1 (including robot myself) clockwise
get_position{myscl f ) returns the position get_number(mysel f)
in Final Positions(SEC, m )
FreeToMove(mysel f) returns true if there are no robots between mysef
and get_position(mysel f)

Maotion Rule:
if FreeToMove( myself] then
move to get_position{inyself)

Algorithm 6.2. Setting the moving formation executed by robot myself

The idea of the algorithm is as follows. Robots started in an oriented conlipu
ration reach their final positions. If a robot is blocked by some other robot. then
it waits until this robot is placed in its final position. In the following we prove
no robot is blocked infinitely.

Lemma 8. In a systern with n robots Algorithm 6.2 started in an oriented con
figuration converges in finite number of steps, O(n), to a configuration where all
robots reach their final positions computed via I inalPosttions function.

We formally define the moving formation as follows:

Definition 8 (moving formation). A set of n > 4 robots, To,...Tn, &5 «
mouving formation if:

— 1, and ry define the Oy axis of the system such that: the y coordinate of
equals 0 and the positive values are in the ry direction:

— the axis Ox is perpendicular to Oy in ro and has posilive values at the vighl
of Oy;

— all the other robots are such that:

e #E rpandr; # To= Y, <0
Vry, T3, Tr, F Trys
3 r; such thot x,, = —Tr,
Ty, | > @y, | then lyri| < |'.7)'-r35
5. there exists an unique robot with © =0 and y <0

The following theorem states the singularity property of the moving formation
defined above. More precisely, we show that there is only one formation thal
satisfies Definition 8 when n > 4. Note that for the case n < 4 the formation
defined by Definition 8 is not unique. In the sequel we consider systems with
more than 4 robots. For the case n < 4 simple adhoc algorithms can be designed
on top of the algorithms proposed in Section 5.2.
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The moving formation defined by Definition & is stngular when

‘orollary 1. Algorithm 6.2 started m an oriented configuration eventually
fﬂacc.&: n robots in a circular moving formation if F' indPositions returns a set

of positions verifying Definition 8.

Flocking Module

“In this section we propose a flocking algorithm. The flock of robots verifies the
noving formation defined in Definition 8 and follow the head robot (the robot
oferred as robot r;) whenever this head changes its position. In the following
he robot g of the moving formation will be called reference robot and the robot
1 leader. The only constraint imposed to the system is: the leader cannot move
quicker than the slowest robot in the set. The algorithm idea is as follows. When

“ the head of the group moves, it is followed within a distance & (a parameter of
the algorithm) by the reference robot. Then the closest robots to the reference
nove within a distance € (another parameter of the algorithm) to the reference
and so on till all the robots in the group move. Note the algorithm has three

. parameters: the speed of the leader, the distance between the leader and the
 reference and the distance € between the successive rows of robots. The moving
formation can be scen as a virtual tree where levels are linked to each other via

virtual springs (Figure 3).

Input: ro,71...Tn & moving formation

Functions:
TheMost Exterior(rmyseis) returns true if |ze, o0l = |2 | Wi
Y Closest Exterior(rmysets) returns the y coordinate of rez:t, the robot
such that (|Tr.g| = [Erpyeers|) 8 minimum and positive

. if (Pmysety == m): { move ahead at a speed <  Umaz }> Vmaz 1S 8
parameter of the algorithm

. if (Peysety == ro): { follow the leader within a distance § }

3. if (rmysets # 10,71 & ThefvfostEmte-rior(T,,lyse_;f] ) { move ahead
following y = yr; towards the point (@r;s-€); }

. (Pmysets # 70,71 &~TheMostExterior(rmyset)): { move ahead following
y =y, towards the point (zr;, YC losestExterior (Tmyseis) — €); }

Algorithm 7.1. Flocking executed by robot rmyself

Lemma 9. Algorithm 7.1 preserves the moving formation (Definition 8).
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Fig. 3. Animation for Algorithm 7.1

& Conclusions and Open Problems

In this paper we proposed an architecture for building a seli-organizing At
stabilizing Hocking architecture. Contrary Lo the existing worl on this topic o
flocking architecture does not assume the existence of a specific leader a priory
known to the robots in the network. In our approach robots are anonymaons annd
uniform.

Onr architecture includes three modules: a leader election module. a prepro-
cessing modnle and a motion module. For each of these modules we propose
deterministic or probabilistic algorithms (in the case when deterministic solu
fions are impossible).

This work can be scen as a preliminary study for the design of a general
fault-tolerant flocking architecture where the group of robots verity a generie
pattern and follow the head whatever its direction. Additionally, we currently
investigate probabilistic algorithms that improve the leader election part of ow
architecture. In particular, we are looking for leader election solutions in the
Corda model refined with an arbitrary scheduler. The idea of these algorithms is
to use analogical strategies for election. That is, the robots candidate to a leader
position choose probabilistically a free position on their corresponding radius in
the smallest enclosing cirele.
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