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Abstract
Summary: Shufflet is a program and a web-application
that generates fast random shufflings of sequences (DNA,
protein or others), conserving the exact k-let counts for a
given k. The sequences are sampled uniformly from all the
valid permutations.
Availability: As a web application: http://www.genetique.
uvsq.fr/eivind/shufflet.html. Source code is available on
request for academic use.
Contact: coward@genetique.uvsq.fr

Shuffled DNA or protein sequences are often used in
Monte Carlo methods for obtaining statistical significance
for properties of the observed sequence, such as sequence
similarity (Lipman et al., 1984; Comet et al., 1999). It is
incorporated in sequence analysis programs such as RDF
(Lipman and Pearson, 1985) and Bestfit (Devereux, 1989).
However, a simple shuffling of the letters obscures the
frequencies of dinucleotides, trinucleotides (or -peptides)
etc., which are often biased, properties that one might
wish to conserve for the shuffled sequences. The program
Shufflet presented here generates random shufflings that
conserve the exact counts of all words equal to or shorter
than a given length k. Such words will be referred to as
k-lets, or singlets, doublets, triplets etc.

As input, Shufflet accepts one or more sequences
in Fasta format (each sequence preceded by a header
beginning with >), or a single sequence as plain text.
Using the web page, the input can be given as a file
or pasted directly into the form. The desired number of
shuffled sequences are output in Fasta format.

For example, for k = 2, the sequence ACTAGT
permits the doublet-preserving permutation AGTACT, but
no others except the original sequence. Of course, longer
sequences usually permit many permutations. Note that
a high value of k severely restricts the number of valid
permutations, and for short sequences one will often end
up with the ‘shuffled’ sequence equal to the original one.
Very roughly, the sequence should be longer than to the
order of 4k bp (DNA) or 20k aa (protein), corresponding

to one expected occurrence of each possible k-let in the
random uniform case.

Note that the first k − 1 letters are the same in all the
shufflings, as well as the last k − 1 letters. This is a
consequence of the conservation of k-lets. For example,
for k = 2, if the sequence begins with an A (and does
not end with an A) it follows that the number of doublets
beginning with an A is one higher than the number of
doublets ending with an A. This property can only hold
if the whole sequence begins with an A.

When comparing DNA sequences, the similarity be-
tween random shufflings of the respective sequences
is often much larger if one conserves the dinucleotide
frequencies (Fitch, 1983). Thus, using simple letter shuf-
flings can give statistical significance to similarities that
can be explained solely by the dinucleotide bias, which is
not what we want. An example demonstrating this effect
on alignment scores for two short DNA sequences can be
found on the web page.

The choice of k, or how many neighbour constraints
to put on the sequences, is not evident and will vary
from case to case. Whatever choice is made, an important
requirement for the Monte Carlo method to work properly
is that the random shufflings are sampled uniformly from
the set of all possible shufflings, that is, every valid
permutation should appear with the same probability.

The need for such constrained shufflings has been
pointed out by several authors, and different algorithms
have been proposed. Fitch (1983) described a method for
doublet-conserving shuffling, based on Euler paths on
directed graphs, but it does not give a uniform sample
of valid permutations. Altschul and Erickson (1985)
presented a more elaborate algorithm, also based on
Euler paths, which satisfies the requirement of uniform
sampling. Kandel et al. (1996) improve a crucial step,
permitting larger k and larger alphabets (protein instead
of DNA), and they prove that their algorithm produces
a uniform sample. A completely different approach
is the iterative swapping method (Unger et al., 1986;
Kandel et al., 1996), which produces a uniform sample
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asymptotically.
An alternative to shuffled sequences is the use of

sequences generated by Markov chains of order k −
1, whose transition probabilities are estimated from the
original sequence. This method is probably more used,
because it is simpler to implement, but it conserves only
the expected frequencies of k-lets, not the exact counts.
The Markov method will often give results similar to
shuffling for long sequences, but Altschul and Erickson
(1985) demonstrate that there may be notable differences.
The shuffling method has the advantage of providing a
simply defined pool for our random sequences, and it is
a direct generalisation of the commonly used simple letter
shuffling, while the Markov method is not. See also the
discussion by Fitch (1983).

In spite of the importance of shuffling in many ap-
plications and the fact that these algorithms have been
known for years, there are to the author’s knowledge
no implementations readily available to the public. The
web-application presented here is an attempt to fill the
gap. It is based on the Euler algorithm of Kandel et al.
(1996), which has the advantages of being fast (essen-
tially linear in time with respect to sequence length) and
producing a uniform sample in a finite number of steps.
The algorithm is based on constructing Euler paths on
a directed graph, whose vertices represent the distinct
(k − 1)-lets, and whose edges represent all the k-lets.
The graph is represented in memory simply as a table
of k-let counts, which is much more space-efficient (for
k > 2) than the representation proposed by Kandel et al.
A description can be found on the web pages. See also
Kandel et al. (1996) for more details and proofs.

Usually, conservation of k-lets implies conservation
of shorter words. However, this may not hold if the
sequence begins and ends with the same (k − 1)-let.
Such sequences are called cyclic by Kandel et al. For
example (for k = 3) the sequences ATAT and TATA have
the same triplet counts, but different doublet counts. The
original algorithm by Kandel et al. (1996) only requires
conservation of k-lets, thus permitting such shufflings. I
have chosen the more restrictive conservation of words
of length k and shorter (in accordance with Altschul and
Erickson, 1985), believing that this is usually wanted.

For a fixed k, and assuming a fixed number of different
k-lets, the algorithm is linear in time and space with
respect to sequence length. Because of the graph size,
it is exponential with respect to k, but this is not a
problem for practical values of k. On our web server,

a Digital DEC/Alpha 2100, 100 shufflings of a 10 kb DNA
sequence (1 Mb output) with k = 6, take about 2.5 s, and
100 shufflings of a 1000 aa protein sequence with k = 3
take less than 1 s.

An essential but often neglected part of stochastic
simulation is the random number generator. A bad
pseudo-random number generator can severely bias the
results, in spite of theoretical guarantees of uniform
sampling. Rather than relying on an implementation-
dependent generator (some of them have turned out to
be unsatisfying), I have used the one of Ripley (1987), a
standard linear congruential generator that is documented
to behave well to statistical tests. The current seed is
saved in a file between each run, effectively making one
long series of pseudo-random numbers.

Shufflet is written in C and can be run independently
of the web interface. For academic users, the source
code is available for compilation on any C platform or
incorporation into other programs.
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