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Alignments of RNA structures

Guillaume Blin, Alain Denise, Serge Dulucq, Claire Herrbaahd Hlene Touzet

Abstract—We describe a theoretical unifying framework to also leads to the introduction of hew comparison models. In
express comparison of RNA structures, which we calélignment  particular, we propose in Sections IV-B and V a polynomial
hierarchy. This framework relies on the definition of common time algorithm for the problem of comparing twoENTED

supersequences for arc-annotated sequences, and enconyess . . .
main existing models for RNA structure comparison based arc-annotated sequences with a full set of edit operations

on trees and arc-annotated sequences with a variety of edit (including arc-altering and arc-breaking), whereas thedié
operations. It also gives rise to edit models that have not operations yield a non polynomial time algorithm in the edit

been studied yet. We provide a thorough analysis of the align- distance scheme. We provide a full analysis of the complexit
ment hierarchy, including a new polynomial time algorithm of this algorithm in the worst case and in average in pardgrap

and an NP-completeness proof. The polynomial time algorithm . . .
involves biologically relevant evolutionary operations, such as V-C and V-D, and demonstrate its applicability on RNA se-

pairing or unpairing nucleotides. It has been implemented in guences in paragraph V-E. We also preselNPacompleteness
a software, called gardenia that is available at the web server result that gives some new insight on the hardness of the

http://bioinfo.lifl.fr/RNA gardenia. comparison of MSTED arc-annotated sequences with arc-
Index Terms— Computational biology, RNA structures, arc- altering and arc-breaking operations (Section 1V-C), ie@n
annotated sequences, NP-hardness, edit distance, algorithm previous results of [5], [22]. This leads to an almost exhigas
study of the alignment hierarchy.

I. INTRODUCTION

_ _ 11. EDITION MODELS FOR ARGANNOTATED SEQUENCES
Non-coding RNA genes are now known to play essential o )
roles in the cell, and comparison of RNA molecules has Gven a finite alphabet’, an arc-annotated sequence is

attracted a lot of interest recently. Broadly, one canwiatish d€fined by a paits, P), whereS is a string of>* and P is a

two combinatorial models for RNA structures: macroscopR€t Of arcs connecting pairs of characters'ofrcs correspond
representations, with two-interval graphs [8], [28], anitnor to hydrogen interactions between bases. In _referer_1ce_ to RNA
scopic representations with arc-annotated sequencesMiL] structures, chargcters are callegkses Bases wnh no incident
focus here on arc-annotated sequences. In this formalism,24C aré calledsingle basesAs usually done in the study
RNA molecule is represented as a raw sequence of nucleoti@b@rc-annotated sequences, we distinguish four levelsf a
provided with related additional information in the form oftructure, originally proposed by Evans in [11]:

arcs connecting pairs of positions. The set of arcs comssitu « UNLIMITED (UNLIM) — no restriction at all,

the secondary and the tertiary structures of the molecutie-I ~ « CROSSING (CROS) — there is no base incident to more
termines the way the sequence folds into a three-dimerisiona than one arc,
space. o NESTED(NEST) — there is no base incident to more than

When it comes to compare arc-annotated sequences, four One arc and no arcs are crossing,
main paradigms have been proposed so far: tree edit diss PLAIN —there is no arc.
tance [9], [10], [21], [27], [29], tree alignment [18], loagt Since we focus here on structure comparison, we do not
common arc-preserving subsequence [11], [17], [22], amdnsider RAIN sequences, which do not carry any structural
general edit distance [5], [16]. In this paper, we introdace information. In the remaining of this paper, we shall onlyade
unifying framework to address the problem of arc-annotatedth sequences of type &8TED, CROSSINGand WNLIMITED.
sequence comparison that is based on the definition of thdn order to compare two arc-annotated sequences, we con-
common arc-annotated supersequentgis framework has sider the set of edit operations and their associated costs
several instances depending on the definition of the emhgddintroduced in [23], and classify it into two groups:
involved in the notion of supersequence, and the type of tReSubstitution operations, inducing renaming of bases in the
supersequence @$TED, CROSSINGOr UNLIMITED). It gives arc-annotated sequendease-match(w,, : ¥2 — R), base-
rise to a hierarchy of problems, that we call thkignment mismatch(w,, : £? — R), arc-match (wa,, @ Z* — R),
hierarchy in reference to the tree alignment of [18]. Wearc-mismatch(wg,, : ¥* — R).
show that this hierarchy brings together all four previgusle Deletion operations, inducing deletion of bases and/or of
mentioned comparison models for arc-annotated sequelicesurcs:
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Although this is not explicit in the notation, the cost of angcript whose cost equalsost (u,w, K) + cost (v, w, K).
deletion operation depends on the values of the affectegsbad hus the edit distance is lower than or equal to the cost of
The definition in [23] is slightly different: deletion opéians w.

are defined in such a way that they cannot change the valug-ef) Conversely, let\ be aK-edit script fromu to v of cost

the remaining bases. For example, changirig-aC base pair «. We show that there exists a commAnsubsequence whose
into two single base&’ and A needs two operations: at firstcost is lower than or equal te. According to the parsimony
an arc-breaking, then a base-mismatch fi@rto A. Here, we principle, each position ofi or v is affected by at most one
choose to allow them to change the bases incident to the ateletion operation inV/. If not, M is not optimal and can be
Hence, in the above example, only one arc-breaking has todimplified so as to eliminate redundant operations. Novgesin
done. It can be easily seen the two models are equivalent,dach position of; or v is concerned by at most one operation,

changing the costs of the operations. we are ensured that there are no conflicting paiespairs that
This set of operations allows us to define three edit modehare a common base which is concerned by two operations
| : all substitution operations, base-deletions and on its adjacent arcs. It follows that the script may be modifie
arc-removings are allowed, in such a way that all deletion rules anapply before any
Il : the operations of model | and arc-alterings deletion rule orv. A common K-subsequence of v andv
are allowed, can then be obtained by applying toall the operations of
Il : the operations of model Il and arc-breakings are  the reordereds-edit script appearing before the first deletion
allowed. rule onv. The cost ofw is lower than or equal tex. ]

We now turn to a novel paradigm to compare arc-annotated
dsequences, simply considering-supersequences instead of
K-subsequences. We shall see that this alternative point of
view is a fruitful perspective and that it brings new insght
on arc-annotated sequence comparison.

Given two arc-annotated sequeneeandv, and K in {1,111l }
a K-edit scriptfrom v to v refers to a series of non-oriente
operations of the modek’ transformingu into ». The cost
of a K-edit script from v to v, denotedcost (u,v, K), is
the sum of the costs of each operation involved in Kedit

script. We define thdt-edit distancebetweenu andv as the  pefinition 2 (K -supersequence)Given two arc-annotated
minimum cost of ak -edit script fromu to v. Finding thisK - sequences: and v, and an edit modeK € {111,111}, u is

edit distance is called the [ET(uJ)ZK) problem. For e_ach said to be ak-supersequence of if, and only if, v < w.
model K € {I,11,1l1}, we also define the@rdering relation

dg: if uw can be obtained fromy by a series of deletion In a similar way as for common subsequences, given three

and substitution operations of the modgl, thenu <x v. arc-annotated sequences v and w, w iS a common K-

Provided with these notations, we propose to extend themotisupersequencef v and v if v < w andv <g w. The

of subsequence on plain sequences to arc-annotated sequetmst ofw is defined axost (w,u, K) + cost (w, v, K).

as follows. We saw in Lemma 1 that®T problems amount to finding
optimal subsequences. We prove that eachTEproblem can

Definition 1 (K-subsequence)Given two arc-annotated se-also reduce to finding an optimal supersequence.

qguencesy and v, and an edit modeK € {1, 1I, 111}, u is said

to be aK-subsequence af if, and only if,u <x v. Lemma 2 Given two arc-annotated sequencesnd v, and
an edit modelK € {l,1l,1ll'}, there exists a commo# -

Given three arc-annotated sequeneesy and w such that gypsequence af and v of costa iff there exists a common

w dg wandw <k v, wis said to be acommonK- [ .supersequence af and v of the same cost.
subsequencef v and v. We define the cost of a common

K-subsequencav of v and v as the minimum sum of Proof: (=) Letu = (S, P), v = (T,Q) andw = (R,U)
operation costs needed to transforminto w andv into w: be three arc-annotated sequences suchuthata commonk -
cost (u,w, K) + cost (v,w, K). subsequence af andv. For each position of R, let ¢ (i, R, S)

When dealing with plain sequences, it is well-known thdtesp. ¢(i, R,T)) denote the position of the character $h
each edit script can be associated with a common subsequelfieép.7) from which the characteR]i] is obtained. We build
of the same cost. This property is still valid with-edit scripts @ K-supersequence = (V, W) of u andv as follows:

on arc-annotated sequences. V= Sy Ty R[1] So Ty R|2]...S, Ty R[n] Spn+1 Tni1
W= w(1), 10 (5)); (i,5) € P

Lemma 1 Given two arc-annotated sequencesnd v, and é(zf(év)(;f 1/()78»( (g)j) c }é}

an edit modelK < {111,111}, solving the EDIT(u,v, K) T

problem is equivalent to finding a commdt-subsequence Where n is the length of R and S; (resp. T;) denotes
w of w and v of minimal cost. S[qb(z -1, R, S) + 1..¢(i, R, S) — 1] (resp.T[¢(i -1, R, T) +
1..¢(¢, R, T) — 1]). By convention, we haves(0, R, S) =

Proof: (=) Let w be a commonK-subsequence of ¢(0,R,T) =0and¢(n+1,R,S) (resp.¢p(n+1, R, T)) is the

u and v. By definition, we havew <x w andw <k v. last position ofS (resp.T). ¢, (resp.i,) is an application that

Therefore, there exist two series of operations of the modedsociates to each base®{resp.T’) the corresponding base

K that respectively transform into w and v into w. It is in V. By constructiong is indeed a common supersequence of

straightforward to verify that these operations induce dit e v andv. We now turn to prove that its costds First, note that
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m o (@" o @ £y OUTPUT. a commonkK-supersequence of typeC' of mini-
_de@_@e _U___@ _é}) ¢¢ %}‘ie mum cost.
% The purpose of this paper is to study exhaustively the align-
L M ment hierarchy and confront it to known results for existing
NESTED CROSSING comparison models for arc-an_notated sequences. _
supersequence supersequence What is the number of different instances in the hie-
rarchy? Since AIGN(A,B;K) — C(C is equivalent to
Fig. 1. Comparison of the optimal common subsequence and thmalpti ALIGN(B,A,K) — (C, we can always assume thBtC A.

common supersequences for a pair of arc-annotated sequeneesbhbccadd ; ;
and v = bbeccdde. The optimal common subsequence (first picture) iévloreover’ in order for the prObIem to be meanlngful, we

derived fromu and v with two arc-removing operations. The optimal com-Impose A C C'. Therefore, the hierarchy contains thirty
mon NESTED supersequence requires four arc-removing operationsridecadistinct entries, ten for each edit model, when considesihg
picture). In this example, it is necessary to allow crossimgs ain the relevant possibilities ford, B, C' and K.
supersequence to get the same cost as for the subsequenteighire). . . . .
The first noticeable result is that theLi&sN hierarchy
includes all instances of the edit distance problem, asdiat
cost (z,u, K) = cost (v,w, K). Indeed, in order to obtain Theorem 1. This is a straightforward consequence of Lemma

u from z, or w from v, one just has to delete all bases and ardsand Lemma 2.
originated fromv without being inw. By a similar reasoning,
we can show thatost (z,v, K) = cost (u, w, K). It follows
thatcost (z,u, K) + cost (z,v, K) = a.

(<) The reverse direction is similar. The common subsé -GN (
quence is obtained as the intersectionuoind v, instead of  The three next sections are devoted to the study of the

subsequence

Theorem 1 Given two typesA, B in {NEST, CROS UNLIM }
and an edit modelK” € {I,I,Ill}, the EDIT(A, B, K) and
A, B, K) — UNLIM problems are equivalent.

considering the union as in the previous case.iLet (S, P), alignment hierarchy for each edit modsl in {111,111 }.
v=(T,Q) andz = (V, W) be three arc-annotated sequences
such thatx is a common K-supersequence of, and v. I1l. ORDERED TREES AND EDIT MODELI

The subsequence = (R,U) is defined as follows:R is  comparing arc-annotated sequences B5RKEDtypes when
the common subsequence composed of conserved positighssidering the edit model | amounts to comparing ordered
betweenS and 7" in the mapping induced by and trees. Each pair of connected bases corresponds to anahtern

U= {(¢(i,R,S),0(j,R,S)); (i,7) € P} node, and each single base corresponds to a leaf. In thissmode
N {(¢(k, R, T), (1, R,T)); (k,1) € Q} considering supersequence oflUMITED type is meaningless
as stated in Lemmas 3 and 4.
We have cost (z,u, K) = cost (v,w,K) and
cost (z,v,K) = cost (u,w, K). Hencecost (uv,w,K) + Lemma 3 Given two typesA, B in {NEsST,CRros}, the
cost (v,w, K) = o B ALIGN(A, B,I) — UNLIM and ALIGN(A, B,1) — CROS

In Lemma 2, it is worth to notice that the type of theyoplems are equivalent.
common supersequence is not guaranteed to be the same as
the type of the common subsequence. Figure 1 illustrates Proof: Only arc-altering and arc-breaking operations
such an example. The edit script associated with the optint@hich are prohibited in this edit model) can create mudtipl
Subsequence (WhICh is of $TED type) has a smaller costalCs incident to a Single character — which is the only priyper
than the edit script associated with the optimakdvep that arc-annotated sequences ¢tdSsINGand WNLIMITED
supersequence. Indeed, when constructing the set of arcdyges do not have in common. u
the commonkK -supersequence af (above) andv (below), ) )
it is likely to create crossing or multiple arcs that are aseL€Mma 4 Given a type B in {NEesT,CrOS}, the
from the initial sequences. In general, when considering a*L/6N(UNLIM, B,1)  — UNLIM problem has the same
annotated sequences oEBITED types, searching for a com-COMPlexity asALIGN(CROS B, 1) — CROs
mon NESTED supersequence is more restrictive than searching pyoof:  Since this edit model does not allow for arc-

for a common subsequence. In example of Figure 1, it ffering or arc-breaking operations, all multiple incitancs
necessary to authorize crossing arcs in the supersequencgnbyid be deleted with an arc-removing operation, which can
get the same cost as for theoE problem. This observation e gone in linear time. So theNdIMITED arc-annotated se-
gives rise to a family of new problems, which we call thgence is rewritten into a@ssinGarc-annotated sequence.
alignment hierarchy Conclusion stems from Lemma 3. [ ]
Together with Theorem 1, these two lemmas imply that nine
Definition 3 (Alignment hierarchy) Given three types of se- oyt of ten entries of the model | are equivalent or reduce to
quenceA, B and C of {NEsT,CrOS UNLIM} and an edit gp 1 problems. The only problem that does not reduce to an
model K" € {1, 11,111}, the ALIGN(A, B, K) — C problem is gt problem is AIGN(NEST, NEST, 1) — NEST, which fully
defined as: corresponds to the ordered tree alignment, introducedamngJi
INPUT: two arc-annotated sequencesand v of type A and et al. in [18]. Therefore, the AIGN hierarchy is completely
B respectively. solved for the edit model I, as summed up in Table I.
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AxB—C EDiT model | allow us to conclude that <j; v, which impliesu <;; v by
NEST x NEST — NEST O(n*) - Jiang [18] transitivity of <.
NEST x NEST — CROS We have to consider several cases according to the status

NEST x NEST — UNLIM X O(n®log(n)) — Klein [21]
CROS x NEST — CROS

of T'[i] for the construction ofv. We noteS’ (resp.S”) the

CROS x NEST — UNLIM X O(n3log(n)) — Ma [24] image of T'[1..i — 1] in S (resp.T[i + 1..|T]) in the mapping
CROS X CROS — CROS M. By construction, we havé’S” = S.
CROsx CROS — UNLiM | X NP-complete — Ma [24] —TYi] is a single basew is defined byl/ = T[1..i —1]o TTi +
UNLIM X NEST — UNLIM x O(n? log(n)) — Lemma 4 1..|T|] and R = Q. We havew < v sincew is derived from
UNLIM X CROS — UNLIM X NP-complete — Ma [24] v by a base-deletion of'[i]. The arc-preservation property
UNLIM XUNLIM — UNLIM X NP-complete — Ma [24] betweenu and w still holds. So the induction hypothesis
TABLE | implies u < w.
ALIGNMENT HIERARCHY FOR THE EDIT MODELL. In the other caseq;[i] is a paired base. Létbe the position

of its partner (i.e.(i, k) € Q).
According to Lemma 3, the ten problems of the hierarchy reducseten — If there exists a positiohin S such that(k’ l) belongs toM:

distinct instances. We indicate entries that can also bmdtated as edit ; ;
problems withx in the second column (see Theorem 1). Complexity resuléccordmg to the arc preservation property ferand v, S[l]

are indicated for two arc-annotated sequencesd s.t.max(|u|, [v]) = n. IS @ Single base. We defirié = T'[1..i — 1] o T[i + 1..|T'|] and
R = Q—{(i,k)}. We havew<| v sincew is derived fromw by

an arc-altering of'[i] andT'[k]. The arc-preservation property
V. THE EDIT MODEL Il betweenu and w still holds. So the recurrence hypothesis
implies v <) w.
) ) — k is not mapped to any position il with M : We definew
As introduced by Evans in [11], the ANGEST ARC- jg the arc-annotated sequence obtained frdoy application
PRESERVING COMMON SUBSEQUENCEproblem (LAPCSfor  of an arc-removing operation ofi, k). The arc-preservation
short) is defined as follows: given two arc-annotated secggen property betweenu and w still holds. So the recurrence
u and v, find the longest — in terms of sequence length hypothesis implies: <Ijj w. -
common arc-annotated subsequencef u andv such that This theorem combined with Theorem 1 allows us to derive
an arc(i, j) in w can only be obtained from both an arc inseyera| cases of the alignment hierarchy for the edit model
u and an arc inv (i.e. arc-preserving). We prove hereaftef; from results of the lapcs literature. All known results
that the Lapcs problem is a specific case of the common.« summed up in Table Il. APcS(NESTED, NESTED), that
subsequence problem when considering the edit model c!brresponds to AGN(NEST, NEST, Il) — UNLIM, is known
namely the BIT(A, B,Il) problem, provided that the score, be NP-complete, and so doAPCS(CROSSING NESTED),
system for edit operations is correctly chosen. The cost OfLQ\Pcs(CRossmq CROSSING, LAPCS(UNLIM, NESTED),
base-deletion or of an arc-altering 1s the cost of an arc- LAPCS(UNLIM, CROSSING and LAPCS(UNLIM, UNLIM).
removing is2, and substitutions are prohibited, with arbitrary; remains four problems: BGN(NEST,NEST,II) —
high costs. {NEsT,CRrROS} and ALIGN(CROS {NEST, CRrROS},ll) —
CRros The first two problems can be seen as refinements
Theorem 2 Letu, v, w be three arc-annotated sequences. The | apcSNESTED NESTED). We solve them in the
sequencev is a longest arc-preserving common subsequengext two sections, and show that the first one is
of u and v iff w <) v andw <)) u. polynomial, whereas the second one NP-complete.
It follows that ALIGN(CROSNEsT,II) — CRrROs and

Proof: The proof relies on the following property:
LIGN(CROS CRroOS I CRos are alsoNP-complete.
Let v/ = (S,P) andv" = (T,Q) be two arc-annotated ( S st — P

sequences. We havé <, v’ iff S'is a common arc-preserving

subsequence df considering the implicit mapping — denoteds, A1 iGnN(NEST, NEST, 1) — NESTEDIs polynomial

M —from«/ to v’ induced byu’ < v'. ] ) )
(=) The proof is by induction on the number of edit rules The first rgsult that we present for the edit model Il is
necessary to reduce into u. All deletion rules of the edit concerned with the alignment of two BSTED sequences.

model Il (base-deletion, arc-removing and arc-alteririgiudy This is indeed a consequence of the more general algorithm
have the arc-preservation property. proposed for model Ill in Theorem 6 and Table IV (Section

(<) The proof is by induction on the difference of Iengthél)'

betweenS andT'. If S andT have the same length, we have

S =T and the condition on arc preservation yiellts= (). Theorem 3 ALIGN(NESTED NESTED,Il) — NESTED is

If T is longer thanS, then leti be the first position if" such polynomial.

that for any positionj in S the pair (i, j) does not belong

to M. It is enough to show that there exists an arc-annotat&tlis result is somehow unexpected since the associate
sequencev = (U, R) such thatu <) w on the one hand/ is edit problem BIT(NESTED, NESTED,II) is NP-complete. It
longer thanS, U is a subsequence df with arc-preservation shows that prohibiting crossing arcs in the superstrucisire
property on the other hand. Then the induction hypothedls wsufficient to make the problem polynomial.

A. Some correspondences with thepcs problem
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AxB—C EDIT model Il
NEST x NEST — NEST O(n*) — Theorem 3
NEST x NEST — CROS NP-complete — Theorem 4
NEST X NEST — UNLIM X NP-complete — Lin [22]
CROS x NEST — CROS NP-complete — Theorem 4
CROS x_NEST — UNLIM NP-complete — Evans [11]
UNLIM x NEST — UNLIM
CROS x CROS — CROS NP-complete— Theorem 4
CROS x CROS — UNLIM
CROS X UNLIM — UNLIM NP-complete — Evans [11]
UNLIM XUNLIM — UNLIM

TABLE Il

ALIGNMENT HIERARCHY FOR EDIT MODELII.

We indicate problems that can be formulated as edit distaraiggms in the
second column. In these cases, known results stem from Ake 4 .problem
(Theorems 1 and 2). Other problems are specific to thecA hierarchy
and are introduced in this paper. Complexity results arecatdd for two
arc-annotated sequencesandv s.t. max(|ul, |v]) = n.

AxXxB—C EpIT model Il
NEST x NEST — NEST O(n*) — Theorem 6
NEST x NEST — CROS
NEST x NEST — UNLIM X NP-complete — Blin [5]
CROS X NEST — CROS
CROS x NEST — UNLIM Max SNP-hard — Jiang [16]
UNLIM X NEST — UNLIM
CROsS x CROS — CROS
CROS x CROS — UNLIM X
CROS XUNLIM — UNLIM X Max SNP-hard — Jiang [16]
UNLIM XUNLIM — UNLIM X

TABLE Il

ALIGNMENT HIERARCHY FOR EDIT MODELIII.

We indicate problems that can be formulated as edit distancklgmns in

the second column. In these cases, known results stem frogetieral edit
distance for the model Il (Theorem 1). Other problems are ifipeo the

ALIGN hierarchy and are introduced in this paper. Blank cells ar@rfoblems
that are still open. Complexity results are indicated for tars-annotated
sequences andv s.t. max(|ul, |v|) = n.

C. ALIGN(NESTED,NESTED, Il ) — CROSSINGis NP-hard

polynomially if (1) w is of CROSSING type, (2) w is a
common ll-supersequence afand v, and (3) the cost ofv

is lower than or equal td. In order to prove that it iNP-

complete, we propose a polynomial reduction from e

complete problemmis-3p [4]. The Mis-3P problem is also
used in the polynomial reduction of tiNP-complete proof of
LAPCS(NESTED, NESTED) [22].

INPUT:A cubic planar bridgeless connected graph= (V, E)
and an integek.

QUESTION: Is there an independent set of verticesbf i.e.
a setV’ C V such that no two vertices df’ are connected
by an edge inF — of cardinality greater than or equal k0?
A graphG = (V, E) is said to be aubic planar bridgeless
connectedgraph if any vertex ol is of degree three (cubic),
G can be drawn in the plane in such a way that no two edges
of E cross (planar), and there are a least two paths — with
no edge in common — connecting any pair of vertices/of
(bridgeless connected).

The idea of the proof is to encode a cubic planar bridgeless
connected graph by two arc-annotated sequences. The con-
struction uses first a two-page book embedding.

Theorem 5 (Bernhart and al. [3]) One can always find, in
polynomial time, a two-page book embedding of a cubic planar
bridgeless connected graph with the following additional
property: on each page, any vertex has a non-null degree.

A two-page book embeddiraf a graphG is a linear ordering
of the vertices ofG along a line and an assignment of the
edges ofG to the two half-planes delimited by the line —
called thepages— so that no two edges assigned to the same
page cross. For convenience, we will refer to the page above
(resp. below) the line as thep-page(resp.bottom-page

Given a two-page book embedding, we construct two arc-
annotated sequences ofEBITED type u = (S, P) andv =
(T, Q) on the three-letters alphabgt, b, #}. The underlying
raw sequences$ and7T are defined as follows:

S #nsl#nSQ---#nSn
T HMTL # Ty ... # Ty

wheren is the number of vertices of the initial graph, and for
eachl <i <mn, S; (resp.T;) is a segmenbaaa if the degree

We show in this section that relaxing the constraint on crossf the vertexv; € V' in the top-page (resp. bottom-page) equals
ing arcs in the common supersequence makes the problew, a segmentaab otherwise.
difficult, even if we do not allow multiple incidents arcs in Now that the sequenceS and T' are defined, we have

the supersequence as imRCS(NESTED, NESTED).

Theorem 4 ALIGN(NESTED, NESTED,Il) — CROSSING is
NP-complete.

The decision problem is defined formally as follows.

INPUT: Two arc-annotated sequeneeandv of NESTEDtype
and an integer.

QUESTION: Can one find an arc-annotated sequencef
CROSSING type which is a common ll-supersequence wof
andwv of cost lower than or equal t6 ?

We initially notice that this problem is ilNP since given

to copy the arc configuration of the top-page (resp. bottom-
page) onsS (resp.T). Each edgev;,v;) of the top-page is
represented by an arc iR. More precisely, this arc connects
a basea of S; and a base: of S;. We proceed in a similar
way for each edge of the bottom-page by adding, for each
one, an arc inQ. Moreover, we impose that when a vertex

is of degree two on the top-page (resp. bottom-page), the two
corresponding arcs i (resp.Q) are incident to the rightmost
two bases: of the segmenss; (resp.T;). And, consequently,
we impose that, when a vertex is of degree one on the top-
page (resp. bottom-page), the corresponding afe (resp.Q)

is incident to the leftmost baseof the segmens; (resp.T;).

three arc-annotated sequencesv and w one can check It is easy to check that it is always possible to reproduce on
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Vs ¢ p V4 Case 1.U[j] does not appear iff', andU k], U[!] do not appear it
@ ) ® & W W 4
vy [ D vg i _daa_ — - i I _ _

/_\ /_\
Ui baaaab ulk] ul1] Ulj] é Ui aaabaaa ulk] vl uly]
A =l

Ti b_aaa_ — Ti __ _baaa —

© #™ baaa #™ aaab #™ baaa #" baaa #" aaab #" baaa

#" aaab #™ baaa #" aaab #" aaab #" baaa #"™ aaab

W Case 2:U[j] does not appear iff’, and one ofU[k] or U[l] appears inS
— —

Si _aaa_b B Si aaab__ _ @

Ui baaaab  ULK] UL1] ULj] ammg® Ui aaabaaa Ulk] UL1] UL
Fig. 2. Example of an align-construction for the proof of Tresn 4. The 7 "
graph (a) is a cubic planar bridgeless connected graph wértices. The Ti b_aaa_ - Ti ___baaa -
graph (b) is a two-page book embedding of the graph (a) su¢hdhaeach — -
page, any vertex has a non-null degree. (c) The two arc-atetbsequences

of NESTED type obtained from the graph (a) by an align-construction.
Case 3:U|[j] appears ifl", andU k], U[l] do not appear irt

u andv the non-crossing edge configuration of each page. An ¥ <>~ -~ Sraah_ 7 o7 -

example of such a construction is given in Figure 2. The Siz€ v paaws  vix] vl1] UL/ 2P Ui aaabaaa ulk] U] Ul
of w andv is quadratic inn: the length ofS andT is n(n+4) S~

and the total number of arcs i. In the following, we will e ‘ e ‘
refer to any such construction as align-construction

It remains to define parameter values for edit operations.
We set the score system as follows;(b) = 2, wq(#) = 6,
wq(a) =1, we(a,a,a) = 1.5, wy(a,a) = 2. As a matter of
fact, the proofs of Lemmas 5, 6, 7, 8 are still valid with any — — —
combination of parameters that fullfils these two ineqiedit Ui bagaab  Ulk] UL1] UL/ Ui aaabaaa ulk] vl1] uly]
3we(a, a,a) + 2wq(b) < 3wy(a,a) + 3wy(a) andw, (a,a) + S~—— S~——
3wg(a) < we(a,a,a) + 2wq(b).

We first show that for any such pair of arc-annotated se-
guences with the given score system, there exists a ”ca&dbnlc
optimal common Il-supersequence whose form is easy &{SL
characterize. This is the purpose of the two following Lerama

se 4:U|[j] appears irl", and one ofU[k] or U[l] appears inS

i _aaa b - 4 Si aaab a

Ti b_aaa_ a Ti __ _baaa a

3. Four first cases for the replacementpfwhenU; = baaaab in Proof
emma 5

Lemma 5 Let v and v be two arc-annotated sequences ofonstruction ofu and v ensures that there is npsuch that
NESTEDtype obtained by an allgn -construction for an Inltlalthere exists an arc Connecnng bcﬁhands in U, andT and
graph of n vertices. There exists an optimal commbr 7 in 4. Therefore three arcs are incident frdf Let j (resp.

supersequencev = (U, R) such thatU is of the form andl) be the position of the pairing partner of the fitsof
#"Uyr ... #"U, where for eachi € 1..n, U; = aaabaaa Or g, in U (resp. of the second and thidof 7} in U). There
U; = baaab. are five cases to consider (see Figure 3). The main argument

that is common to all cases is that replacliigwith aaabaaa

Proof: It is easy to verify that(#"aaab "is . .
y fy (#"aaabaaa) q)ges not increase the cost of the alignment.

a common ll-supersequence whose cost is lower than 14 . d q .
equal ton(3w,(a,a) + 3wq(a)) = 6n. This observation 1.U[j] does not appear ilf, andU/[x], U[}] do not appear in

ensures that any optimal supersequence is of the fGrea S. On the one hand§; is derived fromU; by an arc-altering,

AT, . 47U, whereU, € {a,b}". Indeed, assume that an@n arc-removing and a base deletionbofl’; is derived from
R ns 1 )

optimal supersequence contains more tharoccurrences of U; by an arc-removing and a base deletior.ofhe associated

the # symbol. This implies that the supersequence contmﬁgst iswg(a, a,a) + 2w, (a,a) + 2wq(b) = 9.5. On the other
one extra stretch of, occurrences of#, which will give rise nd,S; is derived fromaaabaaa by two arc-removings and
to n base deletions oft. Therefore the associated cost is agne base deletion of, whereasT; is derived fromaaabaaa
leastnwy(#) = 6n. y one arc-removing and two base-deletionszofThe total
By construction, eachl; is a supersequence afaab COS! is3w,(a,a) + 3wa(a) = 9.
and baaa. There are five candidate stringsiabaaa, baaadb, 2. U[j] does not appear i, and one o/ [k] or U[l] appears
baaaab, baaaaab and baaaaaadb (all other sequences arein S. On the one hand$; is derived fromU; by two arc-
equivalent). We show that any optimal supersequence canalterings and a base-deletionfT; is derived fromU; by an
contain anyU; of the three last kinds. arc-removing and a base-deletiontofThe associated cost is
Assume there exists € 1.n such thatU; = baaaab. 2w4(a,a,a)+ wy(a,a)+ 2wq(b) =9. On the other hand;
We suppose w.l.o.g. that; = aaab and T; = baaa. The is derived fromaaabaaa by an arc-altering, an arc-removing
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and a base-deletion af whereasr; is derived fromaaabaaa of type aaabaaa gives rise to an arc-removing, whereas an
by an arc-removing and two base-deletions.of he total cost arc between a segmebitaab and a segmeniaabaaa gives

is 2w, (a,a) + wq(a, a, a) + 3wg(a) = 8.5. rise to an arc-altering. It follows that the total cost ofetiin

3. U[j] appears irll’, andU[k], U[l] do not appear irs. On OPerations on arcs Spwq(a, a, a) +3(3 — p)w.(a, a).

the one hands; is derived fromU; by an arc-altering, an arc- A for the single bases, each segmentibaaa produces
removing and a base-deletion afand7; is derived fromy; three base-deletions af and each segmenmtiaab produces
by an arc-altering and a base-deletiorboThe corresponding tWo base-deletions ob. It follows that the global cost is
cost isw,(a,a) + 2w,(a,a,a) + 2wy(b) = 9. On the other 3pwa(a, a,a)+3(5 —p)wr(a, a) +3(n —p)wa(a) +2pwa(b).
hand,.S; is derived fromaaabaaa by two arc-removings and u

a base-deletion of, whereasT; is derived fromaaabaaa by ~The following Lemma concludes the proof of Theorem 4.
an arc-altering and two base-deletionsaofThe total cost is

2w, (a,a) + wq(a, a,a) + 3wg(a) = 8.5. Lemma 8 A cubic planar bridgeless connected graph=

4. U[j] appears irlT’, and one ofU[k] or U[l] appears inS. (V, E) admits an indepe_ndent set of vertices pf cardinality
On the one hands; is derived fromU; by two arc-alterings, greater than or equal td if, and only if, there .E'XISIS an arc-
and a base-deletion & whereasT; is derived fromU; by annotated sequence of CROSSINGtype that is a common
an arc-altering and a base-deletion tofThe corresponding !!-Supersequence afandv of cost lower than or equal t6 =
cost is3w,(a, a,a) + 2wa(b) = 8.5. On the other hands;  3KwWa(a,a,a) +3(5 —k)w,(a, ) +3(n—k)wa(a) +2kwa(b),

is derived fromaaabaaa by an arc-altering, an arc-removingWheréw and v are arc-annotated sequences NESTED type
and a base-deletion of andT} is derived fromU; by an arc- esulting from an align-construction @t andn = |V'|.

altering and two base deletions ef The cost isw,(a,a) + Proof: (=) Let V' C V such that|v’| > k and V"

2wa(a, a,0) + 3wa(a) = 8. . _ o _is an independent set. Let = (U, R) be the arc-annotated
5. U[k] andU [l] both appear irb" this last case is impossible, sequence of 8ossiNGtype defined by = #"U; ... #7U,,
since it would imply thatiaab is derived frombaaaab without  \where o, € V', U; = baaab andVo; € V — V', U; =
any operation of arc-altering. aaabaaa. By Lemma 7, the cost of the alignment induceduby
The reasoning is similar fdfaaaaab andbaaaaaab. B 53|V |wa(a,a, a)+3(2 — |V’ w,(a,a)+3(n— V') wa(a)+
2|V'wq(b). Since by hypothesid’’| > k, this cost is majored
Lemma 6 Let u and v be two arc-annotated sequences Ohy 3kw,(a,a,a) + 3(2 — k)w,(a,a) + 3(n — k)wala) +
NESTED type obtained by an align-construction. In any opsj.,,(5), which equaég_
timal commonll-supersequencey = (U, R) of v and v, if
there is an arc inR connecting a base of the segméntand
a base of the segment;, thenU; and U; cannot be both of
the formbaaab.

(«<) By Lemma 5, there exists an optimal supersequence
w = (U, R) of cost lower than or equal tbthat is composed
of n stretches of#™ and of segmentaaabaaa and baaabd.
Let V' be the set of vertices af defined by{v, € V;U; =

Proof: By contradiction, let us assume that there existsiaab}. By Lemma 7, the cost of the initial alignment is
such an arc for a giveh < i < n and a givenl < j <n.U; 3|V'|wa(a,a,a)+3(5 —|V')w(a,a) +3(n— |V')ws(a) +
and U; being both of typebaaab, this arc will induce either 2|V'[wa(b). Since by hypothesis this score is lower than or
an arc-breaking betwean andw, or an arc-breaking betweenequal to andw, > w,, we obtaink < [V'|. ]
w and v. Since we are considering the edit model II, this One can remark that the arc-annoted sequences dfifhe
operation is forbidden. This leads to a contradiction. m completeness proof are not conform to the representation of
These lemmas allow us to express the cost of an optinél RNA molecule. One can modify the encoding of the two-
NESTED supersequence between two arc-annotated sequer@gge book embedding in order to get sequences that are more
obtained with the align-construction. realistic: the alphabet i§A, U, C, G} and all arcs correspond

to Watson-Crick pairings4 is paired withU, andC' with G).

Lemma 7 Let v and v be two arc-annotated sequences ofo achieve this goal, we modify the definition efandv in
NESTED type obtained by an align-construction. The cost dhe following way: replace# with twelve occurrences af', b
any optimal commorl -supersequence is 3pw,(a,a,a) + With GGGGGG anda with AU (AU is self-complementary).
3(5 —p)wr(a,a) +3(n — p)wa(a) + 2pwq(b), wherep is the Each edge in the two-page book embedding now corresponds
number of segments af of typebaaab. to two arcs betweerAU and AU. Figure 4 shows this new

. ] representation for the example of Figure 2.
Proof: By construction, the supersequenceontains3 4

arcs, three arcs being incident to a base from each sedment
Lemma 6 ensures that there is no arc between two segments
of type baaab. So there are3p arcs connecting a segment The edit model Il contains all edit operations introduced
of type baaab with a segment of typeaabaaa, and33 — 3p by Jianget al. in the general edit distanc@roblem [16]. So
arcs connecting two segmenisabaaa. As mentioned before, we can derive several complexity results for the alignment
each arc of the supersequence is present only in one of tierachy from known results on thgeneral edit distance
two sequences andv. So each arc ofv is affected by a [5], [16] with Theorem 1. As illustrated in Table IlI, the
deletion operation. Moreover, an arc between two segmentsmplexity of ALIGN(NEST, NEST,lll) — {NEST, CROS}

V. GENERAL EDIT DISTANCE AND EDIT MODEL Il
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and of ALIGN(CROS {NEST, CrRos},1Il) — CROs only is So we examine cases 2 and 3 in full details. Throughout the
still to elucidate. We solve AIGN(NEST, NEST, lll) — NEST.  proof, S(f, g) denotes an optimal common supersequence of

f andg.
Theorem 6 ALIGN(NESTED,NESTED IIl) — NESTED iS  Case 2.Let § = S(a(u) o v, B(w) o ), and let(i, j) be the
polynomial positions ofa in S (i < j), (k,1) be the positions of3 in S
The proof of the Theorem follows from Theorem 7 in(k <.

paragraph V-B and Theorem 8 of paragraph V-C. We first - If i = k: This configuration corresponds to an arc-
need some notations for the representation @SKED arc- match or an arc-mismatch betweerand 3. Indeed, since the

annotated sequences. supersequenc_:S does_ not allow for muItipI.e incident arcs,
we necessarily have = [. So the arca is transformed
_ into 6 by an arc-match or an arc-mismatch operatiéh.
A. Notations is obtained asf(S(u,w)) o S(v,z). The resulting cost is
We write o f) a NESTEDarc-annotated sequence, or equivwam (@, 8) + Al (u,w) + Al (v, ).
alently a tree, that is composed of a reotind a subforesf. If ¢ < k, then eitherj < k, or [ < j. Other values forj are
A NESTED arc-annotated sequence is defined recursively pyohibited because it would induce crossing or multiplesarc
concatenating a tree and an arc-annotated sequencebleet in the supersequence.
binary operator that concatenates two arc-annotated segsle - If ¢ < k andj < k: This configuration corresponds to
a(u) o v denotes the arc-annotated sequence composed byaanarc-removing ofc. Indeed, % is the first position inS
arc o spanning the arc-annotated sequemgeconcatenated corresponding to a base presentiw)oxz. Soa andu have no
to the arc-annotated sequencelet b in 3. b o u denotes counterpart ind(w)ox, andsS is obtained as.(u)oS (v, B(w)o
the arc-annotated sequence composed by the single thase. The resulting cost is,. (o) + Al (u,e) +Al (v, B(w) + ).
concatenated to the arc-annotated sequemnce -If ¢ < k andl < j, we have to look further at the position
indexed byj. If it is aligned with a single base df of z, the
B. Alqori arc« is affected by an arc-altering operation. If not, the arc
. Algorithm ; X s X
] ] is affected by an arc-removing operation. In the first castg; |
We saw in Section Il that the AGN(NEST,NEST,1) —  and, such thaB(w)ox = yoboz. S is obtained as(S(u, y))o
NEST problem is polynomial, since it is equivalent to ordereg¢ v, z). The resulting cost i, (o, b)+A (u,y)+Al (v, 2). In
tree alignment such as proposed in [18]. We show here that |atter case, lej be the largest subforest 6{w) oz ending
the construction scheme for the edit model | can be eXtendﬁ%ositionj in S, and letz be the largest subforest G{w)ox
to edit models 1l and Il by adding supplementary rules fa& thstarting at positiorj in S. S is obtained as(S(u, y))oS(v, 2).

arc-altering and arc-breaking operations. All rules conicgy e resulting cost iso, () + Al (u,y) + Al (v, 2).
substitutions, base-deletions and arc-removings areitdn ¢ ;. < i, then this configuration is exactly equivalentiter &

In Table IV,_we state the recurrences which enable tphen we exchange(u) o v and f(w) o .
compute the alignment score of two sequences, dendited . .
The common supersequence is built from right to left. EadtSe 3.Let S = S(bov, f(w) ox), and leti be the position
step of the algorithm adds a component in the supersequefE& I 5. (k,1) be the positions off in 5 (k < 1). _
— one single base or two bases connected by an arc — that!f ¢ = & andl is aligned with some position dfo v: This
is selected so as to minimize the cost of the alignmeffonfiguration corresponds to an arc-breakingjoi.et b, be
Several particular cases are needed for the arc-breakidg H} Pase ofv occurring at position/ in the supersequence
arc-altering operations. We consider five cases depending® 02 IS necessarily a single base, since multiple incident
the form of the pair of arc-annotated sequences to align, tf4CS are prohibited inS. Furthermore, there exists no arc
determines which edition rules to apply. Arc-altering giem 1N v Spanningb,, otherwise we would have crossing arcs
creates an arc in the common supersequence. So it only shdfid®- So there are two (possibly empty) subforegtsand
be considered when at least one of the two sequences begir!Ch thatv = y o by o 2. The optimal supersequence
with a base incident to an arc. Arc-breaking operation megui 'S obtained as3(S(y,w)) o S(z,x). The resulting cost is
that one sequence begins with an arc, and the other one be@‘ih@»b» by) + Al (y,w) + Al (2, ). o
with a single base. The implementation uses on dynamic™ If # = & and ! does not correspond to any position in

programming. An optimal supersequence is recovered frdh? v: This configuration corresponds to an arc-altering of
Al by trace back. B, whose 5’ base is aligned with. Let y be subforest of

v starting at position; + 1 and ending at positiot in S,
the@nd letz be the largest subforest of starting at position
k+1in S. SinceS does not contain any two crossing arcs,
there are no arcs betweenand z in v. It follows that S
Proof: We show that at each step of the algorithmis obtained ass(S(y,w)) o S(z,z). The resulting cost is
Al (f,g) is the cost of an optimal KsTED supersequence of w,(5,b) + Al (y,w) + Al (z,z).
f andg, for any pair of subforestg and g. The algorithm - If i < k: This configuration corresponds to a base-deletion
contains five possible cases. Case 1 is a subcase of2casef 5. The supersequencg begins with a single base, that
case4 is a symmetric case of case and case is obvious. corresponds td in bov and that has no counterpartfw)ozx.

Theorem 7 The algorithm of Table IV solves
ALIGN(NEST, NEST, lll ) — NEST problem.
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The remaining part of5 is obtained asS(v, 3(w) o ). The Lemma 10 Let A be a tree.

total resulting cost isv4(b) + Al (v, B(w) o ). 1) the cardinality ofS4 is na + ¢4 — 1, and

- If £ < ¢ andl is aligned with some position df o v: e
This configuration corresponds to an arc-alteringGofwith Z wp = L4+ Z ( v )
3’ matching base. Leb, be the base ob that occurs in fESA ved 2

position in S. by is necessarily a single base, since multiple

Can : dyt1
incident arcs are prohibited in the supersequence. Fungrey, ~ 2) the cardinality ofC is 3, 4 ("), and

there exists no arc in spanningh., otherwise we would have dy+2
crossing arcs in the supersequence. So there are two (fyossib Z wy = Z ( 3 >
empty) subforestg and z such thatbov = yoby o2 S feCa veA

is obtained as3( S(y,w)) o S(z,z). The resulting cost is
wa(B,b2) + Al (y,w) + Al (z,2).

- If k£ < i and! does not correspond to any positionbiaiv:
This configuration corresponds to an arc-removingsol.et <Zv€B (dqgrl)) (gA + e (du;rl))
y be the largest subforest éfo v ending at positiod — 1 in A2 A2
S, and letz be the largest subforest bb v starting at pistion Fratla =13 ,ep (57) + (np + ls = 1) Xoea (57)
[+1. We havebov = yo z, y is aligned withw andz with z ~ + (ZUGA (dvzﬂ)) (KB +2ven (duzﬂ)) ~
in S. SinceS does not contain any crossing arcs, there are no
arcs fromy to z. S is obtained as3(S(y,w)) o S(z,z). The
resulting cost isw,. () + Al (y,w) + Al (z,z).

Lemma 11 Let A and B be two trees. The number of oper-
ations necessary to computé (A, B) is proportional to

Proof: For each pair of subforestsf,g) € A x B,
the number of operations needed to compide(f,g) is
majorized by &(wy +wg). From Lemma 9, the total number

C. Worst-case complexity of operations needed to compuik (A, B) is

Let us state some definitions and notations. £ bt a forest. ) Z Wi+ wy
We denoten; its number of nodes/; its number of leaves, (£.9)€S4xC5UCA XS5
andwy its width, that is the number of concatenated trees \{fnich is
contains. Given a node of f, thedegreeof v, denotedd,,, is
its number of children. Ley {)e asub?orest of. gis said tobe 5(Cl D ws 18l D we+1Sp| Y wy +[Cal Y wy)
a closed subforesif it contains consecutive sibling trees, i.e. J€5a 9€Cs Jeca 9€8p
trees whose root nodes are consecutive siblingsosplete Applying Lemma 10 gives the result. u
subforesis a closed forest containing all the subtrees that hald®w we can state the worst-case complexity of the algorithm.
the same parent. Auffix subforests a closed subforest that
contains the rightmost tree of a complete subforest. Weewritheorem 8 Let A and B be two trees whose maximum degree
Sy for the set of suffix subforests and subtreesfofandC; s respectivelyls and dp. Then the number of scores to be
for the set of closed subforests. computed i€ (nanp(da+dp)) and the number of operations

needed to compute them@nanp(da + dg)?).

Lemma 9 Let f and g be two forests. The pairs of forests

appearing in the dynamic programming decomposition of Froof: From Lemma 10 we get for each trée

algorithm of Table IV are exactly those 8 x C,UCy x S,. Sr| < 2np, ICr| < %TH) ’
nrdr(d
Proof: The proof is by induction on the sizes ¢fand ZfeST wy < 2npdy, ZfeCT wy < ST T(z =3
g. Like in proof of Theorem 7, we treat cases 2 and 3, which o )
are representative of other cases. Putting this in Lemma 9 and Lemma 11 gives the resuil
Case 2:If (a(u)ov, B(w)ox) belongs taS; x C,, then (u, w), Hence the worst-case complexity of the algorithm is in

(u,y), (v,2), (v,2), (z,2) are INS; x Cy, and (y,w) is in O(n*), which concludes the proof of Theorem 6.

Cy x 84. Similarly, if (a(u)ov, B(w)ox) belongs toCy x S,

then (u, w), (y,w), (v,z), (2,2), (v,2) are inCy x Sy, and D. Average-case complexity

(u,y) is in S x Cq. We experimentally estimated the average complexity of the

Case 31f (bov, f(w)ox) belongs taSy xC,, then(v, B(w)ox),  gigorithm by randomly generating large trees. Thanks to the

(2, ) are inSy xC,, and(y, w) is inCy xSy If (bov, H(w)oxr)  GenRGenS software [25], 1000 trees of each size 50, 150,

belongs toCy x Sy, then (v, B(w) o ), (z,2), (y,w) are iIn 200 250 ... 2000 were generated uniformly and randomly,

Cr x 8y too. giving 500 pairs of random trees for each size. Then the

_ . B number of operations needed by the algorithm was computed

This lemma shows that the set of pairs of subfores{g; each pair, according to Lemma 11, and its mean value was

appearing in the dynamic programming decomposition is thgmputed within each of the 41 different sizes (includirggsi
same as for the usual tree alignment algorithm [19]. We NQY. Results are given in the graph of Figure 6.
determine the exact number of elementary operations iadolv

in the computation.
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C...C GGGGGG UAUAUAC. . .C UAUAUA GGGGGGC. . .C GGGGGG UAUAUAC. . .C GGGGGG UAUAUAC. . .C UAUAUA GGGGGGC. . .C GGGGGG UAUAUA

C...CUAUAUAGGGGGGC. ..C GGGGGGUAUAUAC. ..CUAUAUAGGGGGGC. ..CUAUAUAGGGGGGC. . .C GGGGGG UAUAUAC. . .CUAUAUA GGGGGG

Fig. 4. RNA-like arc-annotated sequences for the exampleigiré 2.

wam (e, B) + Al (u, w) — arc-(mis)match between and 3
1. Al (a(u),B(w)) = min{ wr(B8)+ min{Al (y,w) + Al (z,€)|y o 2 = a(u)} — arc-removing of3
wr(oa) + min{Al (u,y) + Al (¢, z)| yo z = B(w)} — arc-removing ofx
wam (e, B) + Al (u,w) + Al (v,z) — arc-(mis)match between and 3
wr(B) + min{Al (y,w) + Al (z,z)|y o z = a(u) o v} — arc-removing of3
2. A (a(u)ov,B(w)oz) = min{ wr(a)+min{A (u,y)+ A (v,2)| yoz = F(w) oz} — arc-removing ofx

wq (a, b) + min{Al (u,y) + Al (v,2)|yoboz= B(w)ox} — arc-altering ofx
wa (B, b) + min{Al (y,w) + Al (z,z)] yoboz = a(u) ov} — arc-altering of3

wg(b) + Al (v, B(w) o z) — base-deletion ob

wr(B) + min{Al (y,w) + A (z,z)|y oz = bowv} — arc-removing of3

3. Al (bov,B(w)ozxz) = min{ wae(B,b)+ min{Al (y,w)+ Al (z,2)| y o z = v} — arc-altering of3

wq (B, b2) + min{Al (y,w) + Al (2,z)| yobz oz =bowv} — arc-altering of3
wy(B,b,b2) + min{Al (y,w) + Al (z,z)|y o ba 0 z = v} — arc-breaking of3

wq(b) + Al (a(u) ov,z) — base-deletion of b

wr (o) + min{Al (u,y) + Al (v, z)|y oz =boz} — arc-removing ofx

4. A (a(u)ov,box) = min{ wa(e,b)+ min{Al (u,y)+ A (v,2)| yo z =z} — arc-altering ofox

wq (o, b2) + min{Al (u,y) + Al (v,2)| yoba oz =bozx} — arc-altering ofw
wy(a, b,b2) + min{Al (u,y) + Al (v,2)|yobs oz =2z} — arc-breaking ofx

wg(b) + Al (v, b2 o z) — base-deletion ob
5. Al (bov,bgoxz) = ming wgq(b2)+ Al (bow,x)— base-deletion oy
wm (b,b2) + Al (v, z) — base-(mis)match betweénand b,

TABLE IV
ALGORITHM FOR THEALIGN(NESTED7 NESTED, ||) — NESTED ANDALIGN(NESTED7 NESTED, |||) — NESTED PROBLEMS

This table shows the recurrence relations for thaG\ (NESTED, NESTED, Il) — NESTED problem (Theorem 6)Al denotes the alignment score, that is
the optimal cost for the pair of subforesisand =z are (possibly empty) closed subforests. Recurrence refatiden at least one arc-annotated sequence is
empty, with length0, are omitted. In this case, the mapping is composed by a serigsletfon operations applied on the non-empty arc-annotgdence.
Since edit model Il is a sub-model of edit model ll, this algumitalso solves the AGN(NESTED, NESTED, /1) — NESTED problem. For that, it is enough

to remove all rules concerning arc-breaking operations.

tRNA ALA /tRNA LEU

CCCOCOC - (CCCe e ) 1) CCCC e D R ( ( { (SR 1))
GGGGCUAUAGCUCAGCUGGGAG- AGCGCUUGCAUGGCAUGCAAGAG: - G- - - U- C- - AGCGGUUCGAUCCCGCUUAGCUCCACCA
GCOGAAGUGGCGAAAUCGRUAGACGCAGUUGAUUCAAAAUCAACCGUAGAAAUACGUGCCGGUUCGAGUCCGGOCUUCGGCACCA
((((((( A 1)) OG- DN -CCC-)) - (e NNV -

D.desulfuricansRNase P RNAC.jejuni RNase P RNA

(CCCCCOOEaeeeaC (e )IIII)) e vveenens. s ((CCvnee eeeceeeec. )))))((((( -)))) )(( G e
GGAGUCGGACGGAUCGUCGCOGUGEEEGCAACUCCEEEGAGGAAAGUCCGERCUCT- AAAGGGCAGAACGCUGGAUAA GGGAGGGCAACCUC- CGGACAGOGCCACAGAAAGCAAA
AAGCAUAGUAA- AUGCUCGCUUCUUL- - - - U- U- A@mmmmm%mummm@u&r%mmmmm@mm
((((((((( (- CCCCeC- coccc D D D D D R (O cececeeeec - INNCCCCC ) DG (G
(CCOCCCCC - ))))))) ) ) e OO )))))) (CCCCCCCCC--)3))))))-))-)))--))))))))))))) - - (((C .. (CCCCCOCeCC. - -
0BC00GECCUCGE00CEGEUAAGERGAAACGRUGGUGUAAGAGACCACCAGAUGOOGUGGLIGACACGGECAUGCUCGGCAUACCCCGUUCGGAGCAAGACCAAAUAGGGAAGGOGEC0GECC
CUACCACGC: - AA- - GUGGAAAAGGUGAAACGGCGGEGUAAAAGCOCACCAGCGAUUUUGGUAACAAUUUCGGCUAUGUAAACCCAAUGUGCAGCAAGAAGGGAU- GBUUAG- CGUCU- - - U
(GO D)) )) e (GO 1)) (G (G- -))) ))) --------- ))))))))))))) - CCCCCC - 00 -
) )))))) )))) ------ CCCOCCCC = 0II))) e ))))))) CCOCCCCC - )))I)) e e 2NN -
CGE0CGAAGCCUUCOGEGEUAGGUUGCUUGAGEGEUGUGGECAA CCRCACUCCUAGAGGAAUGACGRUCACACGOGEGCAACCGUGUGGACAGAACCOGGEOUUACAGUCCGACUCOOGCA
UG - - - - UU- UUAA- CG- - QJUCGCUUGAUUUUGJLUGCAAAAACAAAACUAGAUAAAUGAGZ‘AUU—CA -------- A- - G- - - - - ACAGAACUCGGCUUAUC- GCUAUGCUU- ULU

: )))) )N (CCCCeCC )))))))) ---------- NN >IN -

Fig. 5. Gardenia alignments: two tRNA genes fr&mcoli (above), and. desulfuricansandC. jejuniRNase P RNAs (below}. indicate conserved positions.
Alignments obtained with RNAforester are identical.
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Fig. 7. A secondary structure (left), its associated treeoating to the

Fig. 6. Experimental average complexity on pairs of randorastrior the classical representation (middle), and according to [Lighg.

ALIGN(NEST,NEST, I1I) — NEST algorithm. The horizontal axis is the
size of the trees and the vertical axis is the number of opersiti

Sequence 1 hE .
UACUUAG '("")(') '("")(')'
We carried out two interpolation methods on these data: (. ) UA- - - CUUAg A"'QJUAGG
polynomial interpolation and least squares (with the Maple (C(U(GGJ)O) ‘::) (C(U(GGU)O) ‘:::)
function CurveFitting[Interactive]). We made the hypatise Sequence 2 . " MR "
that the complexity would be betwe&i(n?) andO(n?), and ~ CUCGUCAG (NEsT, NEST) (NEST, NEST)
would possibly contain &logn)* factor. Our results strongly (CC.-))) — UNLIM — NEST

suggest that the average complexity iséifn®). Indeed, the Fig. 8. Given the two input sequencesquence &nd sequence 2the edit

far best fit is got withf(n) = 22.09717440n2 — 67.224600n, distance algorithm, corresponding to tieEST, NEST — UNLIM) scheme,

ial i ; ; ads to a questionnable alignment (center). Arcs are reptes by a pair
computed by po!ynom|al m.terp()latlon on three experlmlemo brackets, and single bases by dots here. The basdJp@marked with
values. The maximum relative error between the values ef thiin sequence is modified by an arc-altering operation, followed by an
function and the 48 remaining experimental values is leas tharc-breaking operation creating the base (@i6 in sequence 2As a result,

1

-3 it ; i bases are matched in the superstructuree, whereas tlienharcs are
6.107. Intumyely, this re.SUIt Seems natural since the avera %related. The alignment induced by tfi#esT, NEST) — NEST scheme is
degree of an inner node in a random tree is less than 2. Indeggle convincing (right).
the number of trees of size+ 1 is the Catalan nhumbe?,, =
st (*™) and the number of trees of size-1 havingk leaves

is the Narayana numbe¥ (n, k) = 2 (})(,",). The average process. Another line of work is focused on tree comparison

number of leaves in a random tree)s, N(n,k)/C,, = % by partitioning the structures into macroscopic moduleshs

It remains®£L inner nodes in average for edges, hence the @s stems [13] or multiloops [1].
result. A thorough review of recently published tools for RNA

comparison is beyond the scope of this paper. We will not
compare our algorithm to all state-of-the-art programs. We
discuss here in further detail two program tools that addres
From a historical perspective, RNA secondary structuree comparison problem at the same level as us: they allow for
corresponding to ESTED sequences, were first encoded bwrc-altering and arc-breaking operations and do not partit
labeled ordered rooted trees [24], [26], [30] provided vatlit  structures into macroscopic modules. In [16], Jiah@l. con-
operations of model I. Figure 7 gives such an example. Thilered the BIT(CROSSING NESTED) problem (correspond-
main limitation of model | is that the evolutionary operaiso ing to ALIGN(CROSSING NESTED,I77) — UNLIMITED in
are not expressive. Indeed, there are some basic modifisatiour hierarchy) and proposed a polynomial time algorithm
in RNA structures that cannot be directly translated intoea t for a restricted score scheme. Only arc-match, arc-midmatc
operation. For example, when comparing two RNA structuresnd arc-breaking operations are explicitly required camiog
it often happens that two nucleotides are paired in onetstreic arcs. Every arc-altering operation is treated as an arakbrg
and get unpaired in the other one. A likely explanation isperation plus a base deletion, and every arc-removing oper
that one of the two nucleotides has been mutated, so th#ibn is treated as an arc-breaking plus two base deletions.
they can be paired in the first structure but not in the secoiitlis approach has some limitations. The first one comes from
one. In model I, no single operation can represent this @mpghe edit model itself. The permissivity of the comparison
evoluationary event: this should be done by deleting the banodel authorizes alignments with several arcs incidennfro
pair, then inserting two new nucleotides. the same position in the superstructure. Figure 8 shows such
Models Il and Ill are more suitable for RNA structurean example. Some base-pairings that seem unrelated may be
comparison, since they allow for arc-altering and arc-kirep associated and matched in the alignment. The restriction on
operations. As mentioned in Sections IV and V, the algoritlthe score scheme also changes the nature of the arc-removing
mic complexity of the edition problem of two arc-annotatedperation. Deleting a base-pairing is no longer treated as a
sequences is a pitfall, since theDE(NESTED NESTED) single evolutionary event, but as a series of three indes@nd
problem is NP-complete. To circumvent this difficulty, somevolutionary events. It can lead to non relevant edit ssript
authors have developed sequence-oriented algorithm3H2]. such as depicted in Figure 9.
comparison is basically done on the nucleic sequence whileThe other program is the widely-distributed RNAforester
trying to incorporate information on arcs in the comparisosoftware [14], that is part of the Vienna package [15]. The

E. Application to RNA comparison
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(CC....))) (CC--..))) gardenia] RNAforester
GACCAAUGUC GACCAAUGUC tRNAs (80nt) — [14]
GA-CAAU-UC  GAG AAU-UC E. coli 0 0
(C--v-)) (C.-..-)) RNase P RNAs (350 nt) — [7] 0.23 5
D. desulfuricansand C. jejuni )
Fig. 9. Constraint on edit operation weights. This figurevehdwo alter- IRES RFAM 00549 (600nt) — [12] 0.4 5
native alignments for the same pair of RNA structures. The #ifigihment H. sapiensand M. musculus ’
corresponds to the application of a single edit operatior® arc-removing. 16S rRNAs (1500 nt) — [20]
The second alignment results from three distinct evolutipoperations: one B. subtilisand A. pernix 2.3 25

arc-breaking and two base-deletions. For comparison modtisawestricted
score scheme, such as [16] or [14], these two alignments areadent, since
they have the same score, whereas the first alignment is mowanmele

Fig. 11. Comparison of execution times for Gardenia and RN&sr. All
times are in seconds, on a bi-processor 3Ghz, 6GB RAM.

VI. CONCLUSION

In this paper, we have proposed and studied a new frame-
work for comparing arc-annotated sequences, namely the
alignment hierarchyWe think that this study is relevant both
from theoretical and practical perspectives. We gave a new
NP-completeness result, that enhances understanding of the
complexity of arc-annotated sequences comparison. Téigtre
sheds a new light on the border between tractability and
untractability when dealing with arc-annotated sequenees
especially of @OSSINGtype. These results, combined with
the ones derived from T and LAPCS comparison models,

) ) ) have almost filled the complexity table of the alignment
algorithm is based on the tree alignment of [18]. The aUthqfﬁerarchy.

use a clever tree-based representation of RNA structures tQ\g jjustrated in Table Il. there still exist some open
incorporate arc-altering and arc-breaking operationshEir  ,estions for the model Ill. But we can notice that the edit

of nucleotides is encoded by three nodes: an inner oRgagel || reduces to the edit model Il when the cost of any

called a P-node, which represents the arc and two 'ea‘ffrﬁ-breaking is arbitrary high. As a consequence, i
that represent the nucleotides (see Figure 7). Thus, the ¥&mpleteness of AGN(NEST, NEST, Il) — CRrOS and of

breaking operation consists in deleting the P-node, and t}Sl‘E|GN(CROS, x,11) — CROS shows that there exists no
arc-altering operation consists in deleting the P-nodea@& 5\ nomial time algorithm for arbitrary values of paramste
of its children. It means that the encoding suffers from tl"@.uch as usual dynamic programming algorithms do). We, thus

same restriction in terms of relations between the cost 96njecture that both AGN(NEST, NEST, IIl) — CROS and
edit operations as the previous approach. The intrOdUCtiQ\rll_lGN(CRoa* Ill) — CROS prot;Iems érd\lP-complete
, :

of P-nodes has also a hidden impact on the conformation of, the last section, we have also provided a polynomial time

the supersequence. It authorizes to mix up base pai”ngs’af’g%rithm to compare arc-annotated sequences BETED
descri_bed in Figure 8 in an unexpected way. Figure 10 shoyﬁe with arc-altering and arc-breaking operations, waere
the alignment supertree for sequences of Figure 8. when considering other models, the problenNB-complete.
~We conclude this section with some comment on tge have briefly discussed how to apply it to the problem
time requirement on biological data. The algorithm has begp pna secondary structure comparison. The method shows
implemented in C language in a prototype software, Ca”?)‘i’omising results in comparison with other existing progsa

gardenia We rap gardenia_ on four pairs of RNAs — tRI\IAthat address the comparison problem at the level of indatidu
genes fronk. coli, prokaryotic RNase P RNAs, IRES elementg ;a5 and base pairings.

and 16S rRNAs — and compare it with results obtained

with RNAforester. We have used the default score scheme

of RNAforester for both programs. In all four examples, REFERENCES

we get the same score and the same alignment with boff) julien Allali and Marie-France Sagot. Novel tree editecgtions for

(-!G)(_!U)

Fig. 10. P-node supertree for sequences 1 and 2 of Figure 8 siipertree
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scheme in figure 8. Positions marked witlin the alignment are pointed with
arrows in the supertree.
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