
A Functional Implementation of the Garsia–Wachs Algorithm
(functional pearl)

Jean-Christophe Filliâtre
CNRS

LRI, Univ Paris-Sud, Orsay F-91405
INRIA Saclay - Île-de-France, ProVal, Orsay F-91893

filliatr@lri.fr

Abstract
This functional pearl proposes an ML implementation of the
Garsia–Wachs algorithm. This somewhat obscure algorithm builds
a binary tree with minimum weighted path length from weighted
leaf nodes given in symmetric order. Our solution exhibits the usual
benefits of functional programming (use of immutable data struc-
tures, pattern-matching, polymorphism) and nicely compares to
the purely imperative implementation from The Art of Computer
Programming.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Language
Constructs and Features]: Data types and structures

General Terms Algorithms, Data Structures

Keywords Garsia–Wachs Algorithm, Optimum Binary Trees, Ap-
plicative Programming, Zipper

1. Introduction
The Garsia–Wachs algorithm [3] addresses the following problem.
Given a sequence of values X0, . . . , Xn, together with nonnegative
integer weights w0, . . . , wn, we want to construct a binary tree with
X0, . . . , Xn as leaf nodes in symmetric order, such that the sum

nX
i=0

widi

is minimum, where di is the distance of leaf node Xi to the root.
This can be used to build optimum search tables, when data is
organized within a binary search tree and when access frequencies
are known in advance. It may also be used to balance ropes [1]
in an optimal way, since a rope is precisely a binary tree with a
character string on each leaf; thus taking wi as the length of this
string would minimize the average access cost to a character in
the rope1. The reader may have already noticed the similarity with
Huffman’s algorithm [5], which builds a binary tree of minimum

1 To the author’s knowledge, the relation between the Garsia–Wachs algo-
rithm and ropes has never been mentioned.

[Copyright notice will appear here once ’preprint’ option is removed.]

weighted path length. Contrary to Huffman’s algorithm, though,
the Garsia–Wachs algorithm must maintain the symmetric order of
the leaf nodes and thus addresses a more difficult task.

A detailed presentation of the Garsia–Wachs algorithm [3] can
be found in The Art of Computer Programming, in the section de-
voted to optimum binary search trees [7, pages 446–453]. The al-
gorithm is derived from observations of optimum binary trees and
lemmas for its soundness are given. The pseudo-code for the al-
gorithm itself is somewhat difficult to follow, though, because it
assumes several choices of array-based data structures. A compan-
ion implementation in C is provided by Knuth himself [6] and we
use this implementation as reference.

This functional pearl proposes an ML implementation of the
Garsia–Wachs algorithm. It is based on two key ideas. The first one
is to use Huet’s zipper to implement the first phase of the algorithm.
The second one is to use side-effects to improve efficiency in the
last phase of the algorithm. This is thus a mostly functional pearl.
However, side-effects are purely local and not exposed to the client
code, and the usual benefits of functional programming remain (im-
mutable data structures for lists, pattern-matching, polymorphism).
Our ML code nicely compares to Knuth’s C code.

This article is organized as follows. Section 2 presents the
Garsia–Wachs algorithm, then Section 3 details our functional im-
plementation. Section 4 is devoted to the comparison of our code
with the C implementation. The code presented in this paper is
available at http://www.lri.fr/∼filliatr/garsia-wachs/,
together with the scripts used to test its efficiency.

2. The Garsia–Wachs Algorithm
In this section, we present the Garsia–Wachs algorithm indepen-
dently of any choice of data structures.

The algorithm is decomposed in three phases:

1. first it builds a binary tree of optimum cost, but with leaf nodes
in disorder;

2. then it traverses it to compute the depth of each leaf node Xi;

3. finally it builds a new binary tree where leaf nodes have the
same depths but are now in symmetric order X0, . . . , Xn.

Figure 1 illustrates the idea on a small example with n = 4. The
leaf nodes are A, B, C, D, E, in this order, and their weights are
3, 2, 1, 4, 5, respectively. Phase 1 of the algorithm builds the binary
tree displayed on the left part of the figure. It sets the depths of
the leaf nodes, which are here 2 for A, D and E, and 3 for B
and C. Then phase 3 builds the binary tree displayed on the right
part of the figure, where leaf nodes are now in symmetric order
A, B, C, D, E.

1 2008/7/22

D E A

B C

A

B C

D E

result of phase 1 final tree

Figure 1. The Garsia–Wachs algorithm applied to the list
A, 3; B, 2; C, 1; D, 4; E, 5.

We now detail phase 1 of the algorithm. It maintains a list
of weighted trees q0, . . . , qm and repeatedly links two trees to
make a new one, until a single tree is left, in a way reminiscent
of Huffman’s algorithm. Initially, the list contains the leaf nodes
X0, . . . , Xn associated to their weights w0, . . . , wn. As long as
the list of trees contains at least two elements, we perform the
following operations:

1. determine the smallest i such that

weight(qi−1) ≤ weight(qi+1),

if any, and let i = m otherwise;

2. extract trees qi−1 and qi from the list, and make a new
tree t with left subtree qi−1, right subtree qi and weight
weight(qi−1) + weight(qi);

3. determine the greatest j such that j < i and

weight(qj−1) ≥ weight(t),

if any, and let j = 0 otherwise;

4. insert t right after qj−1 (and thus at the beginning of the list
when j = 0).

When applying phase 1 to the example from Figure 1, we get
the following iterations. Weights are indicated beside the trees and
values for i and j in the right column.

A ,3; B ,2; C ,1; D ,4; E ,5 i = 2, j = 1

A ,3;

B C

,3; D ,4; E ,5 i = 1, j = 0

A

B C

,6; D ,4; E ,5 i = 2, j = 0

D E

,9;

A

B C

,6 i = 1, j = 0

D E A

B C

,15

Once phase 1 is completed, we get a tree t with the initial n +1
leaves, but they are not necessarily in the correct left-to-right order
(as illustrated on the example above). Soundness of the Garsia–
Wachs algorithm guarantees that tree t has optimum cost and that

it can be rearranged into another tree t′ where each leaf appears at
the same depth as in t (hence t′ also has optimum cost). Therefore
phase 2 of the algorithm consists in traversing t to get the depth
of each leaf, which is simply achieved with a linear traversal of
the tree. Then phase 3 consists in rebuilding t′ from the initial list
X0, . . . , Xn together with the depths computed at phase 2. This last
phase is a nice programming exercise; the solution is given below
but the reader may want to stop reading for a while to give it a try.

3. Functional Implementation
We now detail our implementation of the Garsia–Wachs algorithm.
Our code is written in Objective Caml [2] (OCAML for short) but
could obviously be written in other dialects of ML, as long as
mutable references are provided.

Since our goal is to build a binary tree, we first introduce a
polymorphic data type for such trees.

type α tree =
| Leaf of α
| Node of α tree × α tree

The Garsia–Wachs algorithm is implemented as a function which
turns a list of weighted leaf nodes into a tree. It is thus a function
of the following type:

val garsia wachs : (α × int) list → α tree

The list taken as argument is assumed to be non-empty. We first
implement phase 1 of the Garsia–Wachs algorithm, as a function

val phase1 : (α tree × int) list → α tree

Note that it is a polymorphic function, since it ignores the contents
of trees; only weights are used. The key idea is to use Huet’s
zipper [4] to implement phase1. Indeed, we need to repeatedly
move back and forth in the list of trees, first moving right to
find i and to extract qi−1 and qi, and then moving left to find
j and to insert t. The zipper is precisely a means to navigate
through a purely applicative data structure and to perform local
modifications. The zipper for a list is simply a pair of lists: the first
list represents the elements on the left of the “pointer”, in reverse
order, and the second list represents the elements on the right of the
pointer.

Thus we implement phase1 as two mutually recursive func-
tions, extract and insert, which operate on a pair of lists of
weighted trees (before, after). Initially, the pointer is set on the
beginning of the list, i.e. the list before is the empty list.

let phase1 l =
let rec extract before after = ...
and insert after t before = ... in
extract [] l

Function extract implements steps 1 and 2 of phase 1, i.e. it scans
the list after for a suitable pair of trees to extract, builds the
corresponding tree t and then call insert. It works as follows. The
list after is assumed to be non-empty.

let rec extract before = function
| [] → assert false

If it is reduced to a single element, we are done with phase 1 and
we return the corresponding tree.

| [t,] → t

If we reach the end of the list, we build t from the last two elements
(case i = m) and we call insert.

| [t1,w1; t2,w2] →
insert [] (Node (t1, t2), w1 + w2) before

2 2008/7/22

If we meet the requirement over the weights of qi−1 and qi+1, we
similarly build t and call insert.

| (t1, w1) : : (t2, w2) : : ((, w3) : : as after)
when w1 ≤ w3 →

insert after (Node (t1, t2), w1 + w2) before

Otherwise, we simply advance in the list, i.e. we move one element
from after to before and call extract recursively.

| e1 : : r → extract (e1 : : before) r

Function insert implements steps 3 and 4 of phase 1, i.e. it scans
the list before for a suitable place where to insert t. If we reach the
beginning of the list (case j = 0) we simply insert t in front of
after and call extract recursively.

and insert after ((,wt) as t) = function
| [] → extract [] (t : : after)

Otherwise we check for the condition weight(qj−1) ≥ weight(t).
If it is met, we have found the place where to insert t, that is right in
front of after. We also need to move two elements from before to
after before calling extract recursively, since we may have broken
the invariant weight(qi−1) > weight(qi+1) locally. This requires
a particular case when before contains only one element.

| (, wj 1) as tj 1 : : before when wj 1 ≥ wt →
begin match before with
| [] → extract [] (tj 1 : : t : : after)
| tj 2 : : before →

extract before (tj 2 : : tj 1 : : t : : after)
end

Note that we could compare the weights of tj 2 and t at this point,
and avoid an unnecessary call to extract when the extraction
condition is immediately met. We omit this optimization, though,
to avoid multiplying cases. Finally, if the insertion condition is not
met, we simply move one element from before to after and call
insert recursively.

| tj : : before → insert (tj : : after) t before

This completes the code of phase1.
We now need to implement phase 2, which traverses the tree

returned by phase 1 to determine the depths of all leaf nodes. This
is where we use our second key idea. To turn the user input list into
a list of trees, we need to apply constructor Leaf to each value of
the input list. We take this opportunity to store a reference in each
leaf, that we will later use to set depths of leaf nodes. Thus the
beginning of the function garsia wachs is as follows.

let garsia wachs l =
let l = List.map (fun (x, wx) → Leaf (x, ref 0), wx) l in
let t = phase1 l in
...

Note that l has now type ((α × int ref) tree × int) list. But since
phase1 is polymorphic, it applies to l as well. Setting the depths of
the leaf nodes is now a trivial task: we simply traverse the tree t with
a recursive function mark which takes the depth d as argument.

let rec mark d = function
| Leaf (, dx) → dx := d
| Node (l, r) → mark (d + 1) l; mark (d + 1) r

Each time a leaf node is reached, it contains a reference dx which
is set to d. The key is the sharing of references between l and t,
which is depicted on Figure 2. (We omit the weights in l, as well as
the boxing of pairs and references, for the sake of clarity.)

We are now left with the last phase of the Garsia–Wachs algo-
rithm, which consists in building the final tree from the initial list

t

l A, ref 2

B, ref 3

C, ref 3

D, ref 2

E, ref 2

Figure 2. List l and tree t sharing references.

of leaf nodes and their depths. This is rather trivial, since l contains
the leaf nodes in the right order and each node in this list contains
a reference to its depth. Building the tree from the list can be done
recursively over the list, following a nice solution due to R. E. Tar-
jan [7, page 713]. It consists in a function build which takes a depth
d and a list of leaf nodes l as arguments, and builds a subtree rooted
at depth d using a prefix of l. It returns this tree, together with the
remaining elements of l. The code for build is the following. The
list cannot be empty, nor it can contain a Node.

let rec build d = function
| [] | (Node ,) : : →

assert false

If its first element is a leaf of the expected depth d, we return a tree
reduced to this leaf, together with the remaining element of the list.

| (Leaf (x, dx),) : : r when !dx = d →
Leaf x, r

Otherwise, we recursively build two subtrees left and right rooted
at depth d+1, consuming the list elements meanwhile, and return
the tree together with the remaining elements.

| l →
let left,l = build (d+1) l in
let right,l = build (d+1) l in
Node (left, right), l

Note that this process would obviously fail on arbitrary values for
the depths. But it succeeds here since soundness of the Garsia–
Wachs algorithm ensures that such a tree exists.

Putting all together, we get the following code for the main
function.

let garsia wachs l =
let l = List.map (fun (x, wx) → Leaf (x, ref 0), wx) l in
let t = phase1 l in
mark 0 t;
let t, [] = build 0 l in
t

It simply combines the three phases. The whole code is 44 lines
long and given in appendix A.

4. Comparison with the C Implementation
This section compares our implementation to a C implementation
by Knuth himself [6], which is given in appendix B. This C code is
considered by Knuth as “a quick-and-dirty implementation”, writ-
ten as he was preparing the 2nd edition of Volume 3. Yet it strictly

3 2008/7/22

follows the description from The Art of Computer Programming [7,
page 451] and thus can be legitimately considered as a reference.

We first compare the programs from the performance point of
view. For several values of n, we perform 500 runs of each program
on randomly selected weights. (Both programs are run on exactly
the same input values, of course.) To make the comparison fair, any
printing on the standard output has been removed from the C code.
Since the C program is not considering values but only weights,
the OCAML code has been specialized accordingly, to avoid the
allocation of unnecessary pairs. We measure CPU time using UNIX
time command. The timings are given in seconds in the following
table2.

n C OCAML
100 0.58 0.38
200 0.62 0.72
300 0.95 1.06
400 1.25 1.44
500 1.56 1.82

As we can see, the OCAML code is slightly slower than the C
code, but not that much (less than 20% slower). It is even faster
for n = 100.

Both codes have the same O(n2) worst case complexity. Time
is spent in phase 1, which repeats n times the extraction/insertion
operation. This part of the algorithm scans weights to determine
i and j and thus may require O(n) steps in the worst case. The
OCAML and C codes manipulate the list of weights differently, with
a zipper for lists and arrays respectively, the resulting complexity
is exactly the same. The use of a linked list would make extraction
and insertion O(1) but time proportional to n will still be spent
in determining positions i and j. As pointerd out by Knuth, there
are ways to implement the Garsia–Wachs algorithm in O(n log n)
with more sophisticated data structures [7, page 713]. But for the
purpose of comparison, we wanted to stick to the presentation from
The Art of Computer Programming and to its companion code.

It is also worth mentioning that our code definitely provides
a better interface than the C code. Indeed, it turns a user list of
weighted values into a tree, while the C program works on a
statically allocated array and only considers weights. If the addition
of user values would not make the C program much more complex,
dynamic memory allocation to return a fresh tree would obviously
make it less efficient. Even with this difference, the OCAML code is
smaller than the C code. Finally, the C code has a built-in maximal
size, while the OCAML code has not.

5. Conclusion
“Shall I be pure or impure?” said Wadler once [9]. This functional
pearl shows that there is no harm in being slightly impure from
time to time. This is especially true when side-effects are purely
local and are not exposed to the client code. This is the case here,
since the algorithm is implemented as a function taking a pure list
as argument and returning a pure tree. The internal use of references
in leaf nodes does not leak out of the algorithm code. Yet the use
of references makes a huge difference on the point of view of
efficiency. Indeed, there is no simple way to retrieve the depths
from the intermediate tree in a purely applicative solution, since
we do not assume any comparison over the Xi’s. The key here
is the sharing of references between the initial input list and the
intermediate tree, which gives constant access to the depths once
they are computed.

Of course, there were many other ways to get the same result
with the same complexity. For instance, we could build the list of

2 The programs and input data used for these tests are available online, at
http://www.lri.fr/∼filliatr/garsia-wachs/.

depths in phase 2, and then traverse two lists at the same time in
phase 3; or we could store depths in an array and then have phase
3 traversing this array with an extra integer argument; and so on.
But all these solutions are less elegant, since they either allocate
memory unnecessarily or clutter the code with too many imperative
details.

A. Ocaml Implementation
The OCAML code for the Garsia–Wachs algorithm is given below.

type α tree =
| Leaf of α
| Node of α tree × α tree

(* phase 1: build an optimum tree, with leaves in any order *)

let phase1 l =
let rec extract before = function
| [] →

assert false
| [t,] →

t
| [t1,w1; t2,w2] →

insert [] (Node (t1, t2), w1 + w2) before
| (t1, w1) : : (t2, w2) : : ((, w3) : : as after)

when w1 ≤ w3 →
insert after (Node (t1, t2), w1 + w2) before

| e1 : : r →
extract (e1 : : before) r

and insert after ((,wt) as t) = function
| [] →

extract [] (t : : after)
| (, wj 1) as tj 1 : : before when wj 1 ≥ wt →

begin match before with
| [] → extract [] (tj 1 : : t : : after)
| tj 2 : : before →

extract before (tj 2 : : tj 1 : : t : : after)
end

| tj : : before →
insert (tj : : after) t before

in
extract [] l

(* phase 2: mark each leaf with its depth *)

let rec mark d = function
| Leaf (, dx) → dx := d
| Node (l, r) → mark (d + 1) l; mark (d + 1) r

(* phase 3: build a tree from the list of leaves/depths *)

let rec build d = function
| [] | (Node ,) : : →

assert false
| (Leaf (x, dx),) : : r when !dx = d →

Leaf x, r
| l →

let left,l = build (d+1) l in
let right,l = build (d+1) l in
Node (left, right), l

let garsia wachs l =
let l = List.map (fun (x, wx) → Leaf (x, ref 0), wx) l in
let t = phase1 l in
mark 0 t;

4 2008/7/22

let t, [] = build 0 l in
t

B. C Implementation
This section contains the C implementation by Knuth. The code
was written in CWEB [8], a literate programming tool for C. Since
we do not assume the reader to be familiar with CWEB syntax, we
only give here the resulting C code. The code is slightly longer than
the OCAML code, in particular because it includes the parsing of
weights on the command line (at the beginning of function main).
We prefer to leave the code unmodified, though. For a detailed
explanation of this code, the reader should refer to its pseudo-code
description [7, page 451] and to its CWEB source [6].

#define size 64
#include <stdio.h>

int w[size]; /* node weights */
int l[size], r[size]; /* left and right children */
int d[size]; /* depth */
int q[size]; /* working region */
int v[size]; /* number of node in working region */
int t; /* current size of working region */
int m; /* current node */

void combine(register int k) {
register int j, d, x;
m++;
l[m] = v[k - 1];
r[m] = v[k];
w[m] = x = q[k - 1] + q[k];

t−−;
for (j = k; j ≤ t; j++)

q[j] = q[j + 1], v[j] = v[j + 1];
for (j = k - 2; q[j] < x; j−−)

q[j + 1] = q[j], v[j + 1] = v[j];
q[j + 1] = x;
v[j + 1] = m;

while (j > 0 ∧ q[j - 1] ≤ x) {
d = t - j;
combine(j);
j = t - d;

}
}

void mark(int k, int p) {
d[k] = p;
if (l[k] ≥ 0)

mark(l[k], p + 1);
if (r[k] ≥ 0)

mark(r[k], p + 1);
}

void build(int b) {
register int j = m;
if (d[t] ≡ b)

l[j] = t++;
else {

m−−;
l[j] = m;
build(b + 1);

}

if (d[t] ≡ b)
r[j] = t++;

else {
m−−;
r[j] = m;
build(b + 1);

}

}

void main(int argc, char ?argv[]) {
register int i, j, k, n;

n = argc - 2;
if (n < 0) {

fprintf(stderr, ”Usage : %s wt0 ... wtn\n”, argv[0]);
exit(0);

}
if (n + n ≥ size) {

fprintf(stderr,
”Recompile me with a larger tree size!\n”);

exit(0);
}
for (j = 0; j ≤ n; j++) {

if (sscanf(argv[j + 1], ”%d”, &m) 6≡ 1) {
fprintf(stderr, ”Couldn’t read wt%d!\n”, j);
exit(0);

}
w[j] = m;
l[j] = r[j] = -1;

}

m = n;
t = 1;
q[0] = 1000000000; /* infinity */
q[1] = w[0];
v[1] = 0;
for (k = 1; k ≤ n; k++) {

while (q[t - 1] ≤ w[k])
combine(t);

t++;
q[t] = w[k];
v[t] = k;

}
while (t > 1)

combine(t);

mark(v[1], 0);

t = 0;
m = 2 ? n;
build(1);

}

Acknowledgments
I am grateful to J. Kanig, Y. Moy and Y. Régis-Gianas for careful
readings of an early draft of this paper. This article was written
with due respect to Knuth’s work and thankfulness for the marvels
contained in The Art of Computer Programming.

5 2008/7/22

References
[1] Hans-Juergen Boehm, Russell R. Atkinson, and Michael F. Plass.

Ropes: An alternative to strings. Software - Practice and Experience,
25(12):1315–1330, 1995.

[2] Xavier Leroy et al. The Objective Caml language. http://caml.
inria.fr/.

[3] Adriano M. Garsia and Michelle L. Wachs. A new algorithm for
minimum cost binary trees. SIAM Journal on Computing, 6(4):622–
642, December 1977.

[4] Gérard Huet. The Zipper. Journal of Functional Programming,
7(5):549–554, Septembre 1997.

[5] D. A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[6] D. E. Knuth. CWEB implementation of Garsia–Wachs algorithm.
http://www-cs-faculty.stanford.edu/∼knuth/programs/
garsia-wachs.w.

[7] D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting
and Searching. Addison-Wesley, 1973.

[8] Donald E. Knuth and Silvio Levy. The CWEB System of Structured
Documentation. Addison-Wesley, 1993. CWEB is available at
http://www-cs-staff.Stanford.EDU/∼knuth/cweb.html.

[9] Philip Wadler. Monads for functional programming. In Marktoberdorf
Summer School on Program Design Calculi, August 1992.

6 2008/7/22

