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Here are some exercises in program verification, with Why and Caduceus. All exercises
are independent. Feel free to do them in the order of your choice.

1 Installing the software

The three tools are available on the live-CD, together with the three automatic provers
Simplify, Ergo and Yices.

In case you are not using the live-CD, you can download Why/Caduceus from http:

//why.lri.fr/ (a single tarball for both, available as source and Linux binaries). Linux
binaries for Simplify, Ergo and Yices are available at http://www.lri.fr/∼filliatr/

types-summer-school-2007/provers/. Why and Caduceus manuals are available on-
line at http://why.lri.fr/.

2 Why

The simplest way to use Why is to build a source file f.why and then to run the graphical
user interface with gwhy f.why. Then each automatic prover can be run on proof obli-
gations by clicking on its name. A given proof obligation can be displayed by selecting
it in the list (on the left side). The gwhy command line option -split-user-conj can
be specified to split proof obligations into several pieces, as soon as they are built with
conjunctions. To use an interactive prover such as Coq, run why --coq f.why and then
edit f why.v with CoqIDE.

2.1 McCarthy’s 91 function

McCarthy’s 91 function is the function f from Z to Z defined by{
f(n) = f(f(n + 11)) if n ≤ 100
f(n) = n− 10 otherwise.

1. Define function f in Why. The Why syntax for a recursive function is

let rec f (n:int) : int = ...

2. Annotate f in order to prove that f(n) is 91 when n ≤ 100 and n− 10 otherwise.

3. Prove the termination of f by inserting the following variant

let rec f (n:int) : int { variant max(0,101-n) } = ...

Since max is not a primitive function, you must introduce it with a logic and ax-
iomatize it with an axiom.
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2.2 Fibonacci Function

1. Introduce the Fibonacci function F with a logic and three axioms. We recall that
F (0) = F (1) = 1 and F (n) = F (n− 1) + F (n− 2) for n ≥ 2.

2. Define a recursive function f1 computing F (with a naive, i.e. exponential, algo-
rithm). Prove its correctness and termination.

3. Define a function f2 computing F using a linear algorithm which maintains F (n−1)
and F (n) in two references. Prove its correctness and termination.

4. Define a third function f3 computing F (n), using the same linear algorithm but
using a recursive function instead of a loop. Note how the loop invariant is naturally
transformed a precondition.

3 Caduceus

Given an annotated C source file f.c, Caduceus is simply invoked with the command
caduceus f.c. It creates an input file for make in f.makefile. Then the user interface
gwhy can be launched with

make -f f.makefile gui

To split proof obligations, use Caduceus option -why-opt -split-user-conj. To enable
separation analysis, use Caduceus option -separation.

3.1 Basics of Loop Annotations

Let us consider a simple loop iterating over all integers from 0 to n − 1, assuming that
n ≥ 0. It can be written as follows:

for (i = 0; i < n; i++) ...

In order to maintain some information about i inside the loop, we need at least a loop
invariant such as:

//@ invariant 0 <= i <= n

for (i = 0; i < n; i++) ...

Note that we need to write i <= n and not i < n since the invariant must also hold
at the end of the last execution of the loop body, when i = n. In order to prove the
termination of such a loop, we need to introduce a variant, such as:

//@ invariant ... variant n-i

for (i = 0; i < n; i++) ...

Here are some basic exercices related to loop invariants and variants:

1. Prove the termination of the following functions:
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void loop1(int n) { while (n > 0) n--; }
void loop2(int n) { while (n < 100) n++; }

2. Prove the correctness and termination of this program:

//@ ensures \result == 0

int loop3() {
int i = 100;

while (i > 0) i--;

return i;

}

3.2 All Zeros

The purpose of this exercise is to define a function to check, given an array t and an integer
n, whether the elements t[0], . . . , t[n − 1] are all zeros or not. Thus the specification of
the function will be the following:

/*@ requires n >= 0 && \valid range(t,0,n)

ensures \result <=> \forall int i; 0<=i<n => t[i]==0 */

int all zeros(int t[], int n) { ... }

1. Prove the correctness and termination of this first implementation:

int all zeros 0(int t[], int n) {
int k;

/*@ invariant ... variant ... */

for (k = 0; k < n; k++) if (t[k]) return 0;

return 1;

}

2. Same question for this second implementation:

int all zeros(int t[], int n) {
/*@ invariant ... variant ... */

while (--n>=0 && !t[n]);

return n < 0;

}

3. Is this third implementation correct? If so, prove it; if not, find a counterexample.

int all zeros(int t[], int n) {
int k = 0;

while (k < n && !t[k++]);

return k == n;

}
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3.3 Pointer Arithmetic

Prove the absence of runtime error in the following C code:

//@ requires size >= 0 && \valid range(p,0,size-1)

void erase(int *p, int size){
while (size--) *p++ = 0;

}

3.4 Linked Lists

In this exercise we consider linked lists of integers, defined as follows:

typedef struct struct list {
int hd;

struct struct list * tl;

} *list;

The empty list is simply represented by a null pointer:

#define NULL ((void*)0)

We want to verify the following function which searches the list p for the value v:

list search(list p, int v) {
while (p != NULL && p->hd != v) p = p->tl;

return p;

}

It returns either a pointer to a cell containing v or NULL if the search is not successful.
Obviously, this program breaks if the list p is not well-formed (i.e. contains invalid
pointers) or loops forever if the list is cyclic and does not contain v. Thus we need
to characterize well-formed finite lists. For this purpose, we introduce the following
predicate:

/*@ predicate is list(list p) reads p->tl */

Up to now, this is an uninterpreted predicate. The declaration reads p->tl indicates
that the meaning of is list may depend on p->tl (to allow Caduceus to interpret
is list as a Why predicate with the corresponding part of the model as argument).

1. Complete the following axiom for is list:

/*@ axiom is list def : \forall list p; is list(p) <=> (...) */

2. Prove the correctness of function search.

3. Prove the termination of function search. For this purpose, introduce the length
of a linked list as a logical function:

/*@ logic int length(list p) reads p->tl */

and add the necessary axioms for length.

4


