Types Summer School 2007
 Why/Caduceus-lab
 Jean-Christophe Filliâtre

Here are some exercises in program verification, with Why and Caduceus. All exercises are independent. Feel free to do them in the order of your choice.

1 Installing the software

The three tools are available on the live-CD, together with the three automatic provers Simplify, Ergo and Yices.

In case you are not using the live-CD, you can download Why/Caduceus from http: //why.lri.fr/ (a single tarball for both, available as source and Linux binaries). Linux binaries for Simplify, Ergo and Yices are available at http://www.lri.fr/~filliatr/ types-summer-school-2007/provers/. Why and Caduceus manuals are available online at http://why.lri.fr/.

2 Why

The simplest way to use Why is to build a source file f . why and then to run the graphical user interface with gwhy f.why. Then each automatic prover can be run on proof obligations by clicking on its name. A given proof obligation can be displayed by selecting it in the list (on the left side). The gwhy command line option -split-user-conj can be specified to split proof obligations into several pieces, as soon as they are built with conjunctions. To use an interactive prover such as Coq, run why --coq f.why and then edit f_why.v with CoqIDE.

2.1 McCarthy's 91 function

McCarthy's 91 function is the function f from \mathbb{Z} to \mathbb{Z} defined by

$$
\left\{\begin{array}{lll}
f(n) & =f(f(n+11)) & \\
\text { if } n \leq 100 \\
f(n) & =n-10 & \\
\text { otherwise. }
\end{array}\right.
$$

1. Define function f in Why. The Why syntax for a recursive function is
```
let rec f (n:int) : int = ...
```

2. Annotate f in order to prove that $f(n)$ is 91 when $n \leq 100$ and $n-10$ otherwise.
3. Prove the termination of f by inserting the following variant
```
let rec f (n:int) : int { variant max(0,101-n) } = ...
```

Since max is not a primitive function, you must introduce it with a logic and axiomatize it with an axiom.

2.2 Fibonacci Function

1. Introduce the Fibonacci function F with a logic and three axioms. We recall that $F(0)=F(1)=1$ and $F(n)=F(n-1)+F(n-2)$ for $n \geq 2$.
2. Define a recursive function f_{1} computing F (with a naive, i.e. exponential, algorithm). Prove its correctness and termination.
3. Define a function f_{2} computing F using a linear algorithm which maintains $F(n-1)$ and $F(n)$ in two references. Prove its correctness and termination.
4. Define a third function f_{3} computing $F(n)$, using the same linear algorithm but using a recursive function instead of a loop. Note how the loop invariant is naturally transformed a precondition.

3 Caduceus

Given an annotated C source file f.c, Caduceus is simply invoked with the command
 gwhy can be launched with

```
make -f f.makefile gui
```

To split proof obligations, use Caduceus option -why-opt -split-user-conj. To enable separation analysis, use Caduceus option -separation.

3.1 Basics of Loop Annotations

Let us consider a simple loop iterating over all integers from 0 to $n-1$, assuming that $n \geq 0$. It can be written as follows:

```
for (i = 0; i < n; i++) ...
```

In order to maintain some information about i inside the loop, we need at least a loop invariant such as:

```
//@ invariant 0 <= i <= n
for (i = 0; i < n; i++) ...
```

Note that we need to write i <= n and not $\mathrm{i}<\mathrm{n}$ since the invariant must also hold at the end of the last execution of the loop body, when $i=n$. In order to prove the termination of such a loop, we need to introduce a variant, such as:

```
//@ invariant ... variant n-i
for (i = 0; i < n; i++) ...
```

Here are some basic exercices related to loop invariants and variants:

1. Prove the termination of the following functions:
```
void loop1(int n) { while (n > 0) n--; }
void loop2(int n) { while (n < 100) n++; }
```

2. Prove the correctness and termination of this program:
```
//@ ensures \result == 0
int loop3() {
    int i = 100;
    while (i > 0) i--;
    return i;
}
```


3.2 All Zeros

The purpose of this exercise is to define a function to check, given an array t and an integer n, whether the elements $t[0], \ldots, t[n-1]$ are all zeros or not. Thus the specification of the function will be the following:

```
/*@ requires n >= 0 && \valid_range(t,0,n)
    ensures \result <=> \forall int i; 0<=i<n => t[i]==0 */
int all_zeros(int t[], int n) { ... }
```

1. Prove the correctness and termination of this first implementation:
```
int all_zeros_0(int t[], int n) {
    int k;
    /*@ invariant ... variant ... */
    for (k = 0; k < n; k++) if (t[k]) return 0;
    return 1;
}
```

2. Same question for this second implementation:
```
int all_zeros(int t[], int n) {
    /*@ invariant ... variant ... */
    while (--n>=0 && !t[n]);
    return n < 0;
}
```

3. Is this third implementation correct? If so, prove it; if not, find a counterexample.
```
int all_zeros(int t[], int n) {
    int k = 0;
    while (k < n && !t[k++]);
    return k == n;
}
```


3.3 Pointer Arithmetic

Prove the absence of runtime error in the following C code:

```
//@ requires size >= 0 && \valid_range(p,0,size-1)
void erase(int *p, int size){
    while (size--) *p++ = 0;
}
```


3.4 Linked Lists

In this exercise we consider linked lists of integers, defined as follows:

```
typedef struct struct_list {
    int hd;
    struct struct_list * tl;
} *list;
```

The empty list is simply represented by a null pointer:

```
#define NULL ((void*)0)
```

We want to verify the following function which searches the list p for the value v :

```
list search(list p, int v) {
    while (p != NULL && p->hd != v) p = p->tl;
    return p;
}
```

It returns either a pointer to a cell containing v or NULL if the search is not successful. Obviously, this program breaks if the list p is not well-formed (i.e. contains invalid pointers) or loops forever if the list is cyclic and does not contain v. Thus we need to characterize well-formed finite lists. For this purpose, we introduce the following predicate:

```
/*@ predicate is_list(list p) reads p->tl */
```

Up to now, this is an uninterpreted predicate. The declaration reads $\mathrm{p}->\mathrm{tl}$ indicates that the meaning of is_list may depend on p->tl (to allow Caduceus to interpret is_list as a Why predicate with the corresponding part of the model as argument).

1. Complete the following axiom for is_list:
```
/*@ axiom is_list_def : \forall list p; is_list(p) <=> (...) */
```

2. Prove the correctness of function search.
3. Prove the termination of function search. For this purpose, introduce the length of a linked list as a logical function:
```
/*@ logic int length(list p) reads p->tl */
```

and add the necessary axioms for length.

