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These notes are an introduction to the Why tool. This tool implements a programming
language designed for the verification of sequential programs. This is an intermediate
language to which existing programming languages can be compiled and from which
verification conditions can be computed.

Section 1 introduces the theory behind the Why tool (syntax, typing, semantics and
weakest preconditions for its language). Then Section 2 illustrates the practical use of
the tool on several examples.
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Chapter 1

Underlying Theory

Implementing a verification condition generator (VCG) for a realistic programming lan-
guage such as C is a lot of work. Each construct requires a specific treatment and there
are many of them. Though, almost all rules will end up to be instances of the five his-
torical Hoare Logic rules [?]. Reducing the VCG to a core language thus seems a good
approach. Similarly, if one has written a VCG for C and has to write another one for
Java, there are clearly enough similarities to hope for this core language to be reused.
Last, if one has to experiment with several logics, models and/or proof tools, this core
language should ideally remain the same.

The Why tool implements such an intermediate language for VCGs, that we call HL in
the following (for Hoare Language). Syntax, typing, semantics and weakest preconditions
calculus are given below, but we first start with a tour of HL features.

Genericity. HL annotations are written in a first-order predicate syntax but are not
interpreted at all. This means that HL is independent of the underlying logic in
which the annotations are interpreted. The WP calculus only requires the logic to
be minimal i.e. to include universal quantification, conjunction and implication.

ML syntax. HL has an ML-like syntax where there is no distinction between expressions
and statements. This greatly simplifies the language—not only the syntax but also
the typing and semantics. However HL has few in common with the ML family
languages (functions are not first-class values, there is no type inference, etc.)

Aliases. HL is an alias-free language. This is ensured by the type checking rules. Being
alias free is crucial for reasoning about programs, since the rule for assignment

{P [x← E]}x := E {P}

implicitly assumes that any variable other than x is left unmodified. Note however
that the absence of alias in HL does not prevent the interpretation of programs with
possible aliases: such programs can be interpreted using a more or less complex
memory model made of several unaliased variables (see Section ??).

Exceptions. Beside conditional and loop, HL only has a third kind of control statement,
namely exceptions. Exceptions can be thrown from any program point and caught
anywhere upper in the control-flow. Arbitrary many exceptions can be declared and
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they may carry values. Exceptions can be used to model exceptions from the source
language (e.g. Java’s exceptions) but also to model all kinds of abrupt statements
(e.g. C and Java’s return, break or continue).

Typing with effects. HL has a typing with effects: each expression is given a type
together with the sets of possibly accessed and possibly modified variables and the
set of possibly raised exceptions. Beside its use for the alias check, this is the key
to modularity: one can declare and use a function without implementing it, since
its type mentions its side-effects. In particular, the WP rule for function call is
absolutely trivial.

Auxiliary variables. The usual way to relate the values of variables at several pro-
gram points is to used the so-called auxiliary variables. These are variables only
appearing in annotations and implicitly universally quantified over the whole Hoare
triple. Though auxiliary variables can be given a formal meaning [?] their use is
cumbersome in practice: they pollute the annotations and introduce unnecessary
equality reasoning on the prover side. Instead we propose the use of program la-
bels—similar to those used for gotos—to refer to the values of variables at specific
program points. This appears to be a great improvement over auxiliary variables,
without loss of expressivity.

1.1 Syntax

1.1.1 Types and Specifications

Program annotations are written using the following minimal first-order logic:

t ::= c | x | !x | φ(t, . . . , t) | old(t) | at(t, L)
p ::= P (t, . . . , t) | ∀x : β.p | p⇒ p | p ∧ p | . . .

A term t can be a constant c, a variable x, the contents of a reference x (written !x) or the
application of a function symbol φ. It is important to notice that φ is a function symbol
belonging to the logic: it is not defined in the program. The construct old(t) denotes
the value of term t in the precondition state (only meaningful within the corresponding
postcondition) and the construct at(t, L) denotes the value of the term t at the program
point L (only meaningful within the scope of a label L).

We assume the existence of a set of pure types (β) in the logical world, containing at
least a type unit with a single value void and a type bool for booleans with two values
true and false.

Predicates necessarily include conjunction, implication and universal quantification
as they are involved in the weakest precondition calculus. In practice, one is likely to
add at least disjunction, existential quantification, negation and true and false predicates.
An atomic predicate is the application of a predicate symbol P and is not interpreted.
For the forthcoming WP calculus, it is also convenient to introduce an if-then-else

predicate:
if t then p1 else p2 ≡

(t = true⇒ p1) ∧ (t = false⇒ p2)
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Program types and specifications are classified as follows:

τ ::= β | β ref | (x : τ)→ κ
κ ::= {p} τ ε {q}
q ::= p; E ⇒ p; . . . ; E ⇒ p
ε ::= reads x, . . . , x writes x, . . . , x raises E, . . . , E

A value of type τ is either an immutable variable of a pure type (β), a reference containing
a value of a pure type (β ref) or a function of type (x : τ) → {p} β ε {q} mapping the
formal parameter x to the specification of its body, that is a precondition p, the type τ
for the returned value, an effect ε and a postcondition q. An effect is made of tree lists
of variables: the references possibly accessed (reads), the references possibly modified
(writes) and the exceptions possibly raised (raises). A postcondition q is made of
several parts: one for the normal termination and one for each possibly raised exception
(E stands for an exception name).

When a function specification {p} β ε {q} has no precondition and no postcondition
(both being true) and no effect (ε is made of three empty lists) it can be shortened to
τ . In particular, (x1 : τ1) → · · · → (xn : τn) → κ denotes the type of a function with n
arguments that has no effect as long as it not applied to n arguments. Note that functions
can be partially applied.

1.1.2 Expressions

The syntax for program expressions is given in Figure 1.1. In particular, programs contain
pure terms (t) made of constants, variables, dereferences (written !x) and application of
function symbols from the logic to pure terms. The syntax mostly follows ML’s one.
ref e introduces a new reference initialized with e. loop e {invariant p variant t} is
an infinite loop of body e, invariant p and which termination is ensured by the variant t.
The raise construct is annotated with a type τ (there is no type inference in HL). There
are two ways to insert proof obligations in programs: assert {p}; e places an assertion p
to be checked right before e and e {q} places a postcondition q to be checked right after
e.

The traditional sequence construct is only syntactic sugar for a let-in binder where
the variable does not occur in e2:

e1; e2 ≡ let = e1 in e2

We also simplify the raise construct whenever both the exception contents and the whole
raise expression have type unit:

raise E ≡ raise (E void) : unit

The traditional while loop is also syntactic sugar for a combination of an infinite loop
and the use of an exception Exit to exit the loop:

while e1 do e2 {invariant p variant t} ≡
try

loop if e1 then e2 else raise Exit
{invariant p variant t}

with Exit -> void end
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t ::= c | x | !x | φ(t, . . . , t)
e ::= t

| x := e
| let x = e in e
| let x = ref e in e
| if e then e else e
| loop e {invariant p variant t}
| L:e
| raise (E e) : τ
| try e with E x→ e end

| assert {p}; e
| e {q}
| fun (x : τ)→ {p} e
| rec x (x : τ) . . . (x : τ) : β {variant t} = {p} e
| e e

Figure 1.1: Syntax

1.1.3 Functions and Programs

A program (p) is a list of declarations. A declaration (d) is either a definition introduced
with let or a declaration introduced with val, or an exception declaration.

p ::= ∅ | d p
d ::= let x = e

| val x : τ
| exception E of β

1.2 Typing

This section introduces typing and semantics for HL.
Typing environments contain bindings from variables to types of values, exceptions

declarations and labels:

Γ ::= ∅ | x : τ, Γ | exception E of β, Γ | label L, Γ

The type of a constant or a function symbol is given by the operator Typeof . A type τ
is said to be pure, and we write τ pure, if it is not a reference type. We write x ∈ τ
whenever the reference x appears in type τ i.e. in any annotation or effect within τ .

An effect is composed of three sets of identifiers. When there is no ambiguity we
write (r, w, e) for the effect reads r writes w raises e. Effects compose a natural
semi-lattice of bottom element ⊥ = (∅, ∅, ∅) and supremum (r1, w1, e1) t (r2, w2, e2) =
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(r1∪r2, w1∪w2, e1∪e2). We also define the erasing of the identifier x in effect ε = (r, w, e)
as ε\x = (r\{x}, w\{x}, e\{x}).

We introduce the typing judgment Γ ` e : (τ, ε) with the following meaning: in envi-
ronment Γ the expression e has type τ and effect ε. Typing rules are given in Figure 1.2.
They assume the definitions of the following extra judgments:

• Γ ` κ wf : the specification κ is well formed in environment Γ,

• Γ ` p wf : the precondition p is well formed in environment Γ,

• Γ ` q wf : the postcondition q is well formed in environment Γ,

• Γ ` t : β : the logical term t has type β in environment Γ.

The purpose of this typing with effects is two-fold. First, it rejects aliases: it is
not possible to bind one reference variable to another reference, neither using a let in

construct, nor a function application. Second, it will be used when interpreting programs
in Type Theory (in Section 1.5 below).

1.3 Semantics

We give a big-step operational semantics to HL. The notions of values and states are the
following:

v ::= c | E c | rec f x = e
s ::= {(x, c), . . . , (x, c)}

A value v is either a constant value (integer, boolean, etc.), an exception E carrying a
value c or a closure rec f x = e representing a possibly recursive function f binding x
to e. For the purpose of the semantic rules, it is convenient to add the notion of closure
to the set of expressions:

e ::= . . . | rec f x = e

In order to factor out all semantic rules dealing with uncaught exceptions, we introduce
the following set of contexts R:

R ::= [] | x := R | let x = R in e | let x = ref R in e
| if R then e else e | loop R {invariant p variant t}
| raise (E R) : τ | R e

The semantics rules are given Figure 1.3.

1.4 Weakest Preconditions

Programs correctness is defined using a calculus of weakest preconditions. We note
wp(e, q; r) the weakest precondition for a program expression e and a postcondition q; r
where q is the property to hold when terminating normally and r = E1 ⇒ q1; . . . ; En ⇒ qn

is the set of properties to hold for each possibly uncaught exception. Expressing the cor-
rectness of a program e is simply a matter of computing wp(e, True).
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Typeof (c) = β

Γ ` c : (β,⊥)

x : τ ∈ Γ τ pure

Γ ` x : (τ,⊥)

x : β ref ∈ Γ

Γ ` !x : (β, reads x)

Γ ` ti : (βi, εi) Typeof (φ) = β1, . . . , βn → β

Γ ` φ(t1, . . . , tn) : (β,
⊔
i

εi)

x : β ref ∈ Γ Γ ` e : (β, ε)

Γ ` x := e : (unit, (writes x) t ε)

Γ ` e1 : (τ1, ε1) τ1 pure Γ, x : τ1 ` e2 : (τ2, ε2)

Γ ` let x = e1 in e2 : (τ2, ε1 t ε2)

Γ ` e1 : (β1, ε1) Γ, x : β1 ref ` e2 : (τ2, ε2) x 6∈ τ2

Γ ` let x = ref e1 in e2 : (τ2, ε1 t ε2\x)

Γ ` e1 : (bool, ε1) Γ ` e2 : (τ, ε2) Γ ` e3 : (τ, ε3)

Γ ` if e1 then e2 else e3 : (τ, ε1 t ε2 t ε3)

Γ ` e : (unit, ε) Γ ` p wf Γ ` t : int

Γ ` loop e {invariant p variant t} : (unit, ε)

Γ, label L ` e : (τ, ε)

Γ ` L:e : (τ, ε)

exception E of β ∈ Γ Γ ` e : (β, ε)

Γ ` raise (E e) : τ : (τ, (raises E) t ε))

exception E of β ∈ Γ Γ ` e1 : (τ, ε1) Γ, x : β ` e2 : (τ, ε2)

Γ ` try e1 with E x→ e2 end : (τ, ε1\{raises E} t ε2)

Γ ` p wf Γ ` e : (τ, ε)

Γ ` assert {p}; e : (τ, ε)

Γ ` e : (τ, ε) Γ, result : τ ` q wf

Γ ` e {q} : (τ, ε)

Γ, x : τ ` p wf Γ, x : τ ` e {q} : (τ ′, ε)

Γ ` fun (x : τ)→ {p} e {q} : ((x : τ)→ {p} τ ′ ε {q},⊥)

Γ′ ≡ Γ, x1 : τ1, . . . , xn : τn Γ′ ` p wf Γ′ ` t : int
Γ′, f : (x1 : τ1)→ · · · (xn : τn)→ {p} τ ε {q} ` e {q} : (τ, ε)

Γ ` rec f (x1 : τ1) . . . (xn : τn) : τ {variant t} = {p} e {q}
: ((x1 : τ1)→ · · · (xn : τn)→ {p} τ ε {q},⊥)

Γ ` e1 : ((x : τ2)→ {p} τ2 ε {q}, ε1) Γ ` e2 : (τ2, ε2)) τ2 pure

Γ ` e1 e2 : (τ, ε1 t ε2 t ε)

Γ ` e1 : ((x : β ref)→ {p} τ2 ε {q}, ε1) x2 : β ref ∈ Γ x2 6∈ τ2

Γ ` e1 x2 : (τ [x← x2], ε1 t ε[x← x2])

Figure 1.2: Typing
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s, c −→ s, c s, !x −→ s, s(x)

s, ti −→ s, ci

s, φ(t1, . . . , tn) −→ s, φ(c1, . . . , cn)

s, e −→ s′, E c

s, R[e] −→ s′, E c

s, e −→ s′, c

s, x := e −→ s′ ⊕ {x 7→ c}, void

s, e1 −→ s1, v1 v1 not exc. s1, e2[x← v1] −→ s2, v2

s, let x = e1 in e2 −→ s2, v2

s, e1 −→ s1, c1 s1 ⊕ {x 7→ c1}, e2 −→ s2, v2

s, let x = ref e1 in e2 −→ s2, v2

s, e1 −→ s1, true s1, e2 −→ s2, v2

s, if e1 then e2 else e3 −→ s2, v2

s, e1 −→ s1, false s1, e3 −→ s3, v3

s, if e1 then e2 else e3 −→ s3, v3

s, e −→ s′, void s′, loop e {invariant p variant t} −→ s′′, v

s, loop e {invariant p variant t} −→ s′′, v

s, e −→ s′, v

s, L:e −→ s′, v

s, e −→ s′, c

s, raise (E e) : τ −→ s′, E c

s, e1 −→ s1, E
′ c E ′ 6= E

s, try e1 with E x→ e2 end −→ s1, E
′ c

s, e1 −→ s1, E c s1, e2[x← c] −→ s2, v2

s, try e1 with E x→ e2 end −→ s2, v2

s, e1 −→ s1, v1 v1 not exc.

s, try e1 with E x→ e2 end −→ s1, v1

s, e −→ s′, v

s, {p} e −→ s′, v

s, e −→ s′, v

s, e {q} −→ s′, v

s, fun (x : τ)→ {p} e −→ s, rec x = e

s, rec f (x1 : τ1) . . . (xn : τn) : τ {variant t} = {p} e −→
s, rec f x1 = rec x2 = . . . rec xn = e

s, e1 −→ s1, rec f x = e s1, e2 −→ s2, v2 s2, e[f ← rec f x = e, x← v2] −→ s3, v

e1 e2 −→ s3, v

Figure 1.3: Semantics
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The rules for the basic constructs are the following:

wp(t, q; r) = q[result ← t]
wp(x := e, q; r) = wp(e, q[result ← void; x← result ]; r)

wp(let x = e1 in e2, q; r) = wp(e1,wp(e2, q; r)[x← result ]; r)
wp(let x = ref e1 in e2, q; r) = wp(e1,wp(e2, q; r)[x← result ]; r)

wp(if e1 then e2 else e3, q; r) = wp(e1, if result then wp(e2, q; r) else wp(e3, q; r); r)
wp(L:e, q; r) = wp(e, q; r)[at(x, L)← x]

On the traditional constructs of Hoare logic, these rules simplify to the well known iden-
tities. For instance, the case of the assignment of a side-effect free expression gives

wp(x := t, q) = q[x← t]

and the case of a (exception free) sequence gives

wp(e1; e2, q) = wp(e1,wp(e2, q))

The cases of exceptions and annotations are also straightforward:

wp(raise (E e) : τ, q; r) = wp(e, r(E); r)
wp(try e1 with E x→ e2 end, q; r) = wp(e1, q; E ⇒ wp(e2, q; r)[x← result ]; r)

wp(assert {p}; e, q; r) = p ∧ wp(e, q; r)
wp(e {q′; r′}, q; r) = wp(e, q′ ∧ q; r′ ∧ r)

The case of an infinite loop is more subtle:

wp(loop e {invariant p variant t}, q; r) = p ∧ ∀ω. p⇒ wp(L:e, p ∧ t < at(t, L); r)

where ω stands for the set of references possibly modified by the loop body (the writes

part of e’s effect). Here the weakest precondition expresses that the invariant must hold
initially and that for each turn in the loop (represented by ω), either p is preserved by e
and e decreases the value of t (to ensure termination), or e raises an exception and thus
must establish r directly.

By combining this rule and the rule for the conditional, we can retrieve the rule for
the usual while loop:

wp(while e1 do e2 {invariant p variant t}, q; r)
= p ∧ ∀ω. p⇒

wp(L:if e1 then e2 else raise E, p ∧ t < at(t, L), E ⇒ q; r)
= p ∧ ∀ω. p⇒

wp(e1, if result then wp(e2, p ∧ t < at(t, L)) else q, r)[at(x, L)← x]

Finally, we give the rules for functions and function calls. Since a function cannot be
mentioned within the postcondition, the weakest preconditions for function constructs
fun and rec are only expressing the correctness of the function body:

wp(fun (x : τ)→ {p} e, q; r) = q ∧ ∀x.∀ρ.p⇒ wp(e, True)

wp(rec f (x1 : τ1) . . . (xn : τn) : τ {variant t} = {p} e, q; r)
= q ∧ ∀x1. . . .∀xn.∀ρ.p⇒ wp(L:e, True)

10



where ρ stands for the set of references possibly accessed by the loop body (the reads

part of e’s effect). In the case of a recursive function, wp(L:e, True) must be computed
within an environment where f is assumed to have type (x1 : τ1) → · · · → (xn : τn) →
{p∧ t < at(t, L)} τ ε {q} i.e. where the decreasing of the variant t has been added to the
precondition of f .

The case of a function call e1 e2 can be simplified to the case of an application x1 x2

of one variable to another, using the following transformation if needed:

e1 e2 ≡ let x1 = e1 in let x2 = e2 in x1 x2

Then assuming that x1 has type (x : τ)→ {p′} τ ′ ε {q′}, we define

wp(x1 x2, q) = p′[x← x2] ∧ ∀ω.∀result .(q′[x← x2]⇒ q)[old(t)← t]

that is (1) the precondition of the function must hold and (2) its postcondition must
imply the expected property q whatever the values of the modified references and of the
result are. Note that q and q′ may contain exceptional parts and thus the implication is
an abuse for the conjunction of all implications for each postcondition part.

1.5 Interpretation in Type Theory

Expressing program correctness using weakest preconditions is error-prone. Another ap-
proach consists in interpreting programs in Type Theory [?, ?] in such a way that if
the interpretation can be typed then the initial imperative program is correct. It can be
shown that the resulting set of proof obligations is equivalent to the weakest precondition.

The purpose of these notes is not to detail this methodology, only to introduce the
language implemented in the Why tool.
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Chapter 2

The Why Tool in Practice

The Why tool implements the programming language presented in the previous section. It
takes annotated programs as input and generates proof obligations for a wide set of proof
assistants (Coq, PVS, Isabelle/HOL, HOL 4, HOL-Light, Mizar) and decision procedures
(Simplify, Ergo, Yices, CVC Lite, CVC3, haRVey, Zenon). The Why can be seen from
several angles:

1. as a tool to verify algorithms rather than programs, since it implements a rather
abstract and idealistic programming language. Several non-trivial algorithms have
already been verified using the Why tool, such as the Knuth-Morris-Pratt string
searching algorithm for instance.

2. as a tool to compute weakest preconditions, to be used as an intermediate step in
the verification of existing programming languages. It has already been success-
fully applied to the verification of C and Java programs (see the tools Caduceus
and Krakatoa, at http://caduceus.lri.fr/ and http://krakatoa.lri.fr/ re-
spectively).

3. as a tool to write axiomatizations and goals and to dispatch them to several existing
provers.

To remain independent of the back-end prover that will be used (it may even be several
of them), the Why tool makes no assumption regarding the logic used. It uses a syntax of
polymorphic first-order predicate logic for annotations with no particular interpretation
(apart from the usual connectives). Function symbols and predicates can be declared in
order to be used in annotations, together with axioms, and they may be given definitions
on the prover side later, if needed.

2.1 A Trivial Example

Here is a small example of Why input code:

logic min: int, int -> int

parameter r: int ref

let f (n:int) = {} r := min !r n { r <= r@ }
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This code declares a function symbol min and gives its arity. Whatever the status of this
function is on the prover side (primitive, user-defined, axiomatized, etc.), it simply needs
to be declared in order to be used in the following of the code. The next line declares a
parameter, that is a value that is not defined but simply assumed to exist i.e. to belong
to the environment. Here the parameter has name r and is an integer reference (Why’s
concrete syntax is very close to Ocaml’s syntax). The third line defines a function f

taking a integer n as argument (the type has to be given since there is no type inference
in Why) and assigning to r the value of min !r n. The function f has no precondition
and a postcondition expressing that the final value of r is smaller than its initial value.
The current value of a reference x is directly denoted by x within annotations (not !x)
and within postconditions x@ is the notation for old(x).

Let us assume the three lines code above to be in file test.why. Then we can pro-
duce the proof obligations for this program, to be verified with Coq, using the following
command line:

why --coq test.why

A Coq file test why.v is produced which contains the statement of a single proof obli-
gation, which looks like

Lemma f_po_1 :

forall (n: Z),

forall (r: Z),

forall (result: Z),

forall (Post2: result = (min r n)),

result <= r.

Proof.

(* FILL PROOF HERE *)

Save.

The proof itself has to be filled in by the user. If the Why input code is modified and Why
run again, only the statement of the proof obligation will be updated and the remaining
of the file (including the proof) will be left unmodified. Assuming that min is adequately
defined in Coq, the proof above is trivial.

Trying an automatic decision procedure instead of Coq is as easy as running Why
with a different command line option. For instance, to use Simplify [?], we type in

why --simplify test.why

A Simplify input file test why.sx is produced. But Simplify is not able to discharge the
proof obligation, since the meaning of min is unknown for Simplify:

Simplify test_why.sx

...

1: Invalid

The user can edit the header of test why.sx to insert an axiom for min. Alternatively,
this axiom can be inserted directly in the Why input code:
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logic min: int, int -> int

axiom min_ax: forall x,y:int. min(x,y) <= x

parameter r: int ref

let f (n:int) = {} r := min !r n { r <= r@ }

This way this axiom will be replicated in any prover selected by the user. When using
Coq, it is even possible to prove this axiom, though it is not mandatory. With the addition
of this axiom, Simplify is now able to discharge the proof obligation:

why --simplify test.why

Simplify test_why.sx

1: Valid.

2.2 A Less Trivial Example: Dijkstra’s Dutch Flag

Dijkstra’s Dutch flag is a classical algorithm which sorts an array where elements can
have only three different values. Assuming that these values are the three colors blue,
white and red, the algorithm restores the Dutch (or French :-) national flag within the
array. This algorithm can be coded with a few lines of C, as follows:

typedef enum { BLUE, WHITE, RED } color;

void swap(color t[], int i, int j) { color c = t[i]; t[i] = t[j]; t[j] = c;}

void flag(color t[], int n) {

int b = 0, i = 0, r = n;

while (i < r) {

switch (t[i]) {

case BLUE: swap(t, b++, i++); break;

case WHITE: i++; break;

case RED: swap(t, --r, i); break;

}

}

}

We are going to show how to verify this algorithm—the algorithm, not the C code—
using Why. First we introduce an abstract type color for the colors together with three
values blue, white and red:

type color

logic blue : color

logic white : color

logic red : color

Such a new type is necessarily an immutable datatype. The only mutable values in Why
are references (and they only contain immutable values).

Then we introduce another type color array for arrays:
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type color_array

logic acc : color_array, int -> color

logic upd : color_array, int, color -> color_array

Again, this is an immutable type, so it comes with a purely applicative signature (upd
is returning a new array). To get the usual theory of applicative arrays, we can add the
necessary axioms:

axiom acc_upd_eq :

forall t:color_array. forall i:int. forall c:color.

acc(upd(t,i,c),i) = c

axiom acc_upd_neq :

forall t:color_array. forall i:int. forall j:int. forall c:color.

j<>i -> acc(upd(t,i,c),j) = acc(t,j)

The program arrays will be references containing values of type color array. In
order to constraint accesses and updates to be performed within arrays bounds, we add
a notion of array length and two “programs” get and set with adequate preconditions:

logic length : color_array -> int

axiom length_upd : forall t:color_array. forall i:int. forall c:color.

length(upd(t,i,v)) = length(t)

parameter get :

t:color_array ref -> i:int ->

{ 0<=i<length(t) } color reads t { result=acc(t,i) }

parameter set :

t:color_array ref -> i:int -> c:color ->

{ 0<=i<length(t) } unit writes t { t=upd(t@,i,c) }

These two programs need not being defined (they are only here to insert assertions au-
tomatically), so we declare them as parameters1.

We are now in position to define the swap function:

let swap (t:color_array ref) (i:int) (j:int) =

{ 0 <= i < length(t) and 0 <= j < length(t) }

let c = get t i in

set t i (get t j);

set t j c

{ t = upd(upd(t@,i,acc(t@,j)), j, acc(t@,i)) }

The precondition for swap states that the two indices i and j must point within the
array t and the postcondition is simply a rephrasing of the code on the model level i.e.
on purely applicative arrays. Verifying the swap function is immediate.

1The Why tool actually provides a datatype of arrays, exactly in the way we are doing it here, and
even a nice syntax for array operations.
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Next we need to give the main function a specification. First, we need to express
that the array only contains one of the three values blue, white and red. Indeed,
nothing prevents the type color to be inhabitated with other values (there is no notion
of inductive type in Why logic, since it is intended to be a common fragment of many
tools, including many with no primitive notion of inductive types). So we define the
following predicate is color:

predicate is_color(c:color) = c=blue or c=white or c=red

Note that this predicate is given a definition in Why.
Second, we need to express the main function postcondition that is, for the final

contents of the array, the property of being “sorted” but also the property of being a
permutation of the initial contents of the array (a property usually neglected but clearly
as important as the former). For this purpose, we introduce a predicate monochrome

expressing that a set of successive elements is monochrome:

predicate monochrome(t:color_array, i:int, j:int, c:color) =

forall k:int. i<=k<j -> acc(t,k)=c

For the permutation property, we declare a predicate permutation as follows:

logic permutation : color_array, color_array, int, int -> prop

The intended meaning of permutation(t1, t2, i, j) is “the multi-sets of elements in t1[i..j]
and t2[i..j] are the same”. Since the program is only performing transpositions in the ar-
ray, the most convenient way to axiomatize permutation is to say that it is an equivalence
relation containing transpositions:

axiom permut_refl : forall t: color_array. forall l,r:int.

permutation(t,t,l,r)

axiom permut_sym : forall t1,t2:color_array. forall l,r:int.

permutation(t1,t2,l,r) -> permutation(t2,t1,l,r)

axiom permut_trans : forall t1,t2,t3: color_array. forall l,r:int.

permutation(t1,t2,l,r) -> permutation(t2,t3,l,r) -> permutation(t1,t3,l,r)

axiom permut_swap : forall t:color_array. forall l,r,i,j:int.

l <= i <= r -> l <= j <= r ->

permutation(t, upd(upd(t,i,acc(t,j)), j, acc(t,i)), l, r)

To be able to write down the code, we still need to translate the switch statement
into successive tests, and for this purpose we need to be able to decide equality of the
type color. We can declare this ability with the following parameter:

parameter eq_color :

c1:color -> c2:color -> {} bool { if result then c1=c2 else c1<>c2 }

Note that the meaning of = within annotations has nothing to do with a boolean function
deciding equality that we could use in our programs.

We can now write the Why code for the main function:
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let dutch_flag (t:color_array ref) (n:int) =

{ length(t) = n and forall k:int. 0 <= k < n -> is_color(acc(t,k)) }

let b = ref 0 in

let i = ref 0 in

let r = ref n in

while !i < !r do

if (eq_color (get t !i) blue) then begin

swap t !b !i;

b := !b + 1;

i := !i + 1

end else if (eq_color (get t !i) white) then

i := !i + 1

else begin

r := !r - 1;

swap t !r !i

end

done

{ (exists b:int. exists r:int.

monochrome(t,0,b,blue) and

monochrome(t,b,r,white) and

monochrome(t,r,n,red))

and permutation(t,t@,0,n-1) }

As given above, the code cannot be proved correct, since a loop invariant is missing, and
so is a termination argument. The loop invariant must maintain the current situation,
which can be depicted as

0 b i r n

BLUE WHITE . . . to do. . . RED

But the loop invariant must also maintain less obvious properties such as the invariance of
the array length (which is obvious since we only performs upd operations over the array,
but we need not to loose this property) and the permutation w.r.t. the initial array. The
termination is trivially ensured since r-i decreases at each loop step and is bound by 0.
Finally, the loop is annotated as follows:

...

while !i < !r do

{ invariant 0 <= b <= i and i <= r <= n and

monochrome(t,0,b,blue) and

monochrome(t,b,i,white) and

monochrome(t,r,n,red) and

length(t) = n and

permutation(t,t@init,0,n-1)

variant r - i }

...

We can now proceed to the verification of the program, which causes no difficulty (most
proof obligations are even discharged automatically by Simplify).
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