The Why/Krakatoa/Caduceus Platform

for Deductive Program Verification

Jean-Christophe Fillidtre
CNRS - Université Paris Sud

TYPES Summer School — August 30th, 2007

®

it
Ohs sz B INRIA & rams s

uuuuuu {NFORMATIGUE

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Provers based on HOL are suitable tools to verify purely functional
programs (see other lectures)

But how to verify an imperative program with your favorite prover?

for instance this one

t(a,b,c){int d=0,e=a& b&"c,f=1;if (a)for (f=0;d=(e-=d)&-e;f+=t (a-d, (b+d)*2, (
c+d)/2)) ;return f;}main(q){scanf("%d",&q) ;printf("%d\n",t("(70<<q),0,0));}

TYPES Summer School — August 30th, 200

Jean-Christophe Filliatre Why /Krakatoa/Caduceus

Usual methods

Floyd-Hoare logic

Dijkstra’s weakest preconditions

could be formalized in the prover (deep embedding)

could be applied by a tactic (shallow embedding)

= would be specific to this prover

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Which programming language?

a realistic existing programming language such as C or Java?

@ many constructs = many rules

@ would be specific to this language

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

The ProVal project — http://proval.lri.fr/

@ general goal: prove behavioral properties of pointer programs

@ pointer program = program manipulating data structures with
in-place mutable fields

@ we currently focus on C and Java programs

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

http://proval.lri.fr/

What kind of properties

big
properties

small
properties

e.g. Schorr-Waite algorithm f)
10 lines of code H
2500 lines of interactive proof

e.g. no runtime error
in a 100 kloc program
fully automatic proof

>

>

small programs big programs

TYPES Summer School — August 30th, 200

Jean-Christophe Filliatre

@ specification as annotations at the source code level

e JML (Java Modeling Language) for Java
o our own language for C (mostly JML-inspired)

@ generation of verification conditions (VCs)

o using Hoare logic / weakest preconditions
o other similar approaches: static verification (ESC/Java, SPEC#),
B method, etc.

@ multi-prover approach
o off-the-shelf provers, as many as possible
o automatic provers (Simplify, Yices, Ergo, etc.)
o proof assistants (Coq, PVS, Isabelle/HOL, etc.)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Platform Overview

Annotated C program JML-Annotated Java program

Caduceus q Why program h Krakatoa

Interactive provers Automatic provers

(Cog, PVS, h Verification Conditions q (Simplify, Yices,
Isabelle/HOL, etc.) Ergo, CVC3, etc.)

Jean-Christophe Filliatre /Krakatoa/Caduceus TYPES Summer School — August 30th, 200

@ An intermediate language for program verification

@ syntax, typing, semantics, proof rules
@ the Why tool
©® multi-prover approach

@ Verifying C and Java programs
@ specification languages
@ models of program execution

© A challenging case study

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

part |

An Intermediate Language for Program Verification

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

makes program verification
@ prover-independent but prover-aware

@ language-independent

so that we can use it to verify C, Java, etc. programs with HOL provers
but also with FO decision procedures

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

The essence of Hoare logic: assignment rule

{Plx—E]l}x = E{P}

@ absence of aliasing

@ side-effects free E shared between program and logic

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Data types

Any purely applicative data type from the logic can be used in programs

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Any purely applicative data type from the logic can be used in programs

Example: a data type int for integers with constants 0, 1, etc. and
operations +, *, etc.
The pure expression 1+2 belongs to both programs and logic

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Any purely applicative data type from the logic can be used in programs

Example: a data type int for integers with constants 0, 1, etc. and
operations +, *, etc.

The pure expression 1+2 belongs to both programs and logic

A single data structure: the reference (mutable variable) containing only
pure values,

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Any purely applicative data type from the logic can be used in programs

Example: a data type int for integers with constants 0, 1, etc. and
operations +, *, etc.

The pure expression 1+2 belongs to both programs and logic

A single data structure: the reference (mutable variable) containing only
pure values, with no possible alias between two different references

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

ML syntax

No distinction between expressions and statements
= less constructs
= less rules

Jean-Christophe Filliatre

Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !'x

Jean-Christophe Filliatre

Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e

Jean-Christophe Filliatre

Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable let x = e in &

Jean-Christophe Filliatre

Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable let x = e in &
local reference let x = ref ¢ in &

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable let x = e in &
local reference let x = ref ¢ in &
conditional if e; then e, else e3

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable let x = e in &
local reference let x = ref ¢ in &
conditional if e; then e, else e3
loop while e; do e done

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable let x = e in &
local reference let x = ref ¢ in &
conditional if e; then e, else e3
loop while e; do e done

sequence e;; & = let _=¢e in &

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Annotations

e assert {p}; e

o e {p}

Jean-Christophe Filliatre /Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Annotations

e assert {p}; e

o e {p}

Examples:
e assert {x >0}; 1/x

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Annotations

e assert {p}; e

o e {p}

Examples:
e assert {x >0}; 1/x
o x :=0{!x=0}

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

e assert {p}; e

o e {p}

Examples:
e assert {x >0}; 1/x
o x :=0{!x=0}
@ if !x > ly then !x else !y {result > 'x A result > 'y}
o x :=!x+1{!'x>o0l1ld(!x)}

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Annotations (cont'd)

Loop invariant and variant

@ while ¢ do {invariant p variant t} e, done

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Loop invariant and variant

@ while ¢ do {invariant p variant t} e, done

Example:

while Ix < N do
{ invariant !x < N variant N — !x }
x:=Ix+1

done

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Auxiliary variables

Used to denote the intermediate values of variables

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Auxiliary variables

Used to denote the intermediate values of variables

Example: ... {Ix=X} ... {Ix> X} ...

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Auxiliary variables

Used to denote the intermediate values of variables
Example: ... {Ix=X} ... {Ix> X} ...

We will use labels instead
@ new construct L:e

@ new annotation at(t, L)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Auxiliary variables

Used to denote the intermediate values of variables
Example: ... {Ix=X} ... {Ix> X} ...

We will use labels instead
@ new construct L:e

@ new annotation at(t, L)

Example:

L :while ... do { invariant !x > at(!x,L) ... }

done

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Functions

A function declaration introduces a precondition

o fun (x:7) — {p} e

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Functions

A function declaration introduces a precondition
e fun (x:7) — {p} e
@ recf (x1:71)...(Xp:7p): B {variant t} = {p} e

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Functions

A function declaration introduces a precondition
e fun (x:7) — {p} e
@ recf (x1:71)...(Xp:7p): B {variant t} = {p} e

Example:

fun (x :int ref) — {Ix >0} x := Ix—1{!x >0}

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Modularity

A function declaration extends the ML function type with a precondition,
an effect and a postcondition

f: x:1m — {p} ™ readsxy,...,x, writesy,...,¥m{q}

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Modularity

A function declaration extends the ML function type with a precondition,
an effect and a postcondition

f: x:1m — {p} ™ readsxy,...,x, writesy,...,¥m{q}

Example:

swap: x:int ref — y :int ref —
{}unit writes x,y {!x =01d(!y) A !y =old('x)}

Jean-Christophe Filliatre

Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Exceptions

Finally, we introduce exceptions in our language

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Exceptions

Finally, we introduce exceptions in our language
@ a more realistic ML fragment

@ to interpret abrupt statements like return, break or continue

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Exceptions

Finally, we introduce exceptions in our language
@ a more realistic ML fragment

@ to interpret abrupt statements like return, break or continue

new constructs
o raise (Ee): 7

@ try e with £ x — e end

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

The notion of postcondition is extended

if x < 0 then raise Negative else sqrt x
{ result > 0 | Negative = x <0 }

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

The notion of postcondition is extended

if x < 0 then raise Negative else sqrt x
{ result > 0 | Negative = x <0 }

So is the notion of effect

div: x:int — y:int — {...} int raises Negative {...}

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Loops and exceptions

We can replace the while loop by an infinite loop

@ loop e {invariant p variant t}

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Loops and exceptions

We can replace the while loop by an infinite loop

@ loop e {invariant p variant t}

and simulate the while loop using an exception

while e; do {invariant p variant t} e, done =
try
loop if e; then e else raise Exit
{invariant p variant t}
with Exit - -=> void end

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Loops and exceptions

We can replace the while loop by an infinite loop

@ loop e {invariant p variant t}

and simulate the while loop using an exception

while e; do {invariant p variant t} e, done =
try
loop if e; then e else raise Exit
{invariant p variant t}
with Exit - -=> void end

simpler constructs = simpler typing and proof rules

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Summary

Types

= [Bref | (x:7)— kK

= {pbr e{q}

: p,E=p,....;E=p

= reads x,...,x writes x,...,x raises E,... E

A Q & 3
I

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Types
T u= [|PBref|(x:T) =k
ko= {pire{a)
g === pE=p.. E=p
€ == readsx,...,x writes x,...,xraises E,... E
Annotations
t == c|x|'x]|o(t,...,t) | old(t) | at(t, L)
p == True | False | P(t,...,t)

| p=plpAplpVpl-plV¥x:B.p|3Ix:Bp

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Programs

clx|'x|oCu,...,uw

u

X :=e

let x=eine

let x=ref eine

if e then e else e

loop e {invariant p variant t}
L:e

raise (Ee): 7

try e with £ x — e end

assert {p}; e

e {q}

fun (x:7) — {p} e

rec x (x:7)...(x:7): [{variant t} = {p} e
ee

Jean-Christophe Filliatre Why /Krakatoa/Caduceus TYPES Summer School — August 30th, 200

A typing judgment

M-e:(r€)
Rules given in the notes (page 24)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

A typing judgment

M-e:(r€)
Rules given in the notes (page 24)

The main purpose is to exclude aliases
In particular, references can't escape their scopes

Jean-Christophe Filliatre Why /Krakatoa/Caduceus

TYPES Summer School — August 30th, 200

Semantics

Call-by-value semantics, with left to right evalutation

Big-step operational semantics given in the notes (page 26)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Proof Rules: Weakest Preconditions

We define the predicate wp(e, q), called the weakest precondition for
program e and postcondition g

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Proof Rules: Weakest Preconditions

We define the predicate wp(e, q), called the weakest precondition for
program e and postcondition g

Property: If wp(e, g) holds, then e terminates and g holds at the end of
execution (and all inner annotations are verified)

Jean-Christophe Filliatre

Why /Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Proof Rules: Weakest Preconditions

We define the predicate wp(e, q), called the weakest precondition for
program e and postcondition g

Property: If wp(e, g) holds, then e terminates and g holds at the end of
execution (and all inner annotations are verified)

The converse holds for the fragment without loops and functions

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Proof Rules: Weakest Preconditions

We define the predicate wp(e, q), called the weakest precondition for
program e and postcondition g

Property: If wp(e, g) holds, then e terminates and g holds at the end of
execution (and all inner annotations are verified)

The converse holds for the fragment without loops and functions

The correctness of an annotated program e is thus wp(e, True)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Definition of wp(e, q)

We actually define wp(e, g; r) where
@ g is the “normal” postcondition
@ r=E; = qgi1;...;E, = q, is the set of “exceptional” post.

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Basic constructs

wp(u, q; r) = q[result — u]

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Basic constructs

wp(u, q; r) = q[result — u]

wp(x :=e,q;r) = wp(e, q[result — void; ! x « result]; r)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Basic constructs

wp(u, q; r) = q[result — u]
wp(x :=e,q;r) = wp(e, q[result — void; ! x « result]; r)

wp(let x = e1 in e, q; r) = wp(e1, wp(ez, q; r)[x < result]; r)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Basic constructs

wp(u, q; r) = q[result — u]
wp(x :=e,q;r) = wp(e, q[result — void; ! x « result]; r)
wp(let x = e1 in e, q; r) = wp(e1, wp(ez, q; r)[x < result]; r)

wp(let x = ref e in e, q; r) = wp(er, wp(ez, q; r)[! x « result]; r)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Basic constructs

wp(u, q; r) = q[result — u]
wp(x :=e,q;r) = wp(e, q[result — void; ! x « result]; r)
wp(let x = e1 in e, q; r) = wp(e1, wp(ez, q; r)[x < result]; r)

wp(let x = ref e in e, q; r) = wp(er, wp(ez, q; r)[! x « result]; r)

wp(if e; then e else e3,q;r) =
wp(er, if result then wp(ey, q;r) else wp(es, q;r);r)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Basic constructs

wp(u, q; r) = q[result — u]
wp(x :=e,q;r) = wp(e, q[result — void; ! x « result]; r)
wp(let x = e1 in e, q; r) = wp(e1, wp(ez, q; r)[x < result]; r)

wp(let x = ref e in e, q; r) = wp(er, wp(ez, q; r)[! x « result]; r)

wp(if e; then e else e3,q;r) =
wp(er, if result then wp(ey, q;r) else wp(es, q;r);r)

wp(L:e,q;r) = wp(e, g; r)[at(t, L) «]

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Traditional rules

Assignment of a side-effects free expression

wp(x 1= u,q) = q[!'x — u]

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Traditional rules

Assignment of a side-effects free expression

wp(x :=u,q) = q['x « u]

Exception-free sequence

wp(er; €2,q) = wp(er, wp(e2,q))

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Exceptions

wp(raise (E €):7,q;r) = wp(e, rg;r)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

wp(raise (E €):7,q;r) = wp(e, rg;r)

wp(try e; with E x — ey end, q;r) =
wp(e1, q; E = wp(ez, q; r)[x < result]; r)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Annotations

wp(assert {p}; e,q;r) =pAwp(e,q;r)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

wp(assert {p}; e, q;r) p A wp(e,q;r)

wp(e {q'ir'},qir) =wp(e,d Ng;r' Ar)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

wp(loop e {invariant p variant t},q;r) =
p A Yw.p=wp(L:e,pAt<at(t,L);r)

where w = the variables (possibly) modified by e

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

wp(loop e {invariant p variant t},q;r) =
p A Yw.p=wp(L:e,pAt<at(t,L);r)

where w = the variables (possibly) modified by e

Usual while loop

wp(while e; do {invariant p variant t} e, done,q;r)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

wp(loop e {invariant p variant t},q;r) =
p A Yw.p=wp(L:e,pAt<at(t,L);r)

where w = the variables (possibly) modified by e

Usual while loop

wp(while e; do {invariant p variant t} e, done,q;r)
=p A Yw.p=
wp(L:if e; then e, else raise E,pAt < at(t,L),E = q;r)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

wp(loop e {invariant p variant t},q;r) =
p A Yw.p=wp(L:e,pAt<at(t,L);r)

where w = the variables (possibly) modified by e

Usual while loop

wp(while e; do {invariant p variant t} e, done,q;r)

=p A Yw.p=

wp(L:if e; then e, else raise E,pAt < at(t,L),E = q;r)

=p A Vw. p=>

wp(e1, if result then wp(ex, p At < at(t, L)) else q,r)[at(x, L) « x]

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Functions

wp(fun (x: 7) — {p} e,q;r) =q A VYx.Vp.p = wp(e, True)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Functions

wp(fun (x: 7) — {p} e,q;r) =q A VYx.Vp.p = wp(e, True)

wp(rec f (xy :71)...(Xp: 7Tn) : 7 {variant t} = {p} e, q;r)
=q A Vx1....¥x,.Vp.p = wp(L:e, True)

when computing wp(L: e, True), f is assumed to have type

(x1:7m1) == (xn:7mn) = {pAt<at(t,L)} T e{q}

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Function call

Simplified using

€1 & =1let x; = €1 in let xop = & in X3 X

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Function call

Simplified using
€1 & =1let x; = €1 in let xop = & in X3 X

Assuming

x1: (x:7)—={p'}7 e{d}

we define

wp(x1 x2,q) = p'[x < x2] A Vw.Vresult.(q'[x « x2] = q)[old(t) « t]

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

@ An intermediate language for program verification

@ syntax, typing, semantics, proof rules
@ the Why tool
©® multi-prover approach

@ Verifying C and Java programs
@ specification languages
@ models of program execution

© A challenging case study

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

The Why Tool

This intermediate language is implemented in the Why tool
input = polymorphic first-order logic declarations 4+ programs

output = logical declarations + goals, in the syntax of the selected prover

Jean-Christophe Filliatre

Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Logical Declarations

type t

logic zero : t

logic succ : t > ¢t

logic le : t, t —> prop

axiom a : forall x:t. le(zero,x)

goal g : le(zero, succ(zero))

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Programs

parameter x : int ref

parameter g
b:t -> { x>=0 } t writes x { result=succ(b) and x=x0+1 }

let h (a:int) (b:t) =
{ x>=0 }
if !'x = a then x := 0;
g (succ b)
{ result=succ(succ(b)) }

exception E
exception F of int

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

it is a compiler:
@ why --coq f.why to produce a re-editable Coq file f_why.v
@ why --simplify f.why to produce a Simplify script f_why.sx
@ etc.
the following provers/formats are supported:
e Coq, PVS, Isabelle/HOL, HOL-light, HOL4, Mizar
e Simplify, Ergo, SMT (Yices, CVC3, etc.), CVC-Lite, haRVey, Zenon

there is a graphical user interface, gwhy

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Example: Dijkstra's Dutch national flag

Goal: to sort an array where elements only have three different values
(blue, white and red)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Algorithm

0 b i r n
] BLUE \ WHITE \...todo...\ RED \

flag(t, n) =
b+ 0
i—0
r—n

while i < r

case t[i]

BLUE : swap t[b] and t[i]; b<—b+1;, i—i+1
WHITE: i+ i+1
RED: r <« r—1; swap t[r] and t[i]

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Correctness proof

we want to prove
o termination
@ absence of runtime error = no array access out of bounds

@ behavioral correctness = the final array is sorted and contains the
same elements as the initial array

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Modelization

We model
@ colors using an abstract datatype

@ arrays using references containing functional arrays

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

An abstract type for colors

type color

logic blue : color
logic white : color
logic red : color

predicate is_color(c:color) = c=blue or c=white or c=red
parameter eq_color

cl:color -> c2:color ->
{} bool { if result then cl=c2 else cl<>c2 }

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Functional arrays

type color_array

logic acc : color_array, int -> color
logic upd : color_array, int, color -> color_array

axiom acc_upd_eq :

forall a:color_array. forall i:int. forall c:color.
acc(upd(a,i,c),i) = c

axiom acc_upd_neq :
forall a:color_array. forall i,j:int. forall c:color.
i <> j -> acc(upd(a,j,c),i) = acc(a,i)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Array bounds

logic length : color_array —-> int

axiom length update
forall a:color_array. forall i:int. forall c:color.
length(upd(a,i,c)) = length(a)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Array bounds

logic length : color_array —-> int

axiom length update
forall a:color_array. forall i:int. forall c:color.
length(upd(a,i,c)) = length(a)

parameter get
t:color_array ref -> i:int ->
{ 0<=i<length(t) } color reads t { result=acc(t,i) }

parameter set
t:color_array ref -> i:int -> c:color ->
{ 0<=i<length(t) } unit writes t { t=upd(t@,i,c) }

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

The swap function

let swap (t:color_array ref) (i:int) (j:int) =
{ 0 <= i < length(t) and 0 <= j < length(t) }

let u =get t i in
set t 1 (get t j);
set t ju

upd (upd (t@,i,acc(t@,j)), j, acc(t@,i)) }

{t

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

The swap function

let swap (t:color_array ref) (i:int) (j:int) =
{ 0 <= i < length(t) and 0 <= j < length(t) }

let u =get t i in

set t i (get t j);

set t ju

{ t = upd(upd(t@,i,acc(t@,j)), j, acc(t@,i)) }

5 proofs obligations
@ 3 automatically discharged by Why
@ 2 left to the user (and automatically discharged by Simplify)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

let dutch_flag (t:color_array ref) (n:int) =
let b = ref 0 in
let i = ref O in
let r = ref n in
while !'i < Ir do
if eq.color (get t !i) blue then begin
swap t !'b !i;

b :=1b + 1;
i=11+1

end else if eq._color (get t !'i) white then
i=11+1

else begin
r :=!r - 1;
swap t !r !i

end

done

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Function specification

let dutch flag (t:color_array ref) (m:int) =
{ 0 <= n and length(t) = n and
forall k:int. O <= k < n -> is_color(acc(t,k)) }

{ (exists b:int. exists r:int.
monochrome(t,0,b,blue) and
monochrome(t,b,r,white) and
monochrome(t,r,n,red))

and permutation(t,t@,0,n-1) }

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

The monochrome property

predicate monochrome(t:color_array,i:int,j:int,c:color) =
forall k:int. i<=k<j -> acc(t,k)=c

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

The permutation property

logic permutation : color_array, color_array, int, int -> prop

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

The permutation property

logic permutation : color_array, color_array, int, int -> prop

axiom permut_refl : forall t:color_array. forall 1,r:int.
permutation(t,t,l,r)

axiom permut_sym : forall t1,t2:color_array. forall 1,r:int.
permutation(tl,t2,1,r) -> permutation(t2,t1,1l,r)

axiom permut_trans : forall tl1,t2,t3:color_array. forall 1,r:i
permutation(tl,t2,1,r) -> permutation(t2,t3,1,r) ->
permutation(t1,t3,1,r)

axiom permut_swap : forall t:color_array. forall 1,r,i,j:int.
l1<=i<ksr->1<K=j<=r >
permutation(t, upd(upd(t,i,acc(t,j)), j, acc(t,i)), 1, r)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

init:
while !'i < !r do
{ invariant
0 <=b<=1iand i <=1 <= n and
monochrome (t,0,b,blue) and
monochrome(t,b,i,white) and
monochrome(t,r,n,red) and
length(t) = n and
(forall k:int. 0 <= k < n -> is_color(acc(t,k))) and
permutation(t,t@init,0,n-1)
variant

r-1i}

done

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Proof obligations

11 proof obligations
loop invariant holds initially

loop invariant is preserved and variant decreases (3 cases)

°
°

@ swap precondition (twice)

@ array access within bounds (twice)
°

postcondition holds at the end of function execution

All automatically discharged by Simplify!

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

@ An intermediate language for program verification

@ syntax, typing, semantics, proof rules
@ the Why tool
© multi-prover approach

@ Verifying C and Java programs
@ specification languages
@ models of program execution

© A challenging case study

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Discharging the Verification Conditions

we want to use off-the-shelf provers, as many as possible

requirements
o first-order logic
@ equality and arithmetic

@ quantifiers (memory model, user algebraic models)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Provers Currently Supported

automatic decision procedures
@ provers a la Nelson-Oppen
e Simplify, Yices, Ergo
o CVC Lite, CVC3
@ resolution-based provers
e haRVey, rv-sat
@ tableaux-based provers
e Zenon

interactive proof assistants
e Coq, PVS, Isabelle/HOL, HOL4, HOL-light, Mizar

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Typing Issues

verification conditions are expressed in polymorphic first-order logic

need to be translated to logics with various type systems:

unsorted logic (Simplify, Zenon)
simply sorted logic (SMT provers)
parametric polymorphism (CVC Lite, PVS)

polymorphic logic (Ergo, Coq, Isabelle/HOL)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Typing Issues

erasing types is unsound

type color
logic white,black : color

axiom color: forall c:color. c=white or c=black

V¢, ¢ =whiteV c=black - L

Jean-Christophe Filliatre

Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Type Encoding

several type encodings are used
@ monomorphization

e each polymorphic symbol is replace by several monomorphic types
e may loop

@ usual encoding “types-as-predicates”
e Vx,nat(x) = P(x)
e does not combine nicely with most provers

@ new encoding with type-decorated terms
Handling Polymorphism in Automated Deduction (CADE 21)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Trust in Prover Results

@ some provers apply the de Bruijn principle and thus are safe
e Coq, HOL family
@ most provers have to be trusted
o Simplify, Yices
e PVS, Mizar
@ some provers output proof traces
e Ergo, CVC family, Zenon

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Provers Collaboration

most of the time, we run the various provers in parallel,
expecting at least one of them to discharge the VC

if not, we turn to interactive theorem provers

@ no real collaboration between automatic provers

o from Coq or Isabelle, one can call automatic theorem provers
e proofs are checked when available
e results are trusted otherwise

Jean-Christophe Filliatre

Why /Krakatoa/Caduceus TYPES Summer School — August 30th, 200

part Il

Verifying C and Java Programs

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Platform Overview

Annotated C program JML-Annotated Java program

Caduceus q Why program h Krakatoa

Interactive provers Automatic provers

(Cog, PVS, h Verification Conditions q (Simplify, Yices,
Isabelle/HOL, etc.) Ergo, CVC3, etc.)

Jean-Christophe Filliatre /Krakatoa/Caduceus TYPES Summer School — August 30th, 200

@ An intermediate language for program verification

@ syntax, typing, semantics, proof rules
@ the Why tool
© multi-prover approach

@ Verifying C and Java programs
@ specification languages
@ how to formally specify behaviors
@ models of program execution

© A challenging case study

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Which language to specify behaviors?

Java already has a specification language: JML (Java Modeling Language)
used in runtime assertion checking tools, ESC/Java, JACK, LOOP, CHASE

JML allows to specify
@ precondition, postcondition and side-effects for methods

@ invariant and variant for loops

@ class invariants
e model fields (~ ghost code)

TYPES Summer School — August 30th, 200

Jean-Christophe Filliatre Why /Krakatoa/Caduceus

~

Which language to specify behaviors?

we designed a similar language for C programs, largely inspired by JML

additional features:

@ pointer arithmetic
@ algebraic models

e any axiomatized theory can be used in specifications
@ no runtime assertion checking

o floating-point arithmetic
e round errors can be specified

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

A First Example: Binary Search

binary search: search a sorted array of integers for a given value

famous example; see J. Bentley's Programming Pearls:
most programmers are wrong on their first attempt to write binary search

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Binary Search (code)

int binary search(int* t, int n, int v) {

int 1 =0, u=n-1, p=-1;
while (1 <= u) {
intm=(Q +u / 2;
if (tlm] < v)
l=m+ 1;
else if (t[m] > v)
u=m-1;
else {
p = m; break;
}
}

return p;

}

TYPES Summer School — August 30th, 200

Why /Krakatoa/Caduceus

Jean-Christophe Filliatre

Binary Search (spec)

we want to prove:

@ absence of runtime error

@ termination

© behavioral correctness

TYPES Summer School — August 30th, 200

Jean-Christophe Filliatre Why /Krakatoa/Caduceus

Binary Search (spec)

/*@ requires
@ n >=0 &&
@ \valid.range(t,0,n-1) &&
@ \forall int k1, int k2;

6] 0 <= k1 <= k2 <= n-1 => t[k1] <= t[k2]

o*/

int binary search(int* t, int n, int v) {

}

Jean-Christophe Filliatre Why /Krakatoa/Caduceus

TYPES Summer School — August 30th, 200

Binary Search (spec)

/*@ requires
@ n >= 0 &&
@ \valid.range(t,0,n-1) &&
@ \forall int k1, int k2;
¢] 0 <= k1 <= k2 <= n-1 => t[k1] <= t[k2]
@ ensures
@ (\result >= 0 && t[\result] ==v) ||
6] (\result == -1 && \forall int k;
¢ 0 <=k <n=>tl[k] !=v)
o*/
int binary search(int* t, int n, int v) {

}

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Binary Search (spec)

/*@ requires
@ ensures
o*/
int binary search(int* t, int n, int v) {
int 1 =0, u=n-1, p=-1;
/*@ variant u-1
ox/
while (1 <= u) {

}

TYPES Summer School — August 30th, 200

Why /Krakatoa/Caduceus

Jean-Christophe Filliatre

Binary Search (spec)

/*Q@ requires ...
@ ensures
ox/

int binary search(int* t, int n, int v) {

int 1 =0, u=n-1, p=-1;

/*@ invariant
@ 0 <=16&& u<=n-1&& p==-1%&&
@ \forall int k;

6] 0 <=k <n=t[k] ==v=>1<=k<=u

@ variant u-1
ex*/
while (1 <= u) {

}
}

Jean-Christophe Filliatre Why /Krakatoa/Caduceus

TYPES Summer School — August 30th, 200

Binary Search (proof)

DEMO

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 2

Algebraic Models

in JML, annotations are written using pure Java code
this is mandatory to perform runtime assertion checking

but it is often convenient to introduce axiomatized theories in order to
annotate programs, that is

@ abstract types
e function symbols, w or w/o definitions
@ predicates, w or w/o definitions

@ axioms

TYPES Summer School — August 30th, 200

Jean-Christophe Filliatre Why /Krakatoa/Caduceus

Example: Priority Queues

static data structure for a priority queue containing integers

void clear(); // empties the queue

void push(int x); // inserts a new element

int max(); // returns the maximal element

int popQ); // removes and returns the maximal element

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Bags

//@ type bag

Jean-Christophe Filliatre / / TYPES Summer School — August 30th, 200

Bags

//@ type bag

//@ logic bag empty bag()

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

//@ type bag
//@ logic bag empty bag()

//@ logic bag singleton _bag(int x)

Jean-Christophe Filliatre

Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

//@ type bag
//@ logic bag empty_bag()
//@ logic bag singleton _bag(int x)

//@ logic bag union bag(bag bl, bag b2)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

//@ type bag

//@ logic bag empty_bag()

//@ logic bag singleton _bag(int x)

//@ logic bag union bag(bag bl, bag b2)

/*@ logic bag add_bag(int x, bag b)
@ { union bag(b, singleton_bag(x)) } */

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

//@ type bag

//@ logic bag empty_bag()

//@ logic bag singleton _bag(int x)

//@ logic bag union bag(bag bl, bag b2)

/*@ logic bag add_bag(int x, bag b)
@ { union bag(b, singleton_bag(x)) } */

//@ logic int occ_bag(int x, bag b)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

//@ type bag

//@ logic bag empty_bag()

//@ logic bag singleton _bag(int x)

//@ logic bag union bag(bag bl, bag b2)

/*@ logic bag add_bag(int x, bag b)
@ { union bag(b, singleton_bag(x)) } */

//@ logic int occ_bag(int x, bag b)

/*@ predicate is max bag(bag b, int m) {
@ occ_bag(m, b) >= 1 &&
@ \forall int x; occ_bag(x,b) >= 1 => x <=m

e} */

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th,

Priority Queues (spec)

//@ logic bag model() { ... }

//@ ensures model() == empty_bag()
void clear();

//@ ensures model() == add_bag(x, \old(model()))
void push(int x);

//@ ensures is_max_bag(model(), \result)
int max();

/*@ ensures is_max_bag(\old(model()), \result) &&
@ \old (model()) == add_bag(\result, model()) */
int pop(Q);

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Implementing Priority Queues

implementation: heap encoded in an array

0 m size

tree

bag {2,7,7, 8,10, 10, 12, 13, 15, 17 }

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Trees

//@ type tree
//@ logic tree Empty()

//@ logic tree Node(tree 1, int x, tree r)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

//@ predicate is_heap(tree t)
//@ axiom is_heap def 1: is_heap(Empty())

/%@ axiom is_heap_def_2:
@ \forall int x; is_heap(Node(Empty(), x, Empty()))
e*/

/%@ axiom is_heap_def_3:
@ \forall tree 11; \forall int Ix;
@ \forall tree 1lr; \forall int x;
¢ x >= 1x => is_heap(Node(11, 1x, 1r)) =>
6] is_heap (Node (Node (11, 1x, 1lr), x, Empty()))

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Trees and Bags

//@ logic bag bag of tree(tree t)

/*@ axiom bag_of_tree.def_1:
© bag_of_tree(Empty()) == empty_bag()
ex/

/*@ axiom bag of _tree_def 2:
@ \forall tree 1; \forall int x; \forall tree r;
q] bag_of_tree(Node(1l, x, r)) ==
© add_bag(x, union_bag(bag of tree(1), bag of_tree(r)))

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Trees and Arrays

//@ logic tree tree_of_array(int *t, int root, int bound)

/%@ axiom tree_of_array_def_2:
@ \forall int *t; \forall int root; \forall int bound;
0 <= root < bound =>
tree_of array(t, root, bound) ==
Node (tree_of_array(t, 2*root+1, bound),
t[root],
tree_of _array(t, 2+*root+2, bound))

@ © 0 © ©

o*/

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Priority Queues (spec)

#define MAXSIZE 100

int heap[MAXSIZE];

int size = 0;

//@ invariant size_inv : 0 <= size < MAXSIZE

//@ invariant is_heap: is_heap(tree_of_array(heap, 0, size))

/*@ logic bag model()
@ { bag of_tree(tree_of array(heap, 0, size)) } */

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

@ An intermediate language for program verification

@ syntax, typing, semantics, proof rules
@ the Why tool
©® multi-prover approach

@ Verifying C and Java programs

@ specification languages
® models of program execution
@ translation of pointer programs to alias-free Why programs

© A challenging case study

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Generating the Verification Conditions

Annotated C program
(foo.c)

O\

memory model memory layout Why code for
for C programs for program foo C functions
(caduceus.why) (foo_spec.why) (foo.why)
Why
Interactive provers l Automatic provers
(Coq, PVS, e Verification Conditions — (Simplify, Yices,
Isabelle/HOL, etc.) Ergo, CVC3, etc.)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

To Pointer Programs to Alias-Free Programs

naive idea: model the memory as a big array

using the theory of arrays

acc :mem, int — int
upd : mem, int, int — mem

Vmpv, acc(upd(m,p,v),p) =v
Vm pLp2Vv, p1 7é p2 = acc(upd(m7 P1, V)7 P2) = acc(m, P2)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Naive Memory Model

then the C program

int x;
int y;
x = 0;
y =1
//@ assert x ==

becomes

m = upd(m,x, 0);
m = upd(m,y,1);
assert acc(m,x) =0

the verification condition is

acc(upd(upd(m, x,0), y,0), x) = 0

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Memory Model for Pointer Programs

we use the component-as-array model (Burstall-Bornat)
each structure/object field is mapped to a different array

relies on the property “two different fields cannot be aliased”

strong consequence: prevents pointer casts and unions (a priori)

Jean-Christophe Filliatre

Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Benefits of the Component-As-Array Model

struct S { int x; int y; } p;

p.x = 0;
p.y =1;
//@ assert p.x == 0

becomes

x := upd(x, p,0);
y = upd(y,p,1);
assert acc(x,p) =0

the verification condition is

acc(upd(x, p,0),p) =0

TYPES Summer School — August 30th, 200

Why /Krakatoa/Caduceus

Jean-Christophe Filliatre

Component-As-Array Model and Pointer Arithmetic

struct S { int x; short y; struct S *next; } t[3];

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Component-As-Array Model and Pointer Arithmetic

struct S { int x; short y; struct S *next; } t[3];

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Separation Analysis

on top of Burstall-Bornat model, we add some separation analysis

@ each pointer is assigned a zone
@ zones are unified when pointers are assigned / compared
@ functions are polymorphic wrt zones

similar to ML-type inference

then the component-as-array model is refined according to zones

Separation Analysis for Deductive Verification (HAV'07)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Separation Analysis

struct S { int x; short y; struct S *next; } t1[3], t2[2];

tl| X |y| |ne><t| X |y| |ne><t| X |y| |next|

t2| X |y|

next | X |y| | next |

x(z1) y(z1) next(z1) x(z2) y(z2) next(z2)

e [T] [[

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Separation Analysis

struct S { int x; short y; struct S *next; } t1[3], t2[2];

tl | X | y | | next y | | next | X | y | | next |
t2 | X | y | next/r X | y | | next |
x(z1) y(z next(z1) x(z2) y(z2) next(z2)

tlf [1 [1

e [T] [[

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

little challenge for program verification proposed by P. Miiller:

count the number n of non-zero values in an integer array t,
then copy these values in a freshly allocated array of size n

t[2]1]0[4[0[5]3[0]

count=5

u[2]1[4]5]3]

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

P. Miiller's Example (code)

void m(int t[], int length) {
int count=0, i, *u;

for (i=0 ; i < length; i++)
if (t[i] > 0) count++;

u = (int *)calloc(count,sizeof(int));
count = 0;

for (i=0 ; i < length; i++)
if (t[i] > 0) ulcount++] = t[i];

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

P. Miiller's Example (spec)

void m(int t[], int length) {

int count=0, i, *u;
//@ invariant count == num_of_pos(0,i-1,t)
for (i=0 ; i < length; i++)

if (t[i] > 0) count++;
//@ assert count == num_of_pos(0,length-1,t)
u = (int *)calloc(count,sizeof(int));
count = 0;
//@ invariant count == num_of_pos(0,i-1,t)
for (i=0 ; i < length; i++)

if (t[i] > 0) ulcount++] = t[i];

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

P. Miiller's Example (proof)

12 verification conditions

@ without separation analysis: 10/12 automatically proved

@ with separation analysis: 12/12 automatically proved

DEMO

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Integer Arithmetic

up to now, we did not consider integer arithmetic

there are basically three ways to model arithmetic

@ exact: all computations are interpreted using mathematical integers;
thus it assumes that there is no overflow

@ bounded: the user have to prove that there is no integer overflow

@ modulo: overflows are possible and modulo arithmetic is used; it is
faithful to machine arithmetic

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Overflows in Binary Search

we proved binary search using exact arithmetic
let us prove that there is no overflow

DEMO

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Modelling Integer Arithmetic

difficulty: we do not want to lose the ability of provers to handle
arithmetic

thus we cannot simply axiomatize machine arithmetic using new abstract
data types

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Bounded Arithmetic

consider signed 32-bit integers

type int32
logic of_int32: int32 —> int

axiom int32_domain:
forall x:int32.
-2147483648 <= of_int32(x) <= 2147483647

parameter int32_of_int:
x:int ->
{ -2147483648 <= x <= 2147483647 }
int32
{ of_int32(result) = x }

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Bounded Arithmetic

consider the C fragment

(x+1) xy

it is translated into

int32_of_int
((of_int32
(int32_of_int
((of_int32 x) + (of_int32 (int32_of_int 1)))))
*

(of_int32 y))

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Bounded Arithmetic

in practice, most proof obligations are easy to solve

int f(int n) {
int i = 0;
while (i < n) {

i++;

b

we do not even need to insert annotations

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Modulo Arithmetic

type int32
logic of_int32: int32 —> int

axiom int32_domain:
forall x:int32. -2147483648 <= of_int32(x) <= 2147483647

logic mod_int32: int -> int

parameter int32_of_int:
x:int -> { } int32 { of_int32(result) = mod_int32(x) }

axiom mod_int32_id:
forall x:int.
-2147483648 <= x <= 2147483647 -> mod_int32(x) = x

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

@ An intermediate language for program verification

@ syntax, typing, semantics, proof rules
@ the Why tool
©® multi-prover approach

@ Verifying C and Java programs
@ specification languages
@ models of program execution

© A challenging case study

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

A challenging case study

challenge for the verified program of the month:

t(a,b,c){int d=0,e=a& b&" c,f=1;if(a)for(f=0;d=(e-=d)&-e;f+=t(a-d, (b+d)*2, (
c+d)/2)) ;return f;}main(q){scanf("%d",&q) ;printf ("%d\n",t("(70<<q),0,0));}

appears on a web page collecting C signature programs

due to Marcel van Kervinck (author of MSCP, a chess program)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Unobfuscating...

int t(int a, int b, int c¢) {
int d, e=a& " b&~c, f=1;
if (a)
for (£f=0; d=e&-e; e-=d)
f += t(a-d, (b+d)*2, (c+d)/2);
return f;

}

int main(int q) {
scanf ("%d", &q);
printf ("%d\n", t(7(70<<q), 0, 0));

}

this program reads an integer n
and prints the number of solutions to the n-queens problem

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

How does it work?

@ backtracking algorithm (no better way to solve the n-queens)

@ integers used as sets (bit vectors)

integers | sets
00
a&b | anb
atb | aUb, whenanb=1
a-b | a\b, whenbCa
~a | Ca
a&-a | min_elt(a), when a #)
~("0<<n) | {0,1,...,n—1}
ax2 | {i+1]i€a}, written S(a)
a/2 | {i—1]|i€ani#0}, written P(a)

Jean-Christophe Filliatre

Why /Krakatoa/Caduceus TYPES Summer School — August 30th, 200

What a, b and ¢ mean

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

What a, b and ¢

o W
W o

W W W || oW | W |

a = columns to be filled = 11100101,

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

What a, b and ¢ mean

W
W W
W w w
W w w

b = positions to avoid because of left diagonals = 01101000,

TYPES Summer School — August 30th, 200

Jean-Christophe Filliatre Why /Krakatoa/Caduceus

What a, b and ¢ mean

Wy
W w @
o w

¢ = positions to avoid because of right diagonals = 00001001,

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

What a, b and ¢ mean

IE

Wl ||
W W W W W W W

a& " b& " c = positions to try = 10000100,

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Now it is clear

int t(int a, int b, int ¢) {
int d, e=a&™b&"c, f=1;
if (a)
for (£f=0; d=e&-e; e-=d)
f += t(a-d, (b+d)*2, (c+d)/2);
return f;

}

int queens(int n) {
return t(~(70<<n), 0, 0);

}

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Abstract finite sets

//@ type iset
//@ predicate in_(int x, iset s)

/%@ predicate included(iset a, iset b)
@ { \forall int i; in (i,a) => in (i,b) } */

//@ logic iset empty()

//@ axiom empty.def : \forall int i; !in_(i,empty())

total: 66 lines of functions, predicates and axioms

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

C ints as abstract sets

//@ logic iset iset(int x)

/*@ axiom iset_c_zero : \forall int x;
@ iset(x)==empty() <=> x==0 */

/*@ axiom iset_c_min_elt :
@ \forall int x; x != 0 =>

e iset (x4-x) == singleton(min_elt(iset(x))) */

/*@ axiom iset_c_diff : \forall int a, int b;
@ iset(a&”b) == diff(iset(a), iset(b)) */

total: 27 lines

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Termination

int t(int a, int b, int c){
int d, e=a& " b&~c, f=1;
if (a)
//@ variant card(iset(e-d))
for (£=0; d=e&-e; e-=d) {
f += t(a-d, (b+d)*2, (c+d)/2);

}

return f;
3 verification conditions, all proved automatically

similarly for the termination of the recursive function:
7 verification conditions, all proved automatically

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Soundness

how to express that we compute the right number,
since the program is not storing anything,
not even the current solution?

answer: by introducing ghost code to perform the missing operations

TYPES Summer School — August 30th, 200

Jean-Christophe Filliatre Why /Krakatoa/Caduceus

ghost code can be regarded as regular code, as soon as
@ ghost code does not modify program data

@ program code does not access ghost data

ghost data is purely logical = ne need to check the validity of pointers

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Program instrumented with ghost code

//@ int** sol;
//@ int s;
//@ int* col;
//@ int k;

int t(int a, int b, int c) {
int d, e=a&"b&"c, f=1;
if (a)
for (£f=0; d=e&-e; e-=d) {
//@ coll[k] = min_elt(d);
//@ k++;
f += t3(a-d, (b+d)*2, (c+d)/2);
//@ k--;
}
//@ else
//@ store_solution();
return f;

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Program instrumented with ghost code (cont'd)

/*@ requires solution(col)
@ assigns s, sol[s][0..N()-1]
@ ensures s==\old(s)+1 && eq_sol(sol[\old(s)], col)
@x/

void store_solution();

/*@ requires
@ n==N() & s == 0 && k == 0
@ ensures
@ \result == s &&
@ sorted(sol, 0, s) &&
@ \forall int* t; solution(t) <=>
@ (\exists int i; O<=i<\result && eq.sol(t,sol[i]))
ex*/
int queens(int n) { return t(“(70<<m), 0, 0); }

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Finally, we get...

256 lines of code and specification

regarding VCs:
@ main function queens: 15 verification conditions
o all proved automatically (Simplify, Ergo or Yices)
@ recursive function t: 51 verification conditions

e 42 proved automatically: 41 by Simplify, 37 by Ergo and 35 by Yices
e 9 proved manually using Coq (and Simplify)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Conclusion

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

the Why/Krakatoa/Caduceus platform features
@ behavioral specification languages for C and Java programs,
at source code level
@ deductive program verification using original memory models

@ multi-provers backend (interactive and automatic)

free software under GPL license; see http://why.lri.fr/

successfully applied on both
@ academic case studies (Schorr-Waite, N-queens, list reversal, etc.)

e industrial case studies (Gemalto, Dassault Aviation, France Telecom)

TYPES Summer School — August 30th, 200

Why /Krakatoa/Caduceus

Jean-Christophe Filliatre

http://why.lri.fr/

Other Features

other features not covered in this lecture

o floating point arithmetic

o allows to specify rounding and method errors
o Formal Verification of Floating-Point Programs (ARITH 18)

@ pruning strategies to help decision procedures on large VCs
o A Graph-based Strategy for the Selection of Hypotheses (FTP 2007)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

Ongoing Work & Future Work

ongoing work
@ ownership: when class/type invariants must hold?

@ C unions & pointer casts

future work

@ verification of ML programs

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200

