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Provers based on HOL are suitable tools to verify purely functional
programs (see other lectures)

But how to verify an imperative program with your favorite prover?

for instance this one

t(a,b,c){int d=0,e=a& b&"c,f=1;if (a)for (f=0;d=(e-=d)&-e;f+=t (a-d, (b+d)*2, (
c+d)/2)) ;return f;}main(q){scanf("%d",&q) ;printf("%d\n",t("(70<<q),0,0));}
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Usual methods

Floyd-Hoare logic

Dijkstra’s weakest preconditions

could be formalized in the prover (deep embedding)

could be applied by a tactic (shallow embedding)

= would be specific to this prover
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Which programming language?

a realistic existing programming language such as C or Java?

@ many constructs = many rules

@ would be specific to this language
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The ProVal project — http://proval.lri.fr/

@ general goal: prove behavioral properties of pointer programs

@ pointer program = program manipulating data structures with
in-place mutable fields

@ we currently focus on C and Java programs
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http://proval.lri.fr/

What kind of properties

big
properties

small
properties

e.g. Schorr-Waite algorithm f)
10 lines of code H
2500 lines of interactive proof

e.g. no runtime error
in a 100 kloc program
fully automatic proof

>

>

small programs big programs
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@ specification as annotations at the source code level

e JML (Java Modeling Language) for Java
o our own language for C (mostly JML-inspired)

@ generation of verification conditions (VCs)

o using Hoare logic / weakest preconditions
o other similar approaches: static verification (ESC/Java, SPEC#),
B method, etc.

@ multi-prover approach
o off-the-shelf provers, as many as possible
o automatic provers (Simplify, Yices, Ergo, etc.)
o proof assistants (Coq, PVS, Isabelle/HOL, etc.)
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Platform Overview

Annotated C program JML-Annotated Java program

Caduceus q Why program h Krakatoa

Interactive provers Automatic provers

(Cog, PVS, h Verification Conditions q (Simplify, Yices,
Isabelle/HOL, etc.) Ergo, CVC3, etc.)
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@ An intermediate language for program verification

@ syntax, typing, semantics, proof rules
@ the Why tool
©® multi-prover approach

@ Verifying C and Java programs
@ specification languages
@ models of program execution

© A challenging case study
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part |

An Intermediate Language for Program Verification
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makes program verification
@ prover-independent but prover-aware

@ language-independent

so that we can use it to verify C, Java, etc. programs with HOL provers
but also with FO decision procedures
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The essence of Hoare logic: assignment rule

{Plx—E]l}x = E{P}

@ absence of aliasing

@ side-effects free E shared between program and logic
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Data types

Any purely applicative data type from the logic can be used in programs
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Any purely applicative data type from the logic can be used in programs

Example: a data type int for integers with constants 0, 1, etc. and
operations +, *, etc.
The pure expression 1+2 belongs to both programs and logic
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Any purely applicative data type from the logic can be used in programs

Example: a data type int for integers with constants 0, 1, etc. and
operations +, *, etc.

The pure expression 1+2 belongs to both programs and logic

A single data structure: the reference (mutable variable) containing only
pure values,
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Any purely applicative data type from the logic can be used in programs

Example: a data type int for integers with constants 0, 1, etc. and
operations +, *, etc.

The pure expression 1+2 belongs to both programs and logic

A single data structure: the reference (mutable variable) containing only
pure values, with no possible alias between two different references
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ML syntax

No distinction between expressions and statements
= less constructs
= less rules
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ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !'x
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ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
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ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable let x = e in &
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ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable let x = e in &
local reference let x = ref ¢ in &
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ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable let x = e in &
local reference let x = ref ¢ in &
conditional if e; then e, else e3
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ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable let x = e in &
local reference let x = ref ¢ in &
conditional if e; then e, else e3
loop while e; do e done
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ML syntax

No distinction between expressions and statements
= less constructs
= less rules

dereference !x
assignment x :=e
local variable let x = e in &
local reference let x = ref ¢ in &
conditional if e; then e, else e3
loop while e; do e done

sequence e;; & = let _=¢e in &
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Annotations

e assert {p}; e

o e {p}
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Annotations

e assert {p}; e

o e {p}

Examples:
e assert {x >0}; 1/x
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Annotations

e assert {p}; e

o e {p}

Examples:
e assert {x >0}; 1/x
o x :=0{!x=0}
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e assert {p}; e

o e {p}

Examples:
e assert {x >0}; 1/x
o x :=0{!x=0}
@ if !x > ly then !x else !y {result > 'x A result > 'y}
o x :=!x+1{!'x>o0l1ld(!x)}

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200



Annotations (cont'd)

Loop invariant and variant

@ while ¢ do {invariant p variant t} e, done
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Loop invariant and variant

@ while ¢ do {invariant p variant t} e, done

Example:

while Ix < N do
{ invariant !x < N variant N — !x }
x:=Ix+1

done
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Auxiliary variables

Used to denote the intermediate values of variables
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Auxiliary variables

Used to denote the intermediate values of variables

Example: ... {Ix=X} ... {Ix> X} ...
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Auxiliary variables

Used to denote the intermediate values of variables
Example: ... {Ix=X} ... {Ix> X} ...

We will use labels instead
@ new construct L:e

@ new annotation at(t, L)
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Auxiliary variables

Used to denote the intermediate values of variables
Example: ... {Ix=X} ... {Ix> X} ...

We will use labels instead
@ new construct L:e

@ new annotation at(t, L)

Example:

L :while ... do { invariant !x > at(!x,L) ... }

done
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Functions

A function declaration introduces a precondition

o fun (x:7) — {p} e
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Functions

A function declaration introduces a precondition
e fun (x:7) — {p} e
@ recf (x1:71)...(Xp:7p): B {variant t} = {p} e
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Functions

A function declaration introduces a precondition
e fun (x:7) — {p} e
@ recf (x1:71)...(Xp:7p): B {variant t} = {p} e

Example:

fun (x :int ref) — {Ix >0} x := Ix—1{!x >0}
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Modularity

A function declaration extends the ML function type with a precondition,
an effect and a postcondition

f: x:1m — {p} ™ readsxy,...,x, writesy,...,¥m{q}
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Modularity

A function declaration extends the ML function type with a precondition,
an effect and a postcondition

f: x:1m — {p} ™ readsxy,...,x, writesy,...,¥m{q}

Example:

swap: x:int ref — y :int ref —
{}unit writes x,y {!x =01d(!y) A !y =old('x)}
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Exceptions

Finally, we introduce exceptions in our language
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Exceptions

Finally, we introduce exceptions in our language
@ a more realistic ML fragment

@ to interpret abrupt statements like return, break or continue
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Exceptions

Finally, we introduce exceptions in our language
@ a more realistic ML fragment

@ to interpret abrupt statements like return, break or continue

new constructs
o raise (Ee): 7

@ try e with £ x — e end
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The notion of postcondition is extended

if x < 0 then raise Negative else sqrt x
{ result > 0 | Negative = x <0 }
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The notion of postcondition is extended

if x < 0 then raise Negative else sqrt x
{ result > 0 | Negative = x <0 }

So is the notion of effect

div: x:int — y:int — {...} int raises Negative {...}
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Loops and exceptions

We can replace the while loop by an infinite loop

@ loop e {invariant p variant t}
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Loops and exceptions

We can replace the while loop by an infinite loop

@ loop e {invariant p variant t}

and simulate the while loop using an exception

while e; do {invariant p variant t} e, done =
try
loop if e; then e else raise Exit
{invariant p variant t}
with Exit - -=> void end
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Loops and exceptions

We can replace the while loop by an infinite loop

@ loop e {invariant p variant t}

and simulate the while loop using an exception

while e; do {invariant p variant t} e, done =
try
loop if e; then e else raise Exit
{invariant p variant t}
with Exit - -=> void end

simpler constructs = simpler typing and proof rules
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Summary

Types

= [ Bref | (x:7)— kK

= {pbr e{q}

: p,E=p,....;E=p

= reads x,...,x writes x,...,x raises E,... E

A Q & 3
I
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Types
T u=  [|PBref|(x:T) =k
ko= {pire{a)
g === pE=p.. E=p
€ == readsx,...,x writes x,...,xraises E,... E
Annotations
t == c|x|'x]|o(t,...,t) | old(t) | at(t, L)
p == True | False | P(t,...,t)

| p=plpAplpVpl-plV¥x:B.p|3Ix:Bp
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Programs

clx|'x|oCu,...,uw

u

X :=e

let x=eine

let x=ref eine

if e then e else e

loop e {invariant p variant t}
L:e

raise (Ee): 7

try e with £ x — e end

assert {p}; e

e {q}

fun (x:7) — {p} e

rec x (x:7)...(x:7): [ {variant t} = {p} e
ee
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A typing judgment

M-e:(r€)
Rules given in the notes (page 24)
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A typing judgment

M-e:(r€)
Rules given in the notes (page 24)

The main purpose is to exclude aliases
In particular, references can't escape their scopes

Jean-Christophe Filliatre Why /Krakatoa/Caduceus

TYPES Summer School — August 30th, 200



Semantics

Call-by-value semantics, with left to right evalutation

Big-step operational semantics given in the notes (page 26)
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Proof Rules: Weakest Preconditions

We define the predicate wp(e, q), called the weakest precondition for
program e and postcondition g
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Proof Rules: Weakest Preconditions

We define the predicate wp(e, q), called the weakest precondition for
program e and postcondition g

Property: If wp(e, g) holds, then e terminates and g holds at the end of
execution (and all inner annotations are verified)

Jean-Christophe Filliatre
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Proof Rules: Weakest Preconditions

We define the predicate wp(e, q), called the weakest precondition for
program e and postcondition g

Property: If wp(e, g) holds, then e terminates and g holds at the end of
execution (and all inner annotations are verified)

The converse holds for the fragment without loops and functions
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Proof Rules: Weakest Preconditions

We define the predicate wp(e, q), called the weakest precondition for
program e and postcondition g

Property: If wp(e, g) holds, then e terminates and g holds at the end of
execution (and all inner annotations are verified)

The converse holds for the fragment without loops and functions

The correctness of an annotated program e is thus wp(e, True)
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Definition of wp(e, q)

We actually define wp(e, g; r) where
@ g is the “normal” postcondition
@ r=E; = qgi1;...;E, = q, is the set of “exceptional” post.
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Basic constructs

wp(u, q; r) = q[result — u]
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Basic constructs

wp(u, q; r) = q[result — u]

wp(x :=e,q;r) = wp(e, q[result — void; ! x « result]; r)
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Basic constructs

wp(u, q; r) = q[result — u]
wp(x :=e,q;r) = wp(e, q[result — void; ! x « result]; r)

wp(let x = e1 in e, q; r) = wp(e1, wp(ez, q; r)[x < result]; r)
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Basic constructs

wp(u, q; r) = q[result — u]
wp(x :=e,q;r) = wp(e, q[result — void; ! x « result]; r)
wp(let x = e1 in e, q; r) = wp(e1, wp(ez, q; r)[x < result]; r)

wp(let x = ref e in e, q; r) = wp(er, wp(ez, q; r)[! x « result]; r)
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Basic constructs

wp(u, q; r) = q[result — u]
wp(x :=e,q;r) = wp(e, q[result — void; ! x « result]; r)
wp(let x = e1 in e, q; r) = wp(e1, wp(ez, q; r)[x < result]; r)

wp(let x = ref e in e, q; r) = wp(er, wp(ez, q; r)[! x « result]; r)

wp(if e; then e else e3,q;r) =
wp(er, if result then wp(ey, q;r) else wp(es, q;r);r)
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Basic constructs

wp(u, q; r) = q[result — u]
wp(x :=e,q;r) = wp(e, q[result — void; ! x « result]; r)
wp(let x = e1 in e, q; r) = wp(e1, wp(ez, q; r)[x < result]; r)

wp(let x = ref e in e, q; r) = wp(er, wp(ez, q; r)[! x « result]; r)

wp(if e; then e else e3,q;r) =
wp(er, if result then wp(ey, q;r) else wp(es, q;r);r)

wp(L:e,q;r) = wp(e, g; r)[at(t, L) « ]
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Traditional rules

Assignment of a side-effects free expression

wp(x 1= u,q) = q[!'x — u]
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Traditional rules

Assignment of a side-effects free expression

wp(x :=u,q) = q['x « u]

Exception-free sequence

wp(er; €2,q) = wp(er, wp(e2,q))
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Exceptions

wp(raise (E €):7,q;r) = wp(e, rg;r)
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wp(raise (E €):7,q;r) = wp(e, rg;r)

wp(try e; with E x — ey end, q;r) =
wp(e1, q; E = wp(ez, q; r)[x < result]; r)
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Annotations

wp(assert {p}; e,q;r) =pAwp(e,q;r)
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wp(assert {p}; e, q;r) p A wp(e,q;r)

wp(e {q'ir'},qir) =wp(e,d Ng;r' Ar)
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wp(loop e {invariant p variant t},q;r) =
p A Yw.p=wp(L:e,pAt<at(t,L);r)

where w = the variables (possibly) modified by e
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wp(loop e {invariant p variant t},q;r) =
p A Yw.p=wp(L:e,pAt<at(t,L);r)

where w = the variables (possibly) modified by e

Usual while loop

wp(while e; do {invariant p variant t} e, done,q;r)
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wp(loop e {invariant p variant t},q;r) =
p A Yw.p=wp(L:e,pAt<at(t,L);r)

where w = the variables (possibly) modified by e

Usual while loop

wp(while e; do {invariant p variant t} e, done,q;r)
=p A Yw.p=
wp(L:if e; then e, else raise E,pAt < at(t,L),E = q;r)
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wp(loop e {invariant p variant t},q;r) =
p A Yw.p=wp(L:e,pAt<at(t,L);r)

where w = the variables (possibly) modified by e

Usual while loop

wp(while e; do {invariant p variant t} e, done,q;r)

=p A Yw.p=

wp(L:if e; then e, else raise E,pAt < at(t,L),E = q;r)

=p A Vw. p=>

wp(e1, if result then wp(ex, p At < at(t, L)) else q,r)[at(x, L) « x]
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Functions

wp(fun (x: 7) — {p} e,q;r) =q A VYx.Vp.p = wp(e, True)
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Functions

wp(fun (x: 7) — {p} e,q;r) =q A VYx.Vp.p = wp(e, True)

wp(rec f (xy :71)...(Xp: 7Tn) : 7 {variant t} = {p} e, q;r)
=q A Vx1....¥x,.Vp.p = wp(L:e, True)

when computing wp(L: e, True), f is assumed to have type

(x1:7m1) == (xn:7mn) = {pAt<at(t,L)} T e{q}
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Function call

Simplified using

€1 & =1let x; = €1 in let xop = & in X3 X
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Function call

Simplified using
€1 & =1let x; = €1 in let xop = & in X3 X

Assuming

x1: (x:7)—={p'}7 e{d}

we define

wp(x1 x2,q) = p'[x < x2] A Vw.Vresult.(q'[x « x2] = q)[old(t) « t]
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@ An intermediate language for program verification

@ syntax, typing, semantics, proof rules
@ the Why tool
©® multi-prover approach

@ Verifying C and Java programs
@ specification languages
@ models of program execution

© A challenging case study
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The Why Tool

This intermediate language is implemented in the Why tool
input = polymorphic first-order logic declarations 4+ programs

output = logical declarations + goals, in the syntax of the selected prover

Jean-Christophe Filliatre
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Logical Declarations

type t

logic zero : t

logic succ : t > ¢t

logic le : t, t —> prop

axiom a : forall x:t. le(zero,x)

goal g : le(zero, succ(zero))
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Programs

parameter x : int ref

parameter g
b:t -> { x>=0 } t writes x { result=succ(b) and x=x0+1 }

let h (a:int) (b:t) =
{ x>=0 }
if !'x = a then x := 0;
g (succ b)
{ result=succ(succ(b)) }

exception E
exception F of int
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it is a compiler:
@ why --coq f.why to produce a re-editable Coq file f_why.v
@ why --simplify f.why to produce a Simplify script f_why.sx
@ etc.
the following provers/formats are supported:
e Coq, PVS, Isabelle/HOL, HOL-light, HOL4, Mizar
e Simplify, Ergo, SMT (Yices, CVC3, etc.), CVC-Lite, haRVey, Zenon

there is a graphical user interface, gwhy
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Example: Dijkstra's Dutch national flag

Goal: to sort an array where elements only have three different values
(blue, white and red)
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Algorithm

0 b i r n
] BLUE \ WHITE \...todo...\ RED \

flag(t, n) =
b+ 0
i—0
r—n

while i < r

case t[i]

BLUE : swap t[b] and t[i]; b<—b+1;, i—i+1
WHITE: i+ i+1
RED: r <« r—1; swap t[r] and t[i]
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Correctness proof

we want to prove
o termination
@ absence of runtime error = no array access out of bounds

@ behavioral correctness = the final array is sorted and contains the
same elements as the initial array
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Modelization

We model
@ colors using an abstract datatype

@ arrays using references containing functional arrays
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An abstract type for colors

type color

logic blue : color
logic white : color
logic red : color

predicate is_color(c:color) = c=blue or c=white or c=red
parameter eq_color

cl:color -> c2:color ->
{} bool { if result then cl=c2 else cl<>c2 }
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Functional arrays

type color_array

logic acc : color_array, int -> color
logic upd : color_array, int, color -> color_array

axiom acc_upd_eq :

forall a:color_array. forall i:int. forall c:color.
acc(upd(a,i,c),i) = c

axiom acc_upd_neq :
forall a:color_array. forall i,j:int. forall c:color.
i <> j -> acc(upd(a,j,c),i) = acc(a,i)
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Array bounds

logic length : color_array —-> int

axiom length update
forall a:color_array. forall i:int. forall c:color.
length(upd(a,i,c)) = length(a)
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Array bounds

logic length : color_array —-> int

axiom length update
forall a:color_array. forall i:int. forall c:color.
length(upd(a,i,c)) = length(a)

parameter get
t:color_array ref -> i:int ->
{ 0<=i<length(t) } color reads t { result=acc(t,i) }

parameter set
t:color_array ref -> i:int -> c:color ->
{ 0<=i<length(t) } unit writes t { t=upd(t@,i,c) }
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The swap function

let swap (t:color_array ref) (i:int) (j:int) =
{ 0 <= i < length(t) and 0 <= j < length(t) }

let u =get t i in
set t 1 (get t j);
set t ju

upd (upd (t@,i,acc(t@,j)), j, acc(t@,i)) }

{t
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The swap function

let swap (t:color_array ref) (i:int) (j:int) =
{ 0 <= i < length(t) and 0 <= j < length(t) }

let u =get t i in

set t i (get t j);

set t ju

{ t = upd(upd(t@,i,acc(t@,j)), j, acc(t@,i)) }

5 proofs obligations
@ 3 automatically discharged by Why
@ 2 left to the user (and automatically discharged by Simplify)
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let dutch_flag (t:color_array ref) (n:int) =
let b = ref 0 in
let i = ref O in
let r = ref n in
while !'i < Ir do
if eq.color (get t !i) blue then begin
swap t !'b !i;

b :=1b + 1;
i=11+1

end else if eq._color (get t !'i) white then
i=11+1

else begin
r :=!r - 1;
swap t !r !i

end

done
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Function specification

let dutch flag (t:color_array ref) (m:int) =
{ 0 <= n and length(t) = n and
forall k:int. O <= k < n -> is_color(acc(t,k)) }

{ (exists b:int. exists r:int.
monochrome(t,0,b,blue) and
monochrome(t,b,r,white) and
monochrome(t,r,n,red))

and permutation(t,t@,0,n-1) }
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The monochrome property

predicate monochrome(t:color_array,i:int,j:int,c:color) =
forall k:int. i<=k<j -> acc(t,k)=c
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The permutation property

logic permutation : color_array, color_array, int, int -> prop
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The permutation property

logic permutation : color_array, color_array, int, int -> prop

axiom permut_refl : forall t:color_array. forall 1,r:int.
permutation(t,t,l,r)

axiom permut_sym : forall t1,t2:color_array. forall 1,r:int.
permutation(tl,t2,1,r) -> permutation(t2,t1,1l,r)

axiom permut_trans : forall tl1,t2,t3:color_array. forall 1,r:i
permutation(tl,t2,1,r) -> permutation(t2,t3,1,r) ->
permutation(t1,t3,1,r)

axiom permut_swap : forall t:color_array. forall 1,r,i,j:int.
l1<=i<ksr->1<K=j<=r >
permutation(t, upd(upd(t,i,acc(t,j)), j, acc(t,i)), 1, r)
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init:
while !'i < !r do
{ invariant
0 <=b<=1iand i <=1 <= n and
monochrome (t,0,b,blue) and
monochrome(t,b,i,white) and
monochrome(t,r,n,red) and
length(t) = n and
(forall k:int. 0 <= k < n -> is_color(acc(t,k))) and
permutation(t,t@init,0,n-1)
variant

r-1i}

done
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Proof obligations

11 proof obligations
loop invariant holds initially

loop invariant is preserved and variant decreases (3 cases)

°
°

@ swap precondition (twice)

@ array access within bounds (twice)
°

postcondition holds at the end of function execution

All automatically discharged by Simplify!
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@ An intermediate language for program verification

@ syntax, typing, semantics, proof rules
@ the Why tool
© multi-prover approach

@ Verifying C and Java programs
@ specification languages
@ models of program execution

© A challenging case study
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Discharging the Verification Conditions

we want to use off-the-shelf provers, as many as possible

requirements
o first-order logic
@ equality and arithmetic

@ quantifiers (memory model, user algebraic models)
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Provers Currently Supported

automatic decision procedures
@ provers a la Nelson-Oppen
e Simplify, Yices, Ergo
o CVC Lite, CVC3
@ resolution-based provers
e haRVey, rv-sat
@ tableaux-based provers
e Zenon

interactive proof assistants
e Coq, PVS, Isabelle/HOL, HOL4, HOL-light, Mizar
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Typing Issues

verification conditions are expressed in polymorphic first-order logic

need to be translated to logics with various type systems:

unsorted logic (Simplify, Zenon)
simply sorted logic (SMT provers)
parametric polymorphism (CVC Lite, PVS)

polymorphic logic (Ergo, Coq, Isabelle/HOL)
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Typing Issues

erasing types is unsound

type color
logic white,black : color

axiom color: forall c:color. c=white or c=black

V¢, ¢ =whiteV c=black - L
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Type Encoding

several type encodings are used
@ monomorphization

e each polymorphic symbol is replace by several monomorphic types
e may loop

@ usual encoding “types-as-predicates”
e Vx,nat(x) = P(x)
e does not combine nicely with most provers

@ new encoding with type-decorated terms
Handling Polymorphism in Automated Deduction (CADE 21)
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Trust in Prover Results

@ some provers apply the de Bruijn principle and thus are safe
e Coq, HOL family
@ most provers have to be trusted
o Simplify, Yices
e PVS, Mizar
@ some provers output proof traces
e Ergo, CVC family, Zenon
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Provers Collaboration

most of the time, we run the various provers in parallel,
expecting at least one of them to discharge the VC

if not, we turn to interactive theorem provers

@ no real collaboration between automatic provers

o from Coq or Isabelle, one can call automatic theorem provers
e proofs are checked when available
e results are trusted otherwise
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part Il

Verifying C and Java Programs
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Platform Overview

Annotated C program JML-Annotated Java program

Caduceus q Why program h Krakatoa

Interactive provers Automatic provers

(Cog, PVS, h Verification Conditions q (Simplify, Yices,
Isabelle/HOL, etc.) Ergo, CVC3, etc.)
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@ An intermediate language for program verification

@ syntax, typing, semantics, proof rules
@ the Why tool
© multi-prover approach

@ Verifying C and Java programs
@ specification languages
@ how to formally specify behaviors
@ models of program execution

© A challenging case study
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Which language to specify behaviors?

Java already has a specification language: JML (Java Modeling Language)
used in runtime assertion checking tools, ESC/Java, JACK, LOOP, CHASE

JML allows to specify
@ precondition, postcondition and side-effects for methods

@ invariant and variant for loops

@ class invariants
e model fields (~ ghost code)
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Which language to specify behaviors?

we designed a similar language for C programs, largely inspired by JML

additional features:

@ pointer arithmetic
@ algebraic models

e any axiomatized theory can be used in specifications
@ no runtime assertion checking

o floating-point arithmetic
e round errors can be specified
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A First Example: Binary Search

binary search: search a sorted array of integers for a given value

famous example; see J. Bentley's Programming Pearls:
most programmers are wrong on their first attempt to write binary search
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Binary Search (code)

int binary search(int* t, int n, int v) {

int 1 =0, u=n-1, p=-1;
while (1 <= u ) {
intm=(Q +u / 2;
if (tlm] < v)
l=m+ 1;
else if (t[m] > v)
u=m-1;
else {
p = m; break;
}
}

return p;

}
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Binary Search (spec)

we want to prove:

@ absence of runtime error

@ termination

© behavioral correctness
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Binary Search (spec)

/*@ requires
@ n >=0 &&
@ \valid.range(t,0,n-1) &&
@ \forall int k1, int k2;

6] 0 <= k1 <= k2 <= n-1 => t[k1] <= t[k2]

o*/

int binary search(int* t, int n, int v) {

}
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Binary Search (spec)

/*@ requires
@ n >= 0 &&
@ \valid.range(t,0,n-1) &&
@ \forall int k1, int k2;
¢] 0 <= k1 <= k2 <= n-1 => t[k1] <= t[k2]
@ ensures
@ (\result >= 0 && t[\result] ==v) ||
6] (\result == -1 && \forall int k;
¢ 0 <=k <n=>tl[k] !=v)
o*/
int binary search(int* t, int n, int v) {

}
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Binary Search (spec)

/*@ requires
@ ensures
o*/
int binary search(int* t, int n, int v) {
int 1 =0, u=n-1, p=-1;
/*@ variant u-1
ox/
while (1 <= u ) {

}
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Binary Search (spec)

/*Q@ requires ...
@ ensures
ox/

int binary search(int* t, int n, int v) {

int 1 =0, u=n-1, p=-1;

/*@ invariant
@ 0 <=16&& u<=n-1&& p==-1%&&
@ \forall int k;

6] 0 <=k <n=t[k] ==v=>1<=k<=u

@ variant u-1
ex*/
while (1 <= u ) {

}
}
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Binary Search (proof)

DEMO
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Algebraic Models

in JML, annotations are written using pure Java code
this is mandatory to perform runtime assertion checking

but it is often convenient to introduce axiomatized theories in order to
annotate programs, that is

@ abstract types
e function symbols, w or w/o definitions
@ predicates, w or w/o definitions

@ axioms
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Example: Priority Queues

static data structure for a priority queue containing integers

void clear(); // empties the queue

void push(int x); // inserts a new element

int max(); // returns the maximal element

int popQ); // removes and returns the maximal element
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Bags

//@ type bag
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Bags

//@ type bag

//@ logic bag empty bag()
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//@ type bag
//@ logic bag empty bag()

//@ logic bag singleton _bag(int x)

Jean-Christophe Filliatre
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//@ type bag
//@ logic bag empty_bag()
//@ logic bag singleton _bag(int x)

//@ logic bag union bag(bag bl, bag b2)
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//@ type bag

//@ logic bag empty_bag()

//@ logic bag singleton _bag(int x)

//@ logic bag union bag(bag bl, bag b2)

/*@ logic bag add_bag(int x, bag b)
@ { union bag(b, singleton_bag(x)) } */
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//@ type bag

//@ logic bag empty_bag()

//@ logic bag singleton _bag(int x)

//@ logic bag union bag(bag bl, bag b2)

/*@ logic bag add_bag(int x, bag b)
@ { union bag(b, singleton_bag(x)) } */

//@ logic int occ_bag(int x, bag b)
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//@ type bag

//@ logic bag empty_bag()

//@ logic bag singleton _bag(int x)

//@ logic bag union bag(bag bl, bag b2)

/*@ logic bag add_bag(int x, bag b)
@ { union bag(b, singleton_bag(x)) } */

//@ logic int occ_bag(int x, bag b)

/*@ predicate is max bag(bag b, int m) {
@ occ_bag(m, b) >= 1 &&
@ \forall int x; occ_bag(x,b) >= 1 => x <=m

e} */
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Priority Queues (spec)

//@ logic bag model() { ... }

//@ ensures model() == empty_bag()
void clear();

//@ ensures model() == add_bag(x, \old(model()))
void push(int x);

//@ ensures is_max_bag(model(), \result)
int max();

/*@ ensures is_max_bag(\old(model()), \result) &&
@ \old (model()) == add_bag(\result, model()) */
int pop(Q);
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Implementing Priority Queues

implementation: heap encoded in an array

0 m size

tree

bag {2,7,7, 8,10, 10, 12, 13, 15, 17 }
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Trees

//@ type tree
//@ logic tree Empty()

//@ logic tree Node(tree 1, int x, tree r)
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//@ predicate is_heap(tree t)
//@ axiom is_heap def 1: is_heap(Empty())

/%@ axiom is_heap_def_2:
@ \forall int x; is_heap(Node(Empty(), x, Empty()))
e*/

/%@ axiom is_heap_def_3:
@ \forall tree 11; \forall int Ix;
@ \forall tree 1lr; \forall int x;
¢ x >= 1x => is_heap(Node(11, 1x, 1r)) =>
6] is_heap (Node (Node (11, 1x, 1lr), x, Empty()))
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Trees and Bags

//@ logic bag bag of tree(tree t)

/*@ axiom bag_of_tree.def_1:
© bag_of_tree(Empty()) == empty_bag()
ex/

/*@ axiom bag of _tree_def 2:
@ \forall tree 1; \forall int x; \forall tree r;
q] bag_of_tree(Node(1l, x, r)) ==
© add_bag(x, union_bag(bag of tree(1), bag of_tree(r)))
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Trees and Arrays

//@ logic tree tree_of_array(int *t, int root, int bound)

/%@ axiom tree_of_array_def_2:
@ \forall int *t; \forall int root; \forall int bound;
0 <= root < bound =>
tree_of array(t, root, bound) ==
Node (tree_of_array(t, 2*root+1, bound),
t[root],
tree_of _array(t, 2+*root+2, bound))

@ © 0 © ©

o*/
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Priority Queues (spec)

#define MAXSIZE 100

int heap[MAXSIZE];

int size = 0;

//@ invariant size_inv : 0 <= size < MAXSIZE

//@ invariant is_heap: is_heap(tree_of_array(heap, 0, size))

/*@ logic bag model()
@ { bag of_tree(tree_of array(heap, 0, size)) } */
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@ An intermediate language for program verification

@ syntax, typing, semantics, proof rules
@ the Why tool
©® multi-prover approach

@ Verifying C and Java programs

@ specification languages
® models of program execution
@ translation of pointer programs to alias-free Why programs

© A challenging case study
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Generating the Verification Conditions

Annotated C program
(foo.c)

O\

memory model memory layout Why code for
for C programs for program foo C functions
(caduceus.why) (foo_spec.why) (foo.why)
Why
Interactive provers l Automatic provers
(Coq, PVS, e Verification Conditions — (Simplify, Yices,
Isabelle/HOL, etc.) Ergo, CVC3, etc.)
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To Pointer Programs to Alias-Free Programs

naive idea: model the memory as a big array

using the theory of arrays

acc :mem, int — int
upd : mem, int, int — mem

Vmpv, acc(upd(m,p,v),p) =v
Vm pLp2Vv, p1 7é p2 = acc(upd(m7 P1, V)7 P2) = acc(m, P2)
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Naive Memory Model

then the C program

int x;
int y;
x = 0;
y =1
//@ assert x ==

becomes

m = upd(m,x, 0);
m = upd(m,y,1);
assert acc(m,x) =0

the verification condition is

acc(upd(upd(m, x,0), y,0), x) = 0
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Memory Model for Pointer Programs

we use the component-as-array model (Burstall-Bornat)
each structure/object field is mapped to a different array

relies on the property “two different fields cannot be aliased”

strong consequence: prevents pointer casts and unions (a priori)
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Benefits of the Component-As-Array Model

struct S { int x; int y; } p;

p.x = 0;
p.y =1;
//@ assert p.x == 0

becomes

x := upd(x, p,0);
y = upd(y,p,1);
assert acc(x,p) =0

the verification condition is

acc(upd(x, p,0),p) =0
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Component-As-Array Model and Pointer Arithmetic

struct S { int x; short y; struct S *next; } t[3];

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200



Component-As-Array Model and Pointer Arithmetic

struct S { int x; short y; struct S *next; } t[3];
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Separation Analysis

on top of Burstall-Bornat model, we add some separation analysis

@ each pointer is assigned a zone
@ zones are unified when pointers are assigned / compared
@ functions are polymorphic wrt zones

similar to ML-type inference

then the component-as-array model is refined according to zones

Separation Analysis for Deductive Verification (HAV'07)
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Separation Analysis

struct S { int x; short y; struct S *next; } t1[3], t2[2];

tl| X |y| |ne><t| X |y| |ne><t| X |y| |next|

t2| X |y|

next | X |y| | next |

x(z1) y(z1) next(z1) x(z2) y(z2) next(z2)

e [T] [ [
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Separation Analysis

struct S { int x; short y; struct S *next; } t1[3], t2[2];

tl | X | y | | next y | | next | X | y | | next |
t2 | X | y | next/r X | y | | next |
x(z1) y(z next(z1) x(z2) y(z2) next(z2)

tlf [1 [ 1

e [T] [ [
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little challenge for program verification proposed by P. Miiller:

count the number n of non-zero values in an integer array t,
then copy these values in a freshly allocated array of size n

t[2]1]0[4[0[5]3[0]

count=5

u[2]1[4]5]3]
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P. Miiller's Example (code)

void m(int t[], int length) {
int count=0, i, *u;

for (i=0 ; i < length; i++)
if (t[i] > 0) count++;

u = (int *)calloc(count,sizeof(int));
count = 0;

for (i=0 ; i < length; i++)
if (t[i] > 0) ulcount++] = t[i];
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P. Miiller's Example (spec)

void m(int t[], int length) {

int count=0, i, *u;
//@ invariant count == num_of_pos(0,i-1,t)
for (i=0 ; i < length; i++)

if (t[i] > 0) count++;
//@ assert count == num_of_pos(0,length-1,t)
u = (int *)calloc(count,sizeof(int));
count = 0;
//@ invariant count == num_of_pos(0,i-1,t)
for (i=0 ; i < length; i++)

if (t[i] > 0) ulcount++] = t[i];
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P. Miiller's Example (proof)

12 verification conditions

@ without separation analysis: 10/12 automatically proved

@ with separation analysis: 12/12 automatically proved

DEMO
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Integer Arithmetic

up to now, we did not consider integer arithmetic

there are basically three ways to model arithmetic

@ exact: all computations are interpreted using mathematical integers;
thus it assumes that there is no overflow

@ bounded: the user have to prove that there is no integer overflow

@ modulo: overflows are possible and modulo arithmetic is used; it is
faithful to machine arithmetic
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Overflows in Binary Search

we proved binary search using exact arithmetic
let us prove that there is no overflow

DEMO
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Modelling Integer Arithmetic

difficulty: we do not want to lose the ability of provers to handle
arithmetic

thus we cannot simply axiomatize machine arithmetic using new abstract
data types
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Bounded Arithmetic

consider signed 32-bit integers

type int32
logic of_int32: int32 —> int

axiom int32_domain:
forall x:int32.
-2147483648 <= of_int32(x) <= 2147483647

parameter int32_of_int:
x:int ->
{ -2147483648 <= x <= 2147483647 }
int32
{ of_int32(result) = x }
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Bounded Arithmetic

consider the C fragment

(x+1) xy

it is translated into

int32_of_int
((of_int32
(int32_of_int
((of_int32 x) + (of_int32 (int32_of_int 1)))))
*

(of_int32 y))
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Bounded Arithmetic

in practice, most proof obligations are easy to solve

int f(int n) {
int i = 0;
while (i < n) {

i++;

b

we do not even need to insert annotations
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Modulo Arithmetic

type int32
logic of_int32: int32 —> int

axiom int32_domain:
forall x:int32. -2147483648 <= of_int32(x) <= 2147483647

logic mod_int32: int -> int

parameter int32_of_int:
x:int -> { } int32 { of_int32(result) = mod_int32(x) }

axiom mod_int32_id:
forall x:int.
-2147483648 <= x <= 2147483647 -> mod_int32(x) = x
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@ An intermediate language for program verification

@ syntax, typing, semantics, proof rules
@ the Why tool
©® multi-prover approach

@ Verifying C and Java programs
@ specification languages
@ models of program execution

© A challenging case study
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A challenging case study

challenge for the verified program of the month:

t(a,b,c){int d=0,e=a& b&" c,f=1;if(a)for(f=0;d=(e-=d)&-e;f+=t(a-d, (b+d)*2, (
c+d)/2)) ;return f;}main(q){scanf("%d",&q) ;printf ("%d\n",t("(70<<q),0,0));}

appears on a web page collecting C signature programs

due to Marcel van Kervinck (author of MSCP, a chess program)

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200



Unobfuscating...

int t(int a, int b, int c¢) {
int d, e=a& " b&~c, f=1;
if (a)
for (£f=0; d=e&-e; e-=d)
f += t(a-d, (b+d)*2, (c+d)/2);
return f;

}

int main(int q) {
scanf ("%d", &q);
printf ("%d\n", t(7(70<<q), 0, 0));

}

this program reads an integer n
and prints the number of solutions to the n-queens problem
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How does it work?

@ backtracking algorithm (no better way to solve the n-queens)

@ integers used as sets (bit vectors)

integers | sets
00
a&b | anb
atb | aUb, whenanb=1
a-b | a\b, whenbCa
~a | Ca
a&-a | min_elt(a), when a # )
~("0<<n) | {0,1,...,n—1}
ax2 | {i+1]i€a}, written S(a)
a/2 | {i—1]|i€ani#0}, written P(a)

Jean-Christophe Filliatre
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What a, b and ¢ mean
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What a, b and ¢

o W
W o

W W W || oW | W |

a = columns to be filled = 11100101,
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What a, b and ¢ mean

W
W W
W w w
W w w

b = positions to avoid because of left diagonals = 01101000,
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What a, b and ¢ mean

Wy
W w @
o w

¢ = positions to avoid because of right diagonals = 00001001,
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What a, b and ¢ mean

IE

Wl ||
W W W W W W W

a& " b& " c = positions to try = 10000100,

Jean-Christophe Filliatre Why/Krakatoa/Caduceus TYPES Summer School — August 30th, 200



Now it is clear

int t(int a, int b, int ¢) {
int d, e=a&™b&"c, f=1;
if (a)
for (£f=0; d=e&-e; e-=d)
f += t(a-d, (b+d)*2, (c+d)/2);
return f;

}

int queens(int n) {
return t(~(70<<n), 0, 0);

}
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Abstract finite sets

//@ type iset
//@ predicate in_(int x, iset s)

/%@ predicate included(iset a, iset b)
@ { \forall int i; in (i,a) => in (i,b) } */

//@ logic iset empty()

//@ axiom empty.def : \forall int i; !in_(i,empty())

total: 66 lines of functions, predicates and axioms
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C ints as abstract sets

//@ logic iset iset(int x)

/*@ axiom iset_c_zero : \forall int x;
@ iset(x)==empty() <=> x==0 */

/*@ axiom iset_c_min_elt :
@ \forall int x; x != 0 =>

e iset (x4-x) == singleton(min_elt(iset(x))) */

/*@ axiom iset_c_diff : \forall int a, int b;
@ iset(a&”b) == diff(iset(a), iset(b)) */

total: 27 lines
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Termination

int t(int a, int b, int c){
int d, e=a& " b&~c, f=1;
if (a)
//@ variant card(iset(e-d))
for (£=0; d=e&-e; e-=d) {
f += t(a-d, (b+d)*2, (c+d)/2);

}

return f;
3 verification conditions, all proved automatically

similarly for the termination of the recursive function:
7 verification conditions, all proved automatically
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Soundness

how to express that we compute the right number,
since the program is not storing anything,
not even the current solution?

answer: by introducing ghost code to perform the missing operations
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ghost code can be regarded as regular code, as soon as
@ ghost code does not modify program data

@ program code does not access ghost data

ghost data is purely logical = ne need to check the validity of pointers
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Program instrumented with ghost code

//@ int** sol;
//@ int s;
//@ int* col;
//@ int k;

int t(int a, int b, int c) {
int d, e=a&"b&"c, f=1;
if (a)
for (£f=0; d=e&-e; e-=d) {
//@ coll[k] = min_elt(d);
//@ k++;
f += t3(a-d, (b+d)*2, (c+d)/2);
//@ k--;
}
//@ else
//@ store_solution();
return f;
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Program instrumented with ghost code (cont'd)

/*@ requires solution(col)
@ assigns s, sol[s][0..N()-1]
@ ensures s==\old(s)+1 && eq_sol(sol[\old(s)], col)
@x/

void store_solution();

/*@ requires
@ n==N() & s == 0 && k == 0
@ ensures
@ \result == s &&
@ sorted(sol, 0, s) &&
@ \forall int* t; solution(t) <=>
@ (\exists int i; O<=i<\result && eq.sol(t,sol[i]))
ex*/
int queens(int n) { return t(“(70<<m), 0, 0); }
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Finally, we get...

256 lines of code and specification

regarding VCs:
@ main function queens: 15 verification conditions
o all proved automatically (Simplify, Ergo or Yices)
@ recursive function t: 51 verification conditions

e 42 proved automatically: 41 by Simplify, 37 by Ergo and 35 by Yices
e 9 proved manually using Coq (and Simplify)
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Conclusion
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the Why/Krakatoa/Caduceus platform features
@ behavioral specification languages for C and Java programs,
at source code level
@ deductive program verification using original memory models

@ multi-provers backend (interactive and automatic)

free software under GPL license; see http://why.lri.fr/

successfully applied on both
@ academic case studies (Schorr-Waite, N-queens, list reversal, etc.)

e industrial case studies (Gemalto, Dassault Aviation, France Telecom)
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http://why.lri.fr/

Other Features

other features not covered in this lecture

o floating point arithmetic

o allows to specify rounding and method errors
o Formal Verification of Floating-Point Programs (ARITH 18)

@ pruning strategies to help decision procedures on large VCs
o A Graph-based Strategy for the Selection of Hypotheses (FTP 2007)
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Ongoing Work & Future Work

ongoing work
@ ownership: when class/type invariants must hold?

@ C unions & pointer casts

future work

@ verification of ML programs
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