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Introduction

The notion of a cellular automaton has been introduced by Ulam [U] and von
Neumann [vN]. In this classical setting, the “universe” is the lattice of integers
Zn of Euclidean space Rn. The set of states is a finite set A (also called the
alphabet) and a configuration is a function c : Zn → A. Time t goes on in
discrete steps and represents a transition function τ : AZ

n → AZ
n

(if c is the
configuration at time t, then τ(c) is the configuration at time t + 1), which
is deterministic and local. Locality means that the new state at a point γ ∈
Zn at time t + 1 only depends on the states of certain fixed points in the
neighborhood of γ at time t. More precisely, if c is the configuration reached
from the automaton at time t then τ (c)|γ = δ(c|Nγ

), where δ : AN → A is
a function defined on the configurations with support the finite set N (the
neighborhood of the point 0 ∈ Zn), and Nγ = γ + N is the neighborhood
of γ obtained from N by translation. For these structures, Moore [Moo] has
given a sufficient condition for the existence of the so–called Garden of Eden
(GOE) patterns, that is those configurations with finite support that cannot be
reached at time t from another configuration starting at time t − 1 and hence
can only appear at time t = 0. Moore’s condition (i.e. the existence of mutually
erasable patterns – a sort of non–injectivity of the transition function on the
“finite” configurations) was also proved to be necessary by Myhill [My]. This
equivalence between “local injectivity” and “local surjectivity” of the transition
function is the classical well–known Garden of Eden theorem.

The purpose of this work is to consider this kind of problems in the more
general framework of symbolic dynamic theory, with particular regard to sur-
junctivity theorems (and, in this case, to the density of the periodic configu-
rations) and to GOE–like theorems restricted to the subshifts of the space AΓ

(where Γ is a finitely generated group and A is a finite alphabet). Indeed for
these sets is still possible to define a structure of a cellular automaton.

More precisely, given a finitely generated group Γ, one can consider as “uni-
verse” the Cayley graph of Γ. A configuration is an element of the space AΓ (the
so–called full A–shift), that is a function defined on Γ with values in a finite
alphabet A. The space AΓ is naturally endowed with a metric and hence with
an induced topology, this latter being equivalent to the usual product topology,
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where the topology in A is the discrete one. A subset X of AΓ which is Γ–
invariant and topologically closed is called subshift, shift space or simply shift.
In this setting a cellular automaton (CA) on a shift space X is given by speci-
fying a transition function τ : X → X which is local (that is the value of τ(c),
where c ∈ X is a configuration, at a point γ ∈ Γ only depends on the values of
c at the points of a fixed neighborhood of γ).

In Chapter 1 we formally define all these notions, also proving that many
basic results for the subshifts of AZ given in the book of Lind and Marcus
[LinMar], can be generalized to the subshifts of AΓ. For example, we prove that
the topological definition of shift is equivalent to the combinatorial one of set
of configurations avoiding some forbidden blocks.

Moreover we prove that a function between shift spaces is local if and only if
it is continuous and commutes with the Γ–action. This fact, together with the
compactness of the shift spaces (notice that in AΓ closeness and compactness are
equivalent), implies that the inverse of an invertible cellular automaton is also a
cellular automaton and allows us to call conjugacy each invertible local function
between two shifts. The invariants are those properties which are invariant
under conjugacy.

A fundamental notion we give is that of irreducibility for a shift; in the one–
dimensional case, this means that given any pair of words u, v in the language
of the shift (i.e. the set of all finite words appearing in some bi–infinite con-
figuration), there is a word w such that the concatenation uwv still belongs to
the language. We generalize this definition to a generic shift, using the patterns
and their supports rather than the words.

Then, in terms of forbidden blocks the notion of shift of finite type is given
and we prove that, as in the one–dimensional case, such a shift has a useful
“overlapping” property that will be necessary in later chapters. Moreover we
recall from [LinMar] the notions of edge shift and of sofic shift, and restate many
of the basic properties of these one–dimensional shifts strictly connected with
the one–dimensional shifts of finite type.

As we have noticed, cellular automata have mainly been investigated in
the Euclidean case and for the full shifts. The difference between the one–
dimensional cellular automata and the higher dimensional ones, is very deep.
For example, Amoroso and Patt have shown in [AP] that there are algorithms
to decide surjectivity and injectivity of local maps for one–dimensional cellular
automata. On the other hand Kari has shown in [K1] and [K2] that both the
injectivity and the surjectivity problems are undecidable for Euclidean cellular
automata of dimension at least two. Here we extend the Amoroso–Patt’s results
to the one–dimensional cellular automata over shifts of finite type.

Finally, the notion of entropy for a generic shift as defined by Gromov in
[G] is also given; we see that this definition involves the existence of a suitable
sequence of sets and we prove that, in the case of non–exponential growth of the
group, these sets can be taken as balls centered at 1 and with increasing radius.
Moreover, we see that the entropy is an invariant of the shifts. Then, following
Lind and Marcus [LinMar], we recall its basic properties in the one–dimensional
case, also stating the principal result of the Perron–Frobenius theory to compute
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it.

A selfmapping τ : X → X on a set X is surjunctive if it is either non–injective
or surjective. In other words a function is surjunctive if the implication injective
⇒ surjective holds. Using the GOE theorem and the compactness of the space
AZ

n

, Richardson has proved in [R] that a transition function τ : AZ
n → AZ

n

is surjunctive. In Chapter 2, we consider the surjunctivity of the transition
function in a general cellular automaton over a group Γ.

A configuration of a shift is periodic if its Γ–orbit is finite; after proving some
generalities about periodic configurations, we recall the class of residually finite
groups, proving that a group Γ is residually finite if and only if the periodic
configurations are dense in AΓ.

Hence if Γ is a residually finite group, a transition function τ of a cellular
automaton on AΓ is surjunctive. In fact, we prove more generally that if the pe-
riodic configurations of a subshift X ⊆ AΓ are dense, then a transition function
on X is surjunctive. We also prove that the density of the periodic configura-
tions is an invariant of the shifts, as is the number of the periodic configuration
with a fixed period.

The remaining part of the chapter is devoted to establish for which class of
shifts the periodic configurations are dense. We prove the density of the periodic
configurations for an irreducible subshift of finite type of AZ and hence, a sofic
shift being the image under a local map of a shift of finite type, the density of
the periodic configurations for an irreducible sofic subshift of AZ. We see that
these results cannot be generalized to higher dimensions.

If the alphabet A is a finite group G and Γ is abelian, the periodic config-
urations of a subshift which is also a subgroup of GΓ (namely a group shift),
are dense (this result is a consequence of a more general theorem in [KitS2]).
Moreover, this further hypothesis is not still included in the result about irre-
ducible shifts of finite type; indeed a group shift is of finite type but there are
examples of group shifts which are not irreducible. Finally, we list some other
well–known decision problems for Euclidean shifts proving that in the special
case of a one–dimensional shift they can be solved; more generally they can be
solved for the class of group shifts using some results due to Wang [Wa] and
Kitchens and Schmidt [KitS1].

In Chapter 3, we consider generalizations of the Moore’s property and My-
hill’s property to a generic shift. In details, the GOE–theorem has been proved
by Mach̀ı and Mignosi [MaMi] more generally for cellular automata in which
the space of configurations is the whole A–shift AΓ and the group Γ has non–
exponential growth; more recently it has been proved by Ceccherini–Silberstein,
Mach̀ı and Scarabotti [CeMaSca] for the wider class of the amenable groups.

Instead of the non–existence of mutually erasable patterns, we deal with the
notion of pre–injectivity (a function τ : X ⊆ AΓ → AΓ is pre–injective if when-
ever two configurations c, c̄ ∈ X differ only on a finite non–empty subset of Γ,
then τ(c) 6= τ(c̄)); this notion has been introduced by Gromov in [G]. In fact,
we prove that these two properties are equivalent for local functions defined on
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the full shift, but in the case of proper subshifts the former may be meaningless.
On the other hand, we give a proof of the fact that the non–existence of GOE
patterns is equivalent to the non–existence of GOE configurations, that is to the
surjectivity of the transition function. Hence, in this language, the GOE theo-
rem states that τ is surjective if and only if it is pre–injective. We call Moore’s
property the implication surjective ⇒ pre–injective and Myhill’s property the
inverse one.

Concerning one–dimensional shifts, from the works of Hedlund [H] and Coven
and Paul [CovP] we prove that the Moore–Myhill property (MM–property)
holds for irreducible shifts of finite type of AZ. Moreover, using this result we
prove that Myhill’s property holds for irreducible sofic shifts of AZ. On the
other hand, we give a counterexample of an irreducible sofic shift X ⊆ AZ but
not of finite type for which Moore’s property does not hold.

Concerning general cellular automata over amenable groups, from a result
of Gromov [G] in a more general framework, it follows that the MM–property
holds for shifts of bounded propagation contained in AΓ. We generalize this result
showing that the MM–property holds for strongly irreducible shifts of finite type
of AΓ (and we also show that strong irreducibility together with the finite type
condition is strictly weaker that the bounded propagation property).

The main difference between irreducibility and strong irreducibility is easily
seen in the one–dimensional case. Here the former property states that given
any two words u, v in the language of a shift, there exists a third word w such
that the concatenation uwv is still in the language. Strong irreducibility says
that we can arbitrarily fix the length of this word (but it must be greater than
a fixed constant only depending on the shift). The same properties for a generic
shift refers to the way in which two different patterns in the language of the shift
may appear simultaneously in a configuration. For irreducibility we have that
two patterns always appear simultaneously in some configuration if we translate
their supports. Strong irreducibility states that if the supports of the pattern
are far enough, than it is not necessary to translate them in order to find a
configuration in which both the patterns appear.

These two irreducibility conditions are not equivalent, not even in the one–
dimensional case. Hence our general results about strongly irreducible shifts of
finite type are strictly weaker than the one–dimensional ones. In the attempt of
using weaker hypotheses in the latter case, we give a new notion of irreducibility,
the semi–strong irreducibility. In the one–dimensional case, this property means
that the above word w may “almost” be of the length we want (provided that it
is long enough): we must allow it to be “a little” longer or “a little” shorter; the
length of this difference is bounded and only depends on the shift. In general,
semi–strong irreducibility states that if the supports of the patterns are far
enough from each other, than translating them “a little” we find a configuration
in which both the patterns appear. The reason for this choice lies in the fact that
using the Pumping Lemma we can prove that a sofic subshift of AZ is irreducible
if and only if is semi–strongly irreducible. Moreover Myhill’s property holds for
semi–strongly irreducible shifts of finite type of AΓ if Γ has non–exponential
growth.
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1. Cellular

Automata

In this chapter we give the notion of a cellular automaton over a finitely gener-
ated group. This notion generalizes the definition given by Ulam [U] and von
Neumann [vN]. In that classical setting, the “universe” is the lattice of integers
Zn of Euclidean space Rn. The set of states is a finite set A (also called the
alphabet) and a configuration is a function c : Zn → A. Time t goes on in
discrete steps and represents a transition function τ : AZ

n → AZ
n

(if c is the
configuration at time t, then τ(c) is the configuration at time t + 1), which is
deterministic and local. Locality means that the new state at a point γ ∈ Zn

at time t + 1 only depends on the states of certain fixed points in the neigh-
borhood of γ at time t. More precisely, if c is the configuration reached from
the automaton at time t then τ (c)|γ = δ(c|Nγ

), where δ : AN → A is a function
defined on the configurations with support the finite set N (the neighborhood
of the point 0 ∈ Zn), and Nγ = γ + N is the neighborhood of γ obtained from
N by translation.

Our purpose is, given a finitely generated group Γ, to consider as “universe”
the Cayley graph of Γ. A configuration is an element of the space AΓ, that
is a function defined on Γ with values in a finite alphabet A. The space AΓ is
naturally endowed with a metric and hence with an induced topology, this latter
being equivalent to the usual product topology, where the topology in A is the
discrete one. A subset X of AΓ which is Γ–invariant and topologically closed is
called subshift, shift space or simply shift. In this setting a cellular automaton
(CA) on a shift space X is given by specifying a transition function τ : X → X
which is local (that is the value of τ(c), where c ∈ X is a configuration, at a point
γ ∈ Γ only depends on the values of c at the points of a fixed neighborhood of
γ).

Sections 1.1 and 1.2 of this chapter are dedicated to give a formal definition
of all these notions, also proving that many basic results for the subshifts of
AZ given in the book of Lind and Marcus [LinMar], can be generalized to the
subshifts of AΓ. For example, we prove that the topological definition of shift

7



is equivalent to the combinatorial one of set of configurations avoiding some
forbidden blocks. Moreover we prove that a function between shift spaces is
local if and only if it is continuous and commutes with the Γ–action. This fact,
together with the compactness of the shift spaces (notice that in AΓ closeness
and compactness are equivalent), implies that the inverse of an invertible cellular
automaton is also a cellular automaton and allows us to call conjugacy each
invertible local function between two shifts. The invariants are those properties
which are invariant under conjugacy. Finally we extend to a general shift the
notion of irreducibility and of being of finite type.

In Sections 1.4 and 1.5, we recall from [LinMar] the notions of edge shift and
of sofic shift, and restate many of the basic properties of these one–dimensional
shifts strictly connected with the one–dimensional shifts of finite type.

In Section 1.6, we generalize the Amoroso–Patt’s results about the decision
problem of the surjectivity and the injectivity of local maps for one–dimensional
cellular automata on the full shift (see [AP] and [Mu]). Our results concern one–
dimensional cellular automata over shifts of finite type.

Finally, in Section 1.7 the notion of entropy for a generic shift as defined
by Gromov in [G] is given. We see that this definition involves the existence of
a suitable sequence of sets and we prove that, in the case of non–exponential
growth of the group, these sets can be taken as balls centered at 1 and with
increasing radius. Moreover, we see that the entropy is an invariant of the shifts.

Then, following Lind and Marcus [LinMar, Chapter 4], we recall basic prop-
erties of the entropy in the one–dimensional case.

1.1 Cayley Graphs of Finitely Generated Groups

In this section, we give the basic notion of Cayley graph of a finitely generated
group; as we have said, this graphs will constitute the “universe” of our class
of cellular automata. Moreover, we recall the definition of growth of a finitely
generated group Γ.

Let Γ be a finitely generated group and X a fixed finite set of generators for
Γ; then each γ ∈ Γ can be written as

γ = xδ1

i1
xδ2

i2
. . . xδn

in
(1.1)

where the xij
’s are generators and δj ∈ Z.

We define the length of γ (with respect to X ) as the natural number

‖γ‖X := min{|δ1|+ |δ2|+ · · ·+ |δn| | γ is written as in (1.1)}

so that Γ is naturally endowed with a metric space structure, with the distance
given by

distX (α, β) := ‖α−1β‖X (1.2)

and
DX

n := {γ ∈ Γ | ‖γ‖X ≤ n}
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is the disk of radius n centered at 1. Notice that DX
1 is the set X ∪X−1 ∪ {1}.

The asintotic properties of the group being independent on the choice of the
set of generators X , from now on we fix a set X which is also symmetric (i.e.
X−1 = X ) and we omit the index X in all the above definitions.

For each γ ∈ Γ, the set Dn provides, by left translation, a neighborhood
of γ, that is the set γDn = D(γ, n). Indeed, if α ∈ γDn then α = γβ with
‖β‖ ≤ n. Hence dist(α, γ) = ‖α−1γ‖ = ‖β−1‖ ≤ n. Conversely, if α ∈ D(γ, n)
then ‖γ−1α‖ ≤ n (that is γ−1α ∈ Dn), and α = γ γ−1α.

Now we define, for each E ⊆ Γ and for each n ∈ N, the following subsets of
Γ: the n–closure of E

E+n :=
⋃

α∈E

D(α, n);

the n–interior of E

E−n := {α ∈ E | D(α, n) ⊆ E};

the n–boundary of E
∂nE := E+n\E−n;

the n–external boundary of E

∂+
n E := E+n\E

and, finally, the n–internal boundary of E

∂−
n E := E\E−n.

For all these sets, we will omit the index n if n = 1.

The Cayley graph of Γ, is the graph in which Γ is the set of vertices and
there is an edge from γ to γ̄ if there exists a generator x ∈ X such that γ̄ = γx.
Obviously this graph depends on the presentation of Γ. For example, we may
look at the classical cellular decomposition of Euclidean space Rn as the Cayley
graph of the group Zn with the presentation 〈a1, . . . , an | aiaj = ajai〉.

If G = (V , E) is a graph with set of vertices V and set of edges E , the graph
distance (or geodetic distance) between two vertices v1, v2 ∈ V is the minimal
length of a path from v1 to v2. Hence the distance defined in (1.2) coincides
with the graph distance on the Cayley graph of Γ.

We recall that the function g : N→ N defined by

g(n) := |Dn|

which counts the elements of the disk Dn, is called growth function of Γ (with
respect to X ). One can prove that the limit

λ := lim
n→∞

g(n)
1
n

9



always exists; if λ > 1 then, for all sufficiently large n,

g(n) ≥ λn,

and the group Γ has exponential growth. If λ = 1, we distinguish two cases.
Either there exists a polynomial p(n) such that for all sufficiently large n

g(n) ≤ p(n),

in which case Γ has polynomial growth, or Γ has intermediate growth (i.e. g(n)
grows faster than any polynomial in n and slower then any exponential function
xn with x > 1). Moreover, it is possible to prove that the type of growth is
a property of the group Γ (i.e. it does not depend on the choice of a set of
generators); for this reason we deal with the growth of a group. This notion has
been indipendently introduced by Milnor [Mil], Efremovič [E] and Švarc [Š]; it
is very useful in the theory of cellular automata.

1.2 Shift Spaces and Cellular Automata

Let A be a finite alphabet; in the classical theory of cellular automata, the
“universe” is the Cayley graph of the free abelian group Zn and a configuration
is an element of AZ

n

, that is a function c : Zn → A assigning to each point of
the graph a letter of A. We generalize this notion taking as universe a Cayley
graph of a generic finitely generated group Γ and taking suitable subsets of
configurations in AΓ.

Let A be a finite set (with at least two elements) called alphabet; on the set
AΓ (i.e. the set of all functions c : Γ→ A), we have a natural metric and hence
a topology. This latter is equivalent to the usual product topology, where the
topology in A is the discrete one. By Tychonoff’s theorem, AΓ is also compact.
An element of AΓ is called a configuration.

If c1, c2 ∈ AΓ are two configurations, we define the distance

dist(c1, c2) :=
1

n + 1

where n is the least natural number such that c1 6= c2 in Dn. If such an n does
not exist, that is if c1= c2, we set their distance equal to zero.

Observe that the group Γ acts on AΓ on the right as follows:

(cγ)|α := c|γα

for each c ∈ AΓ and each γ, α ∈ Γ (where c|α is the value of c at α).

Now we give a topological definition of a shift space (briefly shift); we will
see in the sequel that this definition is equivalent (in the Euclidean case) to the
classical combinatorial one.
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Definition 1.2.1 A subset X of AΓ is called a shift if it is topologically closed
and Γ–invariant (i.e. XΓ = X).

For every X ⊆ AΓ and E ⊆ Γ, we set

XE := {c|E | c ∈ X};
a pattern of X is an element of XE where E is a non–empty finite subset of Γ.
The set E is called the support of the pattern; a block of X is a pattern of X
with support a disk. The language of X is the set L(X) of all the blocks of X .
If X is a subshift of AZ, a configuration is a bi–infinite word and a block of X
is a finite word appearing in some configuration of X .

Hence a pattern with support E is a function p : E → A. If γ ∈ Γ, we have
that the function p̄ : γE → A defined as p̄|γα = p|α (for each α ∈ E), is the
pattern obtained copying p on the translated support γE. Moreover, if X is
a shift, we have that p̄ ∈ XγE if and only if p ∈ XE . For this reason, in the
sequel we do not make distinction between p and p̄ (when the context makes it
possible). For example, a word a1 . . . an is simply a finite sequence of symbols
for which we do not specify (if it is not necessary), if the support is the interval
[1, n] or the interval [−n,−1].

Definition 1.2.2 Let X be a subshift of AΓ; a function τ : X → AΓ is M–local
if there exists δ : XDM

→ A such that for every c ∈ X and γ ∈ Γ

(τ (c))|γ = δ((cγ)|DM
) = δ(c|γα1

, c|γα2
, . . . , c|γαm

),

where DM = {α1, . . . , αm}.
In this definition, we have assumed that the alphabet of the shift X is the

same as the alphabet of its image τ (X). In this assumption there is no loss of
generality because if τ : X ⊆ AΓ → BΓ, one can always consider X as a shift
over the alphabet A ∪ B.

Definition 1.2.3 Let Γ be a finitely generated group with a fixed symmetric
set of generators X , let A be a finite alphabet with at least two element and
let DM the disk in Γ centered at 1 and with radius M . A cellular automaton is
a triple (X, DM , τ) where X is a subshift of the compact space AΓ, DM is the
neighborhood of 1 and τ : X → X is an M–local function.

Let τ : X → AΓ be a M–local function; if c is a configuration of X and E is
a subset of Γ, τ (c)|E only depends on c|E+M . Thus we have a family of functions
(τE+M : XE+M → τ (X)E)E⊆Γ.

The following characterization of local functions is, in the one–dimensional
case, known as the Curtis–Lyndon–Hedlund theorem. Here we generalize it to
a general local function.

Proposition 1.2.4 A function τ : X → AΓ is local if and only if it is continu-
ous and commutes with the Γ–action (i.e. for each c ∈ X and each γ ∈ Γ, one
has τ (cγ) = τ(c)γ).

11



Proof Suppose that τ is M–local and that DM = {α1, . . . , αm}; then for
γ ∈ Γ and c ∈ X ,

(τ (cγ))|α = δ((cγ)|αα1
, (cγ)|αα2

, . . . , (cγ)|ααm
) = δ(c|γαα1

, . . . , c|γααm
).

On the other hand

((τ (c))γ)|α = (τ (c))|γα = δ(c|γαα1
, . . . , c|γααm

).

Hence τ commutes with the Γ–action. We prove that τ is continuous. A generic
element of a sub–basis of AΓ is

ξ := {c ∈ AΓ | c|α = a}

with α ∈ Γ and a ∈ A. It suffices to prove that the set

ξ̄ := τ−1(ξ) = {c ∈ X | τ(c)|α = a}

is open in X . Actually, if c ∈ ξ̄ and

r := max(‖αα1‖, . . . , ‖ααm‖), (1.3)

we claim that the ball BX(c, 1
r+1) is contained in ξ̄. Indeed, if c̄ ∈ BX(c, 1

r+1 )
then

dist(c, c̄) <
1

r + 1

and on Dr we have c|Dr
= c̄|Dr

; since, from (1.3), ααi ∈ Dr, we have τ(c̄)|α =
δ(c̄|αα1

, . . . , c̄|ααm
) = δ(c|αα1

, . . . , c|ααm
) = τ (c)|α = a.

Conversely, suppose that τ is continuous and commutes with the action of
Γ. Since X is compact, τ is uniformly continuous; fix M in N such that for
every c, c̄ ∈ X ,

dist(c, c̄) <
1

M + 1
⇒ dist(τ (c), τ (c̄)) < 1.

Hence, if c and c̄ agree on DM , then τ (c) and τ (c̄) agree at 1, that is, for every
c ∈ X ,

(τ (c))|1 = δ(c|α1
, . . . , c|αm

)

where DM = {α1, . . . , αm}.
In general, since τ commutes with the action of Γ, we have

(τ (c))|α = (τ (c))|α1 = ((τ (c))α)|1 = (τ (cα))|1 = δ(c|αα1
, . . . , c|ααm

)

showing that τ is M–local. 2

From the previous theorem, it is clear that the composition of two local
functions is still local. In any case, this can be easily seen by a direct proof that
follows Definition 1.2.2.
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Now, fix γ ∈ Γ and consider the function X → AΓ that associates with
each c ∈ X its translated configuration cγ . In general, this function does not
commute with the Γ–action (and therefore it is not local). Indeed, if Γ is not
abelian and γα 6= αγ, then (cγ)α 6= (cα)γ . However, this function is continuous.
In order to see this, if n ≥ 0, fix a number m ≥ 0 such that γDn ⊆ Dm; if
dist(c, c̄) ≤ 1

m+1 , then c and c̄ agree on Dm and hence on γDn. If α ∈ Dn, we
have c|γα = c̄|γα and then cγ

|α = c̄γ
|α that is cγ and c̄γ agree on Dn so that

dist(cγ , c̄γ) < 1
n+1 .

This result will be necessary in the proof of Theorem 1.2.6, below.

Observe that if X is a subshift of AΓ and τ : X → AΓ is a local function,
then, by Proposition 1.2.4, the image Y := τ (X) is still a subshift of AΓ. Indeed
Y is closed (or, equivalently, compact) and Γ–invariant:

Y Γ = (τ (X))Γ = τ (XΓ) = τ (X) = Y.

Moreover, if τ is injective then τ : X → Y is a homeomorphism; if c ∈ Y then
c = τ (c̄) for a unique c̄ ∈ X and we have

τ−1(cγ) = τ−1(τ (c̄)γ) = τ−1(τ (c̄γ)) = c̄γ = (τ−1(c))γ

that is, τ−1 commutes with the Γ–action. By Proposition 1.2.4, τ−1 is local.
Hence the well–known theorem (see [R]), stating that the inverse of an invert-
ible Euclidean cellular automaton is a cellular automaton, holds also in this
more general setting. In the one–dimensional case, Lind and Marcus [LinMar,
Theorem 1.5.14] give a direct proof of this fact.

This result leads us to give the following definition.

Definition 1.2.5 Two subshifts X, Y ⊆ AΓ are conjugate if there exists a local
bijective function between them (namely a conjugacy). The invariants are the
properties of a shift invariant under conjugacy.

Now we prove that the topological definition of a shift space is equivalent
to a combinatorial one involving the avoidance of certain forbidden blocks: this
fact is well–known in the Euclidean case.

Theorem 1.2.6 A subset X ⊆ AΓ is a shift if and only if there exists a subset
F ⊆ ⋃

n∈N
ADn such that X = XF , where

XF := {c ∈ AΓ | cα
|Dn

/∈ F for every α ∈ Γ, n ∈ N}.

In this case, F is a set of forbidden blocks of X.

Proof Suppose that X is a shift. X being closed, for each c /∈ X there exists
an integer nc > 0 such that the ball

BAΓ(c,
1

nc

) ⊆ {X.

13



Let F be the set
F := {c|Dnc

| c /∈ X};
we prove that X = XF . If c /∈ XF , there exists c̄ /∈ X such that cα

|Dnc̄
= c̄|Dnc̄

for some α ∈ Γ. Then dist(cα, c̄) < 1
nc̄

and hence cα ∈ BAΓ(c̄, 1
nc̄

) ⊆ {X which
implies c /∈ X , by the Γ–invariance of X . This proves that X ⊆ XF . For the
other inclusion, if c /∈ X then, by definition of F , c|Dnc

∈ F and hence c /∈ XF .
Now, for the converse, we have to prove that a set of type XF is a shift.

Observe that
XF =

⋂

p∈F

X{p}

and, if supp(p) = Dn = {α1, . . . , αN},

X{p} =
⋂

α∈Γ

{c ∈ AΓ | cα
|Dn
6= p} =

⋂

α∈Γ

( ⋃

αi∈Dn

{c ∈ AΓ | cα
|αi
6= p|αi

}
)

.

Thus, in order to prove that XF is closed, it suffices to prove that for any
i = 1, . . . , N the set

{c ∈ AΓ | cα
|αi
6= p|αi

} (1.4)

is closed. We have

({c ∈ AΓ | cα
|αi
6= p|αi

})α = {c ∈ AΓ | c|αi
6= p|αi

}

and then the set in (1.4) is closed being the pre–image of a closed set under a
continuous function. Finally we have to prove that XF is Γ–invariant. If γ ∈ Γ
and c ∈ XF , for every α ∈ Γ and every n ∈ N we have cγα

|Dn
/∈ F that is

(cγ)α
|Dn

/∈ F and hence cγ ∈ XF 2

Now we give the first, fundamental notion of irreducibility for a one–dimen-
sional shift and we see how to generalize this notion to a generic shift.

Definition 1.2.7 A shift X ⊆ AZ is irreducible if for each pair of words u, v ∈
L(X), there exists a word w ∈ L(X) such that the concatenated word uwv ∈
L(X).

The natural generalization of this property to any group Γ is the following.

Definition 1.2.8 A shift X ⊆ AΓ is irreducible if for each pair of patterns
p1 ∈ XE and p2 ∈ XF , there exists an element γ ∈ Γ such that E ∩ γF = ∅ and
a configuration c ∈ X such that c|E = p1 and c|γF = p2.

In other words, a shift is irreducible if whenever we have p1, p2 ∈ L(X), there
exists a configuration c ∈ X in which these two blocks appear simultaneously
on disjoint supports. This definition could seem weaker than Definition 1.2.7,
in fact in this latter we establish that each word u ∈ L(X) must always appear
in a configuration on the left of each other word of the language. In order to
prove that the two definitions agree, suppose that X ⊆ AZ is an irreducible
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shift according with Definition 1.2.8. If u, v are words in L(X), there exists a
configuration c ∈ X such that c|E = u and c|F = v where E and F are finite and
disjoint intervals. If maxE < min F then there exists a word w such that uwv ∈
L(X) (where w = c|I and I is the interval [maxE +1, minF −1]). If, otherwise,
maxF < min E there exists a word w such that vwu ∈ L(X); consider the word
vwu two times, there exists another word x such that vwu x vwu ∈ L(X) and
hence uxv ∈ L(X).

1.3 Shifts of Finite Type

Now we give the fundamental notion of shift of finite type. The basic definition
is in terms of forbidden words; in a sense we may say that a shift is of finite
type if we can decide whether or not a configuration belongs to the shift only
checking its words of a fixed (and only depending on the shift) length. This fact
implies an useful characterization of the one–dimensional shifts of finite type,
a sort of “overlapping” property for the words of the language. We prove that
this overlapping property still holds for a generic shift of finite type.

Definition 1.3.1 A shift is of finite type if it admits a finite set of forbidden
blocks.

If X is a shift of finite type, since a finite set F of forbidden blocks of X has a
maximal support, we can always suppose that each block of F has the disk DM

as support (indeed each block that contains a forbidden block is forbidden). In
this case the shift X is called M–step and the number M is called the memory
of X. If X is a subshift of AZ, we define the memory of X as the number M ,
where M + 1 is the maximal length of a forbidden word.

For the shifts of finite type in AZ, we have the following useful property.

Proposition 1.3.2 [LinMar, Theorem 2.1.8] A shift X ⊆ AZ is an M–step
shift of finite type if and only if whenever uv, vw ∈ L(X) and |v| ≥ M , then
uvw ∈ L(X).

Now we prove that this “overlapping” property holds more generally for
subshifts of finite type of AΓ.

Proposition 1.3.3 Let X be an M–step shift of finite type and let E be a sub-
set of Γ. If c1, c2 ∈ X are two configurations that agree on ∂+

2ME, then the
configuration c ∈ AΓ that agrees with c1 on E and with c2 on {E is still in X.

Proof Let c1, c2 and c be three configurations as in the statement; if F is a
finite set of forbidden blocks for X , each having DM = {α1, . . . , αm} as support,
we have to prove that for each γ ∈ Γ, cγ

|DM
/∈ F . Observe that either

γDM ⊆ E+2M or γDM ⊆ {E;
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indeed, if γ ∈ E+M then by definition γDM ⊆ (E+M )+M = E+2M . If γ /∈ E+M ,
suppose that there exists γ̄ ∈ γDM ∩ E. Then, for some i, γ̄ = γαi and hence
γ = γ̄α−1

i ∈ γ̄DM ⊆ E+M which is excluded; then γDM ⊆ {E.
Now, if γ is such that γDM ⊆ E+2M , we have cγ

|DM
= (c1

γ)|DM
/∈ F . If γ

is such that γDM ⊆ {E, we have cγ
|DM

= (c2
γ)|DM

/∈ F . 2

Corollary 1.3.4 Let X be an M–step shift of finite type and let E be a finite
subset of Γ; if p1, p2 ∈ XE+2M are two patterns that agree on ∂+

2ME, than there
exist two extensions c1, c2 ∈ X of p1 and p2, respectively, that agree on {E.

Proof Indeed, if c̄1 and c̄2 are two configurations extending p1 and p2 re-
spectively, then they agree on ∂+

2ME. The configuration c of Proposition 1.3.3
and the configuration c̄2, coincide on {E and they are extensions of p1 and p2,
respectively. 2

1.4 Edge Shifts

A relevant class of one–dimensional subshifts of finite type, is that of edge shifts.
This class is strictly tied up the one of finite graphs. This relation allows us
to study the properties of an edge shift (possible quite complex) studying the
properties of its graph. On the other hand, each one–dimensional shift of finite
type is conjugate to an edge shift and hence they have the same invariants;
thus also in this case the properties of the shift depend on the structure of the
accepting graph.

Definition 1.4.1 Let G be a finite directed graph with edge set E . The edge
shift XG is the subshift of EZ defined by

XG := {(ez)z∈Z | t(ez) = i(ez+1) for all z ∈ Z}

where, for e ∈ E , i(e) denotes the initial vertex of e and t(e) the terminal one.

The structure of a finite graph (and hence of an edge shift) can be easily
described by a matrix, the so–called adjacency matrix of G.

More precisely, let G be a graph with vertex set V = {1, . . . , n}; the adja-
cency matrix of G is the matrix A such that Aij is the number of edges in G
with initial state i and terminal state j.

It is easily seen that the (i, j)–entry of the matrix Am (the product of A
with itself m times), is the number of paths in G with length m from i to j.

The edge shift XG is sometimes denoted as XA, where A is the adjacency
matrix of G. The fundamental role of the adjacency matrix will be clarified in
the sequel.

Concerning the edge shifts, it is easy to see that every edge shift is a 1–step
shift of finite type with set of forbidden blocks {ef | t(e) 6= i(f)}. On the other
hand, each shift of finite type is conjugate to an edge shift accepted by a suitable
graph G. Now we give an effective procedure to construct it.
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Let X be a shift of finite type X with memory M , the vertices of G are the
words of L(X) of length M and the edges are the words of L(X) of length M +1.
There is an edge named a1 . . . aMaM+1 ∈ L(X) from a1 . . . aM to a2 . . . aM+1.

a1 . . . aM a2 . . . aM+1
q

a1 . . . aMaM+1

The edge shift accepted by this graph is the (M + 1)th higher block shift of
X and is denoted by X [M+1]. Consider the function τ : X [M+1] → X defined
setting, for each c ∈ X [M+1] and each z ∈ Z, τ (c)|z equal to the first letter of
the word c|z; τ is a bijective local function and hence a conjugacy.

. . . a−1a0 . . . aM a0a1 . . . aM+1 a1a2 . . . aM+2 . . .

. . . a−1 a0 a1 . . .

The above table points out the behavior of the function τ .

1.5 Sofic Shifts

The class of sofic shifts has been introduced by Weiss in [Wei1] as the smallest
class of shifts containing the shifts of finite type and closed under factorization
(i.e. the image under a local map of a sofic shift is sofic). Equivalently, one
can see that a shift is sofic if it is the set of all labels of the bi–infinite paths
in a finite labeled graph (or finite–state automaton). In automata theory, this
corresponds to the notion of regular language. Indeed a language (i.e. a set of
finite words over a finite alphabet) is regular if it is the set of all labels of finite
paths in a labeled graph.

Definition 1.5.1 Let A be a finite alphabet; a labeled graph G is a pair (G,L),
where G is a finite graph with edge set E , and the labeling L : E → A assigns
to each edge e of G a label L(e) from A.

We recall that a finite–state automaton is a triple (A,Q, ∆) where A is a finite
alphabet,Q is a finite set whose elements are called states and ∆ : Q×A→ P(Q)
is a function defined on the Cartesian product Q×A with values in the family
of all subsets of Q. Suppose that Q̄ ∈ ∆(Q, a); this means that when the auto-
maton “is” in the state Q and “reads” the letter a, then “it can pass” to the
state Q̄. The automaton is deterministic when ∆ : Q × A → Q ∪ {∅}, that is
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the state Q̄ above (if it exists) is determined from Q and a; the automaton is
complete when ∆ : Q×A→ P(Q)\{∅}, that is for each state Q and each letter
a there is at least a state Q̄ such that Q̄ ∈ ∆(Q, a).

Clearly each general finite–state automaton determines a labeled graph set-
ting V := Q and drawing an edge labeled a from Q to Q̄ if and only if
Q̄ ∈ ∆(Q, a). Also the converse holds: given a labeled graph G with set of
vertices V , we can set Q := V and ∆(i, a) is the set of all vertices j of the graph
for which there is an edge e such that i(e) = i, t(e) = j and L(e) = a.

In the sequel we will not distinguish between a labeled graph and the related
finite–state automaton.

If ξ = . . . e−1e0e1 . . . is a configuration of the edge shift XG, define the label
of the path ξ to be

L(ξ) = . . .L(e−1)L(e0)L(e1) · · · ∈ AZ.

The set of labels of all configurations in XG is denoted by

XG := {c ∈ AZ | c = L(ξ) for some ξ ∈ XG} = L(XG).

Definition 1.5.2 A shift X ⊆ AZ is sofic if X = XG for some labeled graph G.
A presentation of a sofic shift X is a labeled graph G for which XG = X .

Obviously each edge shift is sofic. Indeed if G is a graph with edge set E ,
we can consider the identity function on E as a labeling L : E → E so that
XG = X(G,idE). Moreover, each shift of finite type is sofic. Consider the graph

G introduced in the previous section that accepts the edge shift X [M+1]; labeling
the edges of G setting L(a1 . . . aMaM+1) = a1 (that is L is the previous function
τ : X [M+1] → X), it can be easily seen that the labeled graph G so obtained is
such that X = XG .

a1 . . . aM a2 . . . aM+1 a3 . . . aM+2
j

a1

j

a2

Notice that in a graph G (or in the labeled graph G having G as support),
there can be a vertex from which no edges start or at which no edges end.
Such a vertex is called stranded. Clearly no bi–infinite paths in XG (or in XG),
involve a stranded vertex, hence the stranded vertices and the edges starting or
ending at them are inessential for the edge shift XG or for the sofic shift XG .
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Following Lind and Marcus [LinMar, Definition 2.2.9], a graph is essential if no
vertex is stranded. Removing step by step the stranded vertices of G, we get
an essential graph Ḡ that gives rise to the same edge shift. This procedure is
effective, because G has a finite number of vertices. Moreover, this “essential
form” of G is unique. This property of the edge shift XG holds true for the
sofic shift XG : the labeled graph Ḡ = (Ḡ,L|E(Ḡ)) is such that XG = XḠ (indeed
XG = L(XG) = L(XḠ) = XḠ).

If we deal only with essential graphs, it is easy to see that the language of a
sofic shift is regular.

Among the subshifts of AZ, the sofic shifts are the images under a local
function (briefly factors) of a shift of finite type. Indeed each labeling is a local
function defined on an edge shift and, on the other hand, the factor of a shift
of finite type is also the image under a local function of a suitable edge shift
(each shift of finite type being conjugate to an edge shift). This characterization
allows us to call sofic a shift X ⊆ AΓ which is factor of a shift of finite type.

1.5.1 Minimal Deterministic Presentations of a Sofic Shift

In automata theory, a finite–state automaton is deterministic if, given a state
Q and a letter a, there is at most one successive state Q̄ (determined by Q and
a). This corresponds, in the finite graph representing the automata, to the fact
that from a vertex i (the state) there is at most one edge carrying the label a.
Although this restrictive condition, one can prove that for each regular language
there is a deterministic automaton accepting it. This property holds true for
sofic shifts: each sofic shift admits a deterministic presentation. A minimal
deterministic presentation of a sofic shift is a deterministic presentation with
the least possible number of vertices. We will see that the irreducibility of the
sofic shift implies the existence of only one (up to labeled graphs isomorphism)
minimal deterministic presentation of it.

Definition 1.5.3 A labeled graph G = (G,L) is deterministic if, for each vertex
i of G, the edges starting at i carry different labels.

Proposition 1.5.4 [LinMar, Theorem 3.3.2] Every sofic shift has a determin-
istic presentation.

Definition 1.5.5 A minimal deterministic presentation of a sofic shift X is a
deterministic presentation of X having the least number of vertices among all
deterministic presentations of X .

One can prove that any two minimal deterministic presentations of an ir-
reducible sofic shift are isomorphic as labeled graphs (see [LinMar, Theorem
3.3.18]), so that one can speak of the minimal deterministic presentation of an
irreducible sofic shift.

In the following propositions, we clarify the relation between the irreducibil-
ity of a sofic (or edge) shift and the strong connectedness of its presentations.
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On the other hand, it can be easily seen that the strong connectedness of G
is equivalent to the following property of the n × n adjacency matrix A of G:
for each i, j ∈ {1, . . . , n}, there exists an m ∈ N such that the (i, j)–entry of
Am is not zero.

Proposition 1.5.6 [LinMar, Lemma 3.3.10] Let X be an irreducible sofic shift
and G = (G,L) the minimal deterministic presentation of X. Then G is a
strongly connected graph.

Proposition 1.5.7 [LinMar, Proposition 2.2.14] If G is a strongly connected
graph, then the edge shift XG is irreducible.

As a consequence of this two facts, we have the following corollary that will
be useful in the sequel.

Corollary 1.5.8 Let X be an irreducible sofic shift and G = (G,L) the minimal
deterministic presentation of X. Then the edge shift XG is irreducible.

As we have seen, a shift is sofic if and only if it is the image under a local
function of a shift of finite type. From the previous result it follows a stronger
property.

Corollary 1.5.9 A shift is an irreducible sofic shift if and only if it is the image
under a local function of an irreducible shift of finite type.

Notice that, in general, the image under a local function of an irreducible
shift is also irreducible.

1.6 Decision Problems

Two natural decision problems arising in the theory of cellular automata con-
cern the existence of effective procedures to establish the surjectivity and the
injectivity of the transition function. For Euclidean cellular automata over full
shifts, Amoroso and Patt have shown in [AP] that there are algorithms to decide
surjectivity and injectivity of local maps for one–dimensional cellular automata
(see also [Mu]). On the other hand Kari has shown in [K1] and [K2] that both
the injectivity and the surjectivity problems are undecidable for Euclidean cel-
lular automata of dimension at least two.

In this section we extend the problem to cellular automata over subshifts
of finite type of AZ, giving in both cases a positive answer to the existence of
decision procedures.

1.6.1 A Decision Procedure for Surjectivity

If X is a shift of finite type, the problem of deciding whether or not a function
τ : X → X given in terms of local map is surjective, is decidable. In fact we
can decide if a local function τ : X → AZ is such that τ (X) ⊆ X .
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Consider a transition function τ : X → AΓ defined by a local rule δ; suppose
(in this assumption there is no loose of generality) that X has memory 2M and
that τ is M–local. The function τ can be represented in this way. Consider the
presentation G of the edge shift X [2M+1] constructed in Section 1.4, the label of
the edge u a v ∈ L(X) (where u, v are two words in the language of X of length
M), is the letter δ(u a v), that is the letter to write under a in the output tape
in correspondence with u a v:

u1 . . . uM a v1 . . . vM−1 u2 . . . uM a v1 . . . vM
q

δ(u1 . . . uM a v1 . . . vM )

In this way we get a labeled graph G which is the presentation of the (sofic)
shift τ (X). On this presentation we can check if any forbidden block of X
appears in τ (X); if none of them appears, we have that τ : X → X and hence
we deal with a genuine cellular automaton.

To see whether or not the function τ is surjective, first suppose that the shift
X is irreducible. Hence it can be easily seen that also τ(X) is irreducible and
hence we can construct the minimal deterministic presentation of X and τ (X),
respectively. These two presentations are isomorphic (as labeled graphs) if and
only if X = τ (X).

In the general case, Lind and Marcus give in [LinMar, Theorem 3.4.13] an
effective procedure to decide whether two labeled graph generate the same shifts.

1.6.2 A Decision Procedure for Injectivity

If X is a shift of finite type, the problem of deciding whether or not a function
τ : X → X given in terms of local map is injective, is decidable.

As we have seen in the previous subsection, we can construct a labeled graph
G which is the presentation of the shift τ(X). From G, we construct another
graph G∗G. The vertices of it are the couples (i, j) where i, j ∈ V(G) are vertices

of G. There is an edge (i, j)
a−→ (h, k) labeled a, if in G there are two edges in

E(G) labeled a of kind:

i
a−→ h and j

a−→ k.

Notice that, in general, XG = XG∗G and hence, in our case, G∗G is a presentation
of τ (X).

A vertex (i, j) of G ∗ G is diagonal if i = j. Now, notice that the function τ
is non–injective if and only if on the graph G there are two different bi–infinite
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paths with the same label. This fact is equivalent to the existence of a bi–infinite
path on G ∗ G that involves a non–diagonal vertex. Hence, starting from the
graph G ∗ G we construct an essential graph that accepts the same bi–infinite
paths . Now it suffices to check, on this latter graph, if some non–diagonal
vertex is involved.

1.7 Entropy

The entropy of a shift is the first invariant we deal with in the present work. It
is a concept introduced by Shannon [Sha] in information theory that involves
probabilistic concepts. Later Adler, Konheim and McAndrew [AdlKoM] intro-
duced the topological entropy for dynamical systems. The entropy we deal with
is a special case of topological entropy and is independent on probabilities.

In this section we give the general definition of entropy for a generic shift.
We will see that this definition involves the existence of a suitable sequence of
sets that, in the case of non–exponential growth of the group can be taken as
balls centered at 1 and with increasing radius.

Then, following Lind and Marcus [LinMar, Chapter 4], we recall its basic
properties in the one–dimensional case, also stating the principal result of the
Perron–Frobenius theory to compute it.

Let (En)n≥1 a sequence of subsets of Γ such that
⋃

n∈N
En = Γ and

lim
n→∞

|∂MEn|
|En|

= 0; (1.5)

if X ⊆ AΓ is a shift, the entropy of X respect to (En)n is defined as

ent(X) := lim sup
n→∞

log |XEn
|

|En|
.

Condition (1.5) will be necessary in the proof of Theorem 1.7.1 and other as-
pects of its importance will be clarified in Chapter 3. Notice that (1.5) implies

limn→∞
|∂+

M
En|

|En| = 0 and limn→∞
|∂−

M
En|

|En| = 0; moreover it is equivalent to the

condition limn→∞
|∂En|
|En| = 0.

If X is a subshift of AZ, we choose as En the interval [1, n] (or equivalently,
in order to have

⋃

n∈N
En = Γ, the interval [−n, n]), so that XEn

is the set of
the words of X of length n. One can prove that in this one–dimensional case,
the above maximum limit is a limit. Indeed |XEn+m

| ≤ |XEn
||XEm

| and hence
setting an := log |XEn

|, we have that the sequence (an)n∈N is sub–additive,
namely an+m ≤ an + am. We want to prove that

lim
n→∞

an

n
= inf

n≥1

an

n
.
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Fix m ≥ 1; then there exist q, r ∈ N such that n = mq + r and we have
an ≤ qam + ar so that an

n
≤ qam

n
+ ar

n
. Now

lim
n→∞

(qam

n
+

ar

n

)

= lim
n→∞

( q

n
am +

ar

n

)

=
am

m

and then lim supn→∞
an

n
≤ am

m
. Hence

lim sup
n→∞

an

n
≤ inf

m≥1

am

m
≤ lim inf

n→∞

an

n
.

In general, if Γ is a group of non–exponential growth, we choose as En

a suitable disk centered at 1 ∈ Γ; indeed, setting ah = |Dh|, we have that
limh→∞

h
√

ah = 1 hence lim infh→∞
ah+1

ah
= 1. From this fact it follows that for

a suitable sequence (ahk
)k we have that limk→∞

ahk+1

ahk

= 1. Hence

lim inf
k→∞

ahk+1

ahk−1
= lim

k→∞

ahk+1

ahk

lim inf
k→∞

ahk

ahk−1
= 1.

Then, for a suitable sequence (ahkn
)n we have limn→∞

ahkn
+1

ahkn
−1

= 1, that is we

find a sequence of disks En := Dhkn
such that

lim
n→∞

|E+
n |

|E−
n |

= 1.

Hence |∂En|
|En| =

|E+
n \E−

n |
|En| ≤ |E+

n \E−

n |

|E−
n |

=
|E+

n |

|E−
n |
− 1 −→n→∞ 0.

In the following theorem we prove that the entropy is an invariant of the
shift.

Theorem 1.7.1 Let X be a shift and τ : X → AΓ a local function. Then
ent(τ (X)) ≤ ent(X) (that is, the entropy is invariant under conjugacy).

Proof Let τ be M–local and let Y := τ (X); we have that the function
τ

E
+M
n

: X
E

+M
n
→ YEn

is surjective and hence

|YEn
| ≤ |XE

+M
n
| ≤ |XEn

||X∂
+

M
En
| ≤ |XEn

||A∂
+

M
En |.

From the previous inequalities we have

log |YEn
|

|En|
≤ log |XEn

|
|En|

+
|∂+

MEn| log |A|
|En|

and hence, taking the maximum limit, ent(Y ) ≤ ent(X). 2

Now we see how to compute the entropy for an irreducible sofic subshift of
AZ.
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Let X be a sofic shift; given a presentation G = (G,L) of X , there is an
effective procedure to construct, from G a deterministic presentation Ḡ of X .
This procedure is called subset construction. The vertices of Ḡ are the non–
empty subsets of the vertices of G and there is an edge in Ḡ labeled a from I to
J if J is the set of terminal vertices of edges in G starting at some vertex in I
and labeled a.

Using combinatorial methods, it is easy to see that the entropy of a sofic shift
X coincides with the entropy of the edge shift XG of a deterministic presentation
of X , as stated in the following theorem.

Proposition 1.7.2 [LinMar, Proposition 4.1.13] Let X be a sofic shift and let
G = (G,L) be a deterministic presentation of X. Then ent(X) = ent(XG).

Given a finite graph G, it is obvious that the adjacency matrix A of G is non–
negative and, by the Perron–Frobenius Theorem, has a maximum eigenvalue
λA > 0, the so–called Perron eigenvalue of A. This eigenvalue gives us a way
to compute the entropy of an irreducible sofic shift, as stated in the following
theorem.

Proposition 1.7.3 [LinMar, Theorem 4.3.3] Let X be an irreducible sofic shift
and let G = (G,L) be a strongly connected deterministic presentation of X.
Then ent(X) = log(λA).

If X and G are as in the above theorem, it is clear that the graph G is a
strongly connected deterministic presentation of XG. Hence we have another
proof of Proposition 1.7.2 (as far as irreducible sofic shifts are concerned).

In fact, in [LinMar, Section 4.4] the above results are used to give a general
method of computing the entropy of a generic sofic shift.

A fundamental result given in that section whose proof is based on the
proposition above, is the following theorem.

Theorem 1.7.4 [LinMar, Corollary 4.4.9] If X is an irreducible sofic shift and
Y is a proper subshift of X, then ent(Y ) < ent(X).

In Chapter 3, we will prove a theorem of this kind in a much more general
setting.
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2. Surjunctivity and

Density of Periodic

Configurations

A selfmapping τ : X → X on a set X is surjunctive if it is either non–injective or
surjective. In other words a function is surjunctive if the implication injective⇒
surjective holds. In this chapter, we consider the surjunctivity of the transition
function in a general cellular automaton over a group Γ.

A configuration of a shift is periodic if its Γ–orbit is finite; after proving in
Section 2.2 some generalities about periodic configurations, we recall in Section
2.3 the class of residually finite groups, proving that a group Γ is residually
finite if and only if the periodic configurations are dense in AΓ.

Hence if Γ is a residually finite group, a transition function τ of a cellular
automaton on AΓ is surjunctive. In fact, in Section 2.4 we prove that if the pe-
riodic configurations of a subshift X ⊆ AΓ are dense, then a transition function
on X is surjunctive. We also prove that the density of the periodic configura-
tions is an invariant of the shifts, as is the number of the periodic configuration
with a fixed period.

The remaining part of the chapter is devoted to establish for which class of
shifts the periodic configurations are dense. We prove in Section 2.5 the density
of the periodic configurations for an irreducible subshift of finite type of AZ and
hence, a sofic shift being the image under a local map of a shift of finite type,
the density of the periodic configurations for an irreducible sofic subshift of AZ.
We see that these results cannot be generalized to higher dimensions.

In Section 2.6 we introduce the notion of a group shift and (as a conse-
quence of a more general theorem in [KitS2]), we prove that for this class of
shifts the periodic configurations are dense. Finally, we list some well–known
decision problems for Euclidean shifts proving that in the special case of a one–
dimensional shift they can be solved; more generally they can be solved for the
class of group shifts using some results due to Wang [Wa] and Kitchens and
Schmidt [KitS1].
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2.1 Surjunctivity

In this section we investigate under which hypotheses an injective selfmapping
of a set is also surjective, that is we study the class of selfmappings that are
either surjective or non–injective. This property is the so–called surjunctivity
and is due to Gottschalk (see [Gott]). Here we prove a sufficient condition for
which a selfmapping of a topological space is surjunctive.

Definition 2.1.1 Let X be a set and τ : X → X a function; τ is surjunctive if
it is either surjective or non–injective.

The simplest example is that of a finite set X and a selfmapping τ : X → X ;
clearly every function of this kind is surjunctive; in other words, for a selfmap-
ping of X we have injectivity ⇒ surjectivity. Another example of surjunctive
function is given by an endomorphism of a finite–dimensional vector space and
by a regular selfmapping of a complex algebraic variety (see [Ax]); many others
examples are given in [G]. Moreover, Richardson proves in [R] that each transi-
tion function of an Euclidean cellular automaton on the full shift is surjunctive.

Lemma 2.1.2 Let X be a topological space, let τ : X → X be a closed function
and let (Xi)i∈I be a family of subsets of X such that

• X =
⋃

i∈I Xi

• τ (Xi) ⊆ Xi

• τ |Xi
: Xi → Xi is surjunctive

then τ is surjunctive.

Proof If τ is injective then, for every i ∈ I , the restriction τ |Xi
is also injec-

tive; by the hypotheses we have τ (Xi) = Xi and hence
⋃

i∈I Xi =
⋃

i∈I τ(Xi) =

τ(
⋃

i∈I Xi) ⊆ τ (
⋃

i∈I Xi) = τ (X). Then X =
⋃

i∈I Xi ⊆ τ (X), and τ being
closed we have X ⊆ τ (X). 2

2.2 Periodic Configurations of a Shift

In this section we point out the fundamental subset of the periodic configura-
tions of AΓ. In the Euclidean case, we imagine that a periodic configuration is
obtained “repeating” in each direction the same finite block. Hence translating
such a configuration, we get only a finite number of new configurations; this
property leads us to define periodic a configuration whose Γ–orbit is finite.

Definition 2.2.1 A configuration c ∈ AΓ is n–periodic if its orbit cΓ = {cγ |
γ ∈ Γ} consists of n elements; in this case n is the period of c. A configuration
is periodic if it is n–periodic for some n ∈ N.
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From now on, Pn denotes the set of the periodic configurations whose period
divides n and Cp is the set

⋃

n≥1 Pn of all the periodic configurations.

In general, a configuration c ∈ AΓ is constant on the right cosets of its own
stabilizer Hc (i.e. the subgroup of all h ∈ Γ such that ch = c). Indeed, if h ∈ Hc,
we have

c|hγ = (ch)|γ = c|γ .

Hence, if c is periodic, c is constant on the right cosets of a subgroup of finite
index. Now we prove that this property characterizes periodic configurations.

Proposition 2.2.2 A configuration c ∈ AΓ belongs to Pn if and only if there
exists a subgroup H of Γ with finite index dividing n, such that c is constant on
the right cosets of H.

Proof Let c be m–periodic with m|n; by definition, the stabilizer Hc has
finite index m and c is constant on the right cosets of Hc. Conversely, if H has
finite index dividing n and c is constant on the right cosets of H , we prove that
H ⊆ Hc. Indeed, if h ∈ H and γ ∈ Γ we have

(ch)|γ = c|hγ = c|γ

and hence ch = c so that h ∈ Hc. H being of finite index, Hc also has finite
index and the index of Hc divides that of H so that it divides n. Hence c ∈ Pn.
2

The following result is well known (see, for example, [Rot]).

Lemma 2.2.3 Let Γ be a finitely generated group; for every n ∈ N there are
finitely many subgroups of Γ of finite index n.

Proof If H ⊆ Γ has finite index n, fix a set {γ1, . . . , γn} of right coset
representatives of H and consider the function Φ : Γ → Sn from Γ to the
symmetric group on n elements defined by:

Φγ(γi) = γj

where Hγiγ = Hγj , that is

Hγiγ = HΦγ(γi).

This function is a group homomorphism, indeed from the above equality

Hγiγγ̄ = HΦγ(γi)γ̄ = HΦγ̄(Φγ(γi));

on the other hand we have, by definition,

Hγiγγ̄ = HΦγγ̄(γi)
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and then Φγ̄ ◦ Φγ = Φγγ̄ .
Notice that ker(Φ) ⊆ H . Indeed, if Φγ = idSn

, then Φγ(1) = 1 that is
Hγ = H .

Now, the subgroups of Γ containing ker(Φ) are as many as the subgroups of
Γ/ ker(Φ) which is a finite group.

On the other hand, there are finitely many homomorphisms from Γ to Sn

because such an homomorphism is completely determined by its value on the
(finitely many) generators of Γ. 2

Corollary 2.2.4 The set Pn is finite.

Proof By Proposition 2.2.2, a configuration c ∈ X belongs to Pn(X) if
and only if it is constant on the right cosets of a subgroup H with finite index
dividing n. By Lemma 2.2.3, these subgroups H are in finite number. For a
fixed H , there are finitely many functions from the right cosets of H to A, that
is |A|[Γ:H]. 2

2.3 Residually Finite Groups

In this section we deal with the basic properties of residually finite groups. We
will see that the (finitely generated) residually finite groups are precisely those
groups such that for each finite set A, the set Cp of periodic configurations is
dense in AΓ.

Definition 2.3.1 A group Γ is residually finite if for every γ ∈ Γ with γ 6= 1,
there exists H ≤ Γ of finite index such that γ /∈ H .

In other words, a group if residually finite if

⋂

H≤Γ

[Γ:H]<∞

H = {1}.

Examples of residually finite groups are the groups Zn (n = 1, 2, . . . ) and, in
general, all finitely generated abelian groups. The free group Fn of rank n is an
example of residually finite, non–abelian group. The additive group of rational
numbers Q is an example of abelian, non–finitely generated and non–residually
finite group.

The proofs of the following Lemma 2.3.2 and Theorem 2.3.3 are due to T.
Ceccherini–Silberstein and A. Mach̀ı.

Lemma 2.3.2 If Γ is a residually finite group and F = {γ1, . . . , γn} is a finite
subset of Γ with 1 /∈ F , then there exists a subgroup HF ≤ Γ of finite index such
that γi /∈ HF and HF γi 6= HF γj (if i 6= j).
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Proof For every i = 1, . . . , n let Hi be a subgroup of finite index such
that γi /∈ Hi and let Hij be a subgroup of finite index such that γiγ

−1
j /∈ Hij

(where i 6= j). The intersection HF of all these subgroups also has finite index;
moreover γi /∈ HF (for every i) and γiγ

−1
j /∈ HF (i 6= j). 2

In particular, the set F of this Lemma can be extended to a set of right coset
representatives of the subgroup HF .

Theorem 2.3.3 Let Γ be a finitely generated group and A a finite alphabet. If
Γ is residually finite, then the set Cp of periodic configurations is dense in AΓ.

Proof Suppose that Γ is residually finite; we have to prove that

AΓ = Cp.

Fix c ∈ AΓ and let HDn
be the subgroup of finite index whose existence is

guaranteed by Lemma 2.3.2 with F := Dn\{1}, and let D be a set of right coset
representatives of HDn

containing Dn. If γ ∈ Γ and γ = hd with h ∈ HDn
and

d ∈ D, define a configuration cn such that (cn)|γ = c|d. This configuration being
constant on the right cosets of HDn

, is periodic. Moreover c and cn agree on
Dn and hence dist(c, cn) < 1

n+1 . Then the sequence of periodic configurations
(cn)n converges to c. 2

The same result is also given by Yukita [Y]. The converse of this theorem
also holds.

Theorem 2.3.4 Let Γ be a finitely generated group and A a finite alphabet.
Then Γ is residually finite if and only if the set Cp of periodic configurations is
dense in AΓ.

Proof If Γ is not residually finite, let 1 6= γ ∈ Γ be an element belonging
to all the subgroups of Γ of finite index; in particular γ ∈ ⋂

c∈Cp
Hc so that,

for c ∈ Cp, cγ = c and hence c|γ = c|1. Let c̄ ∈ AΓ such that c̄|γ 6= c̄|1, then
for each n such that γ ∈ Dn and each c ∈ Cp we have c̄|Dn

6= c|Dn
. Hence

dist(c̄, c) ≥ 1
n+1 and c̄ /∈ Cp. 2

2.4 Density of Periodic Configurations

In this section we prove that the density of the periodic configuration is a suffi-
cient (but not necessary) condition for the surjunctivity of the transition func-
tion in a cellular automaton. By Theorem 2.3.4, we have that from the residual
finiteness of Γ it follows that a transition function τ : AΓ → AΓ on a full shift
surjunctive. The groups Zn being residually finite, we have that this result
generalizes Richardson’s theorem.

Theorem 2.4.1 Let X ⊆ AΓ be a shift whose set Cp(X) := Cp ∩X of periodic
configurations of X is dense in X. Then every transition function τ : X → X
is surjunctive.
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Proof By Corollary 2.2.4, we have that the set Pn(X) := Pn ∩X is finite;
now we prove that if τ is local then τ (Pn(X)) ⊆ Pn(X). Indeed if c ∈ Pn(X)
then Hc ⊆ Hτ(c) because if h ∈ Hc

(τ (c))h = τ(ch) = τ (c).

Hence, the index of Hc being a divisor of n, the index of Hτ(c) also divides n
and τ (c) ∈ Pn(X).

By Lemma 2.1.2, τ is surjunctive. 2

Corollary 2.4.2 If Γ is a residually finite group and τ : AΓ → AΓ is a transi-
tion function, then τ is surjunctive.

In general, the implication injective ⇒ surjective of Theorem 2.4.1 is not
invertible; the standard example is the following. Let A = {0, 1} and Γ = Z; let
τ be the local function given by the local rule δ : A3 → A such that

δ(a1, a2, a3) = a1 + a3 (mod2).

Then τ is surjective and not injective. Indeed if (az)z∈Z is a configuration in
AZ, define a pre–image of it in this way:







b0 = 0
b1 = 0
bn+1 = an − bn−2 (mod2) if n ≥ 2
b−n = a−n+1 − b−n+2 (mod2) if n ≤ 0

that is

. . . a−2 − a0 a−1 a0 0 0 a1 a2 a3 − a1 a4 − a2 . . .

. . . a−3 a−2 a−1 a0 a1 a2 a3 a4 a5 . . .
.

With b0 = 1 = b1 we can construct a pre–image in an analogous way.

Proposition 2.4.3 If X ⊆ AΓ is a shift such that Cp(X) is dense in X and
τ : X → AΓ is a local function, then Cp(τ (X)) is dense in τ(X).

Proof Set Y := τ (X); we first prove that τ (Cp(X)) ⊆ Cp(Y ). Indeed if
c ∈ X the stabilizer Hc is contained in Hτ(c) and if Hc has finite index, then

also Hτ(c) has finite index. Then Cp(Y ) ⊇ τ (Cp(X)) ⊇ τ(Cp(X)) = τ(X) = Y .
2

Corollary 2.4.4 The density of the periodic configurations is an invariant of
the shift.

In general, given a shift X , denote with Qn(X) the set of the periodic con-
figurations of X with period n and let qn(X) be the cardinality of Qn(X). We
have that qn(X) is an invariant of X . Indeed, suppose that τ : X → Y is a
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conjugacy and let c ∈ Qn(X). We prove that Hc = Hτ(c); as we have already

seen, Hc ⊆ Hτ(c). If h ∈ Hτ(c), we have τ (ch) = τ (c)h = τ (c); τ being injective,

we have ch = c.
From this fact it is clear that also the number pn(X) (that is, the cardinality

of Pn(X)), is an invariant of X .

2.5 Periodic Configurations of Euclidean Shifts

In this section we concentrate our attention on the density of the periodic con-
figurations for a Euclidean shift. In the one–dimensional case we prove this
density for the irreducible sofic shifts. The situation in the two–dimensional
case is deeply different: there are counterexamples of irreducible shifts of fi-
nite type for which the set Cp is not dense. At the end of the section also the
notion of mixing shift is given and this property is strictly stronger than irre-
ducibility. Nevertheless, Weiss have proved in [Wei2]) the existence of mixing
two–dimensional shifts of finite type X and of local functions τ : X → X which
are injective and not surjective.

Proposition 2.5.1 If X ⊆ AZ is an irreducible shift of finite type, then the set
Cp(X) of periodic configurations of X is dense in X.

Proof Suppose that X has memory M ; let c ∈ X and let un := c|[−n,n]. Fix
a ∈ L(X) with |a| = M ; X being irreducible, there exist two words vn, wn ∈
L(X) such that

a vnunwn a ∈ L(X).

Let cn be the periodic configuration

. . . a vnunwn a vnunwn a · · · = a vnunwn;

by Proposition 1.3.2, cn ∈ X . Moreover cn|[−n,n] = c|[−n,n] and hence limn→∞ cn

= c. 2

Corollary 2.5.2 If X ⊆ AZ is an irreducible sofic shift, then the set Cp(X) of
periodic configurations of X is dense in X.

Proof By Corollary 1.5.9, we have that every irreducible sofic shift is the
image under a local map of an irreducible shift of finite type. Hence Propositions
2.5.1 and 2.4.3 apply. 2

Counterexample 2.5.3 We now define a reducible shift X ⊆ AZ which is of
finite type but whose set Cp(X) is not dense.

Let A = {0, 1} and let X be the shift of finite type with set of forbidden
blocks {01}. Then the elements of X are the configurations 0̄, 1̄ constant in 0
and 1 and the configurations of the type . . . 1111110000000 . . . ; clearly X is not
irreducible because there are no words u ∈ L(X) such that 0u1 ∈ L(X). In this
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shift we have Cp(X) = {0̄, 1̄} which is closed (and so not dense) in X . Notice
that, for this shift, a transition function is injective if and only if it is surjective
and hence surjunctivity holds even if the set of periodic configurations is not
dense. 2

Observe that, if X is a subshift of AZ, it is always possible to define an irre-
ducible subshift X2 of AZ

2

consisting of copies of X ; more precisely, a configu-
ration c belongs to X2 if and only if each horizontal line of c (i.e. the bi–infinite
word (c|(z,t))z∈Z, for each fixed t ∈ Z), belongs to X . The irreducibility of X2

can be easily seen: given two blocks of the language, it suffices to translate one
of them in the vertical direction in such a way that the supports are far enough.
Moreover, it is obvious that the shift X2 is of finite type if X is.

Counterexample 2.5.4 We show, using the above example, that Proposition
2.5.1 no longer holds for the irreducible shifts of finite type of AZ

2

.

Let X2 be the shift over the alphabet A = {0, 1} generated by the shift X of
the previous counterexample; then X2 is irreducible and of finite type. The set
Cp(X

2) is in this case contained in the set of all those configurations assuming
constant value at each horizontal line. It is then clear that a configuration
assuming the value 1 at (0, 0) and 0 at (1, 0), cannot be approximated with any
sequence of periodic configurations. 2

Definition 2.5.5 A shift X ⊆ AΓ is mixing if for each pair of blocks p1 ∈ XE

and p2 ∈ XF , there exists an M > 0 such that for each γ /∈ DM there is a
configuration c ∈ X such that c|E = p1 and c|γF = p2 (notice that if M is big
enough, then E ∩ γF = ∅).

In other words, a shift X is mixing if and only if for each pair of open sets
U, V ⊆ X there is an M > 0 such that U ∩ V γ 6= ∅ for all γ /∈ DM . Indeed,
given a pattern p with support E, consider the set U := {c ∈ X | c|E = p}; U
is open because if E = {γ1, . . . , γn} then U =

⋂n
i=1{c ∈ X | c|γi

= p|γi
} which

is a finite intersection of open sets.

Even if we strengthen the irreducibility hypothesis by assuming that the
shift is mixing, there are examples of a mixing subshifts of finite type X and
of local functions τ : X → X which are injective and not surjective (see [Wei2,
Section 4]).

2.6 Group Shifts

If the alphabet is a finite group G, the full shift GΓ is also a group with product
defined as in the direct product of infinitely many copies of G. Endowed with
this operation the space GΓ is a compact metric topological group.

Definition 2.6.1 If G is a finite group, a subset X ⊆ GΓ is a group shift if is
a subshift and a subgroup of GΓ.
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Clearly a group shift is also a compact (metric) group. Hence it can be seen
as an example of dynamical system (X, Γ), where X is a compact group and Γ
is a subgroup of the group Aut(X) of the automorphisms of X which are also
continuous. Indeed the action of Γ defines a subgroup of Aut(X): for a fixed
γ ∈ Γ, the bijective function c 7→ cγ from X to X is, as we have seen, continuous
and it is also a group homomorphism because

(c1c2)
γ
|α = (c1c2)|γα = c1|γαc2|γα = c1

γ
|αc2

γ
|α = (c1

γc2
γ)|α.

If (X, Γ) is a dynamical system, the group Γ acts expansively on X if there
exists a neighborhood U of the identity in X such that

⋂

γ∈Γ γ(U) = {1X}; the
set of Γ–periodic points is the set of points x ∈ X such that {γ(x) | γ ∈ Γ} is
finite. Clearly it coincides with the set Cp(X) if X is a group shift.

In the hypotheses that X is metrizable and Γ is an infinite and finitely gen-
erated abelian group, Kitchens and Schmidt prove in [KitS2, Theorem 3.2] that
if Γ acts expansively on X then (X, Γ) satisfies the descending chain condition
(i.e. each nested decreasing sequence of closed Γ–invariant subgroups is finite),
if and only if (X, Γ) is conjugate to a dynamical system (Y, Γ), where Y is a
group subshift of GΓ and G is a compact Lie group. Notice that, in this con-
text, a conjugation is a continuous groups isomorphism that commutes with the
Γ–action.

A consequence of this fact is the following theorem.

Theorem 2.6.2 [KitS2, Corollary 7.4] Let X be a compact group and Γ ≤
Aut(X) a finitely generated, abelian group; if Γ acts expansively on X then the
set of Γ–periodic points is dense in X.

The following result gives an answer to the problems arising from Coun-
terexample 2.5.4.

Corollary 2.6.3 Let G be a finite group and let Γ be an abelian group; if X ≤
GΓ is a group shift, then the set Cp(X) of periodic configurations of X is dense
in X.

Proof We have to prove that the group Γ acts expansively on GΓ; indeed
the identity in X is the configuration c1 assuming the constant value 1G, where
1G is the identity of G. Consider the neighborhood X1 of c1 consisting of all
those configurations of X assuming the value 1G at 1Γ. Obviously

⋂

γ∈Γ{cγ |
c ∈ X1} =

⋂

γ∈Γ{c ∈ X | c|γ = 1G} = {c1}. 2

In [KitS2] is also proved that if X is a group shift, then X is of finite type.
Indeed the following theorem is proved.

Theorem 2.6.4 [KitS2, Corollary 3.9] Let G be a compact Lie group. If X ≤
GΓ is a closed Γ–invariant subgroup there exists a finite set D ⊆ Γ such that

X = {c ∈ GΓ | cγ
|D ∈ H for every γ ∈ Γ},

where H is a closed subgroup of GD.
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Hence if G is finite and X is a group shift, the set GD\H is finite and is a set
of forbidden blocks for X . Although this fact, X is not necessarily irreducible.
For example, consider in (Z/2Z)Z the group shift {0̄, 1̄, 01, 10}.

Notice that an abelian, finitely generated group Γ is also residually finite; we
have another proof of this fact fixing a finite group G and applying Corollary
2.6.3 to the group shift GΓ. By Theorem 2.3.4 we have that Γ is residually
finite.

2.6.1 Decision Problems for Group Shifts

Now we list some other decision problems arising in the case of Euclidean sub-
shifts of finite type.

• The tiling problem: given a finite list F of forbidden blocks is XF empty
or non–empty? In fact the tiling problem is an equivalent formulation of
the domino problem, proposed by Wang [Wa].

• A problem strictly related with this latter is the following: given a finite
list F of forbidden blocks, is there a periodic configuration in XF?

• Given a finite list F of forbidden blocks, are the periodic configurations
dense in XF?

• The extension problem: given a finite list F of forbidden blocks and given
an allowable block (that is a block in which does not appear any forbidden
block), is there a configuration in XF in which it appears? Clearly a
positive answer to the extension problem would imply a positive answer
to the tiling problem.

Now we prove that the answers for subshifts of finite type of AZ are all
positive: there are algorithms to decide, the tiling and the extension problems
and there is an algorithm to decide whether or not the periodic configurations
are dense in X . In order to see the first two algorithms, consider, more generally,
a sofic shift. If G is a labeled graph G accepting X (and we may assume that G
is essential), it can be easily seen that X is non–empty if and only if it exists
a cycle on the graph. Hence the shift is non–empty if and only if it contains a
periodic configuration. On the other hand, the language of X is the language
accepted by G (G being essential); hence an allowable word is a word of the
language if and only if it is accepted by G.

To establish the density of the periodic configurations, suppose that X is
of finite type with memory M ; one has that Cp(X) is dense in X if and only
if Cp(X

[M+1]) is dense in X [M+1]. The shift X [M+1] an edge shift accepted
by the graph G constructed in Section 1.5 and hence the set Cp(X

[M+1]) is
dense in X [M ] if and only if each edge of G is contained in a strictly connected
component of G, that is if the graph G has no edges connecting two different
connected components.
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For the subshifts of finite type of AZ
2

the answers are quite different; in this
setting Berger proved in [B] the existence of a non–empty shift of finite type
containing no periodic configurations and the undecidability of the tiling prob-
lem. Sufficient conditions to the decidability of tiling and extension problems
are the following.

Theorem 2.6.5 (Wang [Wa]) If every non–empty subshift of finite type of

AZ
2

contains a periodic configuration then there is an algorithm to decide the
tiling problem.

Theorem 2.6.6 (Kitchens and Schmidt [KitS1]) If every subshift of finite

type of AZ
2

has dense periodic configurations then there is an algorithm to decide
the extension problem.

As a consequence of these facts, we have from Corollary 2.6.3 that if X ≤ GZ
2

is a group shift, then the tiling and extension problems are decidable for X .
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3. The Moore–Myhill

Property

For Euclidean cellular automata, Moore [Moo] has given a sufficient condition
for the existence of the so–called Garden of Eden (GOE) patterns, that is those
patterns that cannot be reached at time t from another configuration starting
at time t − 1 and hence can only appear at time t = 0. Moore’s condition
(i.e. the existence of mutually erasable patterns – a sort of non–injectivity of
the transition function on the “finite” configurations) was also proved to be
necessary by Myhill [My]. This equivalence between “local injectivity” and
“local surjectivity” of the transition function is the classical well–known Garden
of Eden theorem.

In this chapter, we consider generalizations of the Moore’s property and
Myhill’s property to a generic shift. In details, the GOE–theorem has been
proved by Mach̀ı and Mignosi [MaMi] more generally for cellular automata in
which the space of configurations is the whole A–shift AΓ and the group Γ
has non–exponential growth; more recently it has been proved by Ceccherini–
Silberstein, Mach̀ı and Scarabotti [CeMaSca] for the wider class of the amenable
groups.

Instead of the non–existence of mutually erasable patterns, we deal with
the notion of pre–injectivity (a function τ : X ⊆ AΓ → AΓ is pre–injective if
whenever two configurations c, c̄ ∈ X differ only on a finite non–empty subset
of Γ, then τ(c) 6= τ(c̄)); this notion has been introduced by Gromov in [G].
In fact, we prove in Section 3.1 that these two properties are equivalent for
local functions defined on the full shift, but in the case of proper subshifts the
former may be meaningless. On the other hand, we give a proof of the fact that
the non–existence of GOE patterns is equivalent to the non–existence of GOE
configurations, that is to the surjectivity of the transition function. Hence, in
this language, the GOE theorem states that τ is surjective if and only if it is pre–
injective. We call Moore’s property the implication surjective ⇒ pre–injective
and Myhill’s property the inverse one.
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In Section 3.2, we recall the notion of an amenable group. We give the more
useful characterization of amenability in terms of Følner’s sequences. It will
follow from Section 1.7 that, if the group Γ has non–exponential growth, the
Følner’s sequence can be taken as a suitable sequence of disks centered at 1 ∈ Γ.

Concerning one–dimensional shifts, in Section 3.3 we see that from the works
of Hedlund [H] and Coven and Paul [CovP] it follows that the Moore–Myhill
(MM) property holds for irreducible shifts of finite type of AZ. Moreover, using
this result we prove that Myhill’s property holds for irreducible sofic shifts of
AZ. On the other hand, we give a counterexample of an irreducible sofic shift
X ⊆ AZ but not of finite type for which Moore’s property does not hold.

Concerning general cellular automata over amenable groups, we see in Sec-
tion 3.4 that from a result of Gromov [G] in a more general framework, it follows
that the MM–property holds for shifts of bounded propagation contained in AΓ.

In Section 3.5, we generalize this result showing that the MM–property holds
for strongly irreducible shifts of finite type of AΓ (and we also show that strong
irreducibility together with the finite type condition is strictly weaker that the
bounded propagation property).

The main difference between irreducibility and strong irreducibility is easily
seen in the one–dimensional case. Here the former property states that given
any two words u, v in the language of a shift, there exists a third word w such
that the concatenation uwv is still in the language. Strong irreducibility says
that we can arbitrarily fix the length of this word (but it must be greater than
a fixed constant only depending on the shift). The same properties for a generic
shift refers to the way in which two different patterns in the language of the shift
may appear simultaneously in a configuration. For irreducibility we have that
two patterns always appear simultaneously in some configuration if we translate
their supports. Strong irreducibility states that if the supports of the pattern
are far enough, than it is not necessary to translate them in order to find a
configuration in which both the patterns appear.

These two irreducibility conditions are not equivalent, not even in the one–
dimensional case. Hence our general results about strongly irreducible shifts of
finite type are strictly weaker than the one–dimensional ones. In the attempt of
using weaker hypotheses in the latter case, we give in Section 3.6 a new notion
of irreducibility, the semi–strong irreducibility. In the one–dimensional case,
this property means that the above word w may “almost” be of the length we
want (provided that it is long enough): we must allow it to be “a little” longer
or “a little” shorter; the length of this difference is bounded and only depends
on the shift. In general, semi–strong irreducibility states that if the supports
of the patterns are far enough from each other, than translating them “a little”
we find a configuration in which both the patterns appear. The reason for this
choice lies in the fact that using the Pumping Lemma we can prove that a sofic
subshift of AZ is irreducible if and only if is semi–strongly irreducible. Moreover
Myhill’s property holds for semi–strongly irreducible shifts of finite type of AΓif
Γ has non–exponential growth.
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3.1 The Garden of Eden Theorem and the Moo-

re–Myhill Property

In this section we give the definition of a pre–injective function, proving that
this property is equivalent to the notion of non–existence of mutually erasable
patterns used in the original works of Moore [Moo] and Myhill [My]. Indeed they
prove that a transition function of a Euclidean cellular automaton on a full shift
admits two mutually erasable patterns if and only if it admits a Garden of Eden
pattern, that is a pattern without pre–image. A result of this kind, concerning a
local function τ between two shifts, is what we call a Garden of Eden theorem;
we deal with the Moore–Myhill property when we have a shift such that for each
transition function of a cellular automaton over it pre–injectivity is equivalent
to surjectivity.

Definition 3.1.1 Let τ : AΓ → AΓ be a transition function; two patterns p1

and p2 with the same support F are called τ–mutually erasable if p1 6= p2 and
if for every c1, c2 ∈ AΓ such that c1|F = p1, c2|F = p2 and c1|{F = c2|{F , one
has τ(c1) = τ (c2).

Definition 3.1.2 Let X, Y ⊆ AΓ be two shift and τ : X → Y be a function; a
pattern p ∈ YE is Garden of Eden (briefly GOE) with respect to τ , if for every
c ∈ X one has τ (c)|E 6= p.

The Garden of Eden (GOE) theorem is the union of the following two theo-
rems.

Theorem 3.1.3 (E. F. Moore - 1962) If τ : AZ
2 → AZ

2

is a transition
function and there exist two τ–mutually erasable patterns, then there exists a
GOE pattern.

Theorem 3.1.4 (J. Myhill - 1963) If τ : AZ
2 → AZ

2

is a transition func-
tion and there exists a GOE pattern, then there exist two τ–mutually erasable
patterns.

In order to consider GOE–like theorems not in the whole of AΓ but in a sub-
shift X ⊆ AΓ, notice first that two patterns of X are not necessarily extendible
by the same configuration of X . Therefore it could happen that two patterns
with support F for which there does not exist a common extension c|{F , are
τ–mutually erasable although the function τ is bijective. The notion that seems
to be a good generalization of the non–existence of mutually erasable patterns,
is that of pre–injectivity; we will see that if X = AΓ then the non–existence of
τ–mutually erasable patterns is equivalent to the pre–injectivity of τ .

Definition 3.1.5 A function τ : X ⊆ AΓ → AΓ is called pre–injective if when-
ever c1, c2 ∈ X and c1 6= c2 only on a finite non–empty subset of Γ, then
τ(c1) 6= τ (c2).
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Proposition 3.1.6 Let τ : AΓ → AΓ be a transition function; then τ is pre–
injective if and only if there are no τ–mutually erasable patterns.

Proof Let p1 and p2 be two τ–mutually erasable patterns with support F .
Fix a ∈ A and define c1, c2 ∈ AΓ that coincide, respectively, with p1 and p2 on
F and such that

(c1)|γ = (c2)|γ = a

if γ /∈ F . Then c1 and c2 differ only on a non–empty finite set (since this set is
contained in F ), and τ (c1) = τ (c2), so that τ is not pre–injective.

Suppose, conversely, that τ is not pre–injective; there exist two configura-
tions c1 and c2 such that, for some non empty finite set F we have:

• c1|F 6= c2|F

• c1|{F = c2|{F

• τ (c1) = τ (c2).

Set p1 := c1|F+2M and p2 := c2|F+2M , where M is such that τ is M–local;
then we prove that p1 and p2 are τ–mutually erasable. First p1 6= p2 and if c̄1,
c̄2 are two configurations such that

• c̄1|F+2M = p1

• c̄2|F+2M = p2

• c̄1 = c̄2 out of F+2M

we have that τ (c̄1) = τ (c̄2).
Indeed, set DM := {α1, . . . , αm} and γi := γαi; if γ ∈ Γ and γDM ⊆

F+2M we have (τ (c̄1))|γ = δ(c̄1|γ1
, . . . , ) = δ(p1|γ1

, . . . , ) = δ(c1|γ1
, . . . , ) =

(τ (c1))|γ = (τ (c2))|γ = δ(c2|γ1
, . . . , ) = δ(p2|γ1

, . . . , ) = δ(c̄2|γ1
, . . . , ) =

(τ (c̄2))|γ .
If, otherwise, γDM ⊆ {F and if we suppose, for example, that γ1, . . . , γi ∈

F+2M and γi+1, . . . , γn ∈ {(F+2M ), then (τ (c̄1))|γ = δ(c̄1|γ1
, . . . , c̄1|γn

) =
δ(c1|γ1

, . . . , c̄2|γn
) = δ(c2|γ1

, . . . , c̄2|γn
) = δ(c̄2|γ1

, . . . , c̄2|γn
) = (τ (c̄2))|γ . 2

One can prove (see [MaMi, Theorem 5]) that a transition function on AΓ

is surjective if and only if there are no GOE patterns. It is easy to prove that
this property holds also for the local functions between shifts, as proved in the
following Proposition.

Proposition 3.1.7 Let τ : X → Y a local function; then τ is surjective if and
only if there are no GOE patterns.

Proof It is clear that the surjectivity of τ implies the non–existence of GOE–
patterns.

For the converse, suppose that for each finite set E ⊆ Γ and each p ∈ YE

there is a configuration c ∈ X such that τ (c)|E = p; we prove that τ is surjective.
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If c̄ ∈ Y , let cn ∈ X be such that τ (cn)|Dn
= c̄|Dn

; hence limn→∞ τ (cn) = c̄. X
being compact, there is a subsequence (cnk

)k that converges to a configuration
c ∈ X . τ being continuous, we have that c̄ = limk→∞ τ(cnk

) = τ (c). 2

Hence we can restate the Garden of Eden Theorem [Moo] and [My] as follows.

Theorem 3.1.8 If τ : AZ
2 → AZ

2

is a transition function, then τ is pre–
injective if and only if it is surjective.

Definition 3.1.9 A shift X ⊆ AΓ has the Moore–Myhill property (briefly MM–
property), if for every cellular automaton (X, DM , τ) the transition function τ
is pre–injective if and only if it is surjective. The Moore–property is surjective
⇒ pre–injective and the Myhill–property is pre–injective ⇒ surjective.

In the sequel we will distinguish between these properties and the GOE–
theorems for a local function. Indeed the former are properties of a single shift
but, on the other hand, we will speak of GOE–theorem whenever we have a
GOE–like theorem for a local function between two possibly different shifts.

Notice that if a shift X has the Myhill–property, than each transition func-
tion τ : X → X is surjunctive (because, obviously, injectivity⇒ pre–injectivity).

Proposition 3.1.10 The MM–property is invariant under conjugacy.

Proof A conjugacy being both surjective and pre–injective, it suffices to
prove that the composition of two local pre–injective function is still a (local)
pre–injective function. Hence suppose that τ : X → Y and φ : Y → Z are
pre–injective functions; if c1, c2 ∈ X with c1 6= c2 and there exists a finite
subset F ⊆ Γ such that c1|{F = c2|{F , we prove that if τ is M–local then

τ(c1)|{(F+M ) = τ (c2)|{(F+M ). Actually, if γ /∈ F +M then γDM ⊆ {F and hence

τ(c1)|γ = τ(c2)|γ . The set F+M being finite, we have φ(τ (c1)) 6= φ(τ (c2)) so
that φ ◦ τ is pre–injective. 2

3.2 Amenable Groups

In this section we give the definition of amenability for a group Γ; using a char-
acterization of it due to Følner (see [F], [Gr] and [N]), Ceccherini–Silberstein,
Mach̀ı and Scarabotti have proved that the MM–property holds for the full shift
AΓ (see [CeMaSca]).

Definition 3.2.1 A group Γ is called amenable if it admits a Γ–invariant prob-
ability measure, that is a function µ : P (Γ)→ [0, 1] such that for A, B ⊆ Γ and
for every γ ∈ Γ

• A ∩ B = ∅ ⇒ µ(A ∪ B) = µ(A) + µ(B) (finite additivity)

• µ(γA) = µ(A) (Γ–invariance)
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• µ(Γ) = 1 (normalization).

Theorem 3.2.2 (Følner) A group Γ is amenable if and only if for each finite
subset F ⊆ Γ and each ε > 0 there exists a finite subset K ⊆ Γ such that

|KF\K|
|K| < ε.

This characterization is equivalent to the following one.

For each pair of finite subsets F, H ⊆ Γ with 1 ∈ H and each ε > 0 there exists
a finite subset K ⊇ H such that

|KF\K|
|K| < ε.

Indeed, suppose that there exists K̄ such that

|K̄HF\K̄|
|K̄| < ε.

We have that K̄ ⊆ K̄H and hence

|K̄HF\K̄H |
|K̄H | ≤ |K̄HF\K̄|

|K̄| < ε;

it suffices to set K := K̄H .

An analogous equivalent form of Følner’s characterization is given by Namioka
in [N].

Theorem 3.2.3 Let Γ be an amenable group; then there exists a sequence of
finite sets (En)n≥1 such that:

• E1 ⊆ E2 ⊆ . . . ⊆ En ⊆ . . .

• ⋃

n≥1 En = Γ,

• limn→∞
|∂M En|
|En| = 0.

Proof First, notice that in Følner condition there is no loss of generality
if we suppose 1 ∈ K. Now we construct, by induction, a nested sequence
1 ∈ K1 ⊆ . . . ⊆ Kn ⊆ . . . such that, for each n ≥ 1

|Kn(D+M
n )\Kn|
|Kn|

<
1

n
.

Let K1 be a finite subset 1 ∈ K1 ⊆ Γ such that

|K1(D
+M
1 )\K1|
|K1|

< 1
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whose existence is guaranteed by Theorem 3.2.2. Suppose to have found Kn,
there exists Kn+1 ⊇ Kn such that

|Kn+1(D
+M
n+1)\Kn+1|
|Kn+1|

<
1

n + 1
.

Observe that

• Kn(D+M
n ) = (KnDn)+M

• Kn ⊆ Kn(D−M
n ) ⊆ (KnDn)−M

• Kn ⊆ KnDn

hence
|(KnDn)+M\(KnDn)−M |

|KnDn|
≤ |Kn(D+M

n )\Kn|
|Kn|

<
1

n
.

Setting En := KnDn we have the stated properties because Dn ⊆ Kn. 2

A sequence as in Theorem 3.2.3 is called amenable (or Følner sequence); from
now on we fix the amenable sequence (En)n≥1 found above and the entropy of a
shift will be defined with respect to (En)n≥1. As we have seen in Section 1.7, if
the group Γ has non–exponential growth, the sequence (En)n≥1 can be replaced
by a suitable sequence of disks centered at 1.

Corollary 3.2.4 If (En)n≥1 is an amenable sequence, then

lim
n→∞

|∂+
MEn|
|En|

= 0

and

lim
n→∞

|∂−
MEn|
|En|

= 0.

Using the existence of an amenable sequence in the amenable group Γ,
Ceccherini–Silberstein, Mach̀ı and Scarabotti have proved the following theo-
rem for the full shift AΓ.

Theorem 3.2.5 [CeMaSca, Corollary of Theorem 3] Let Γ be a finitely gen-
erated amenable group and τ : AΓ → AΓ be a transition function. Then τ is
surjective if and only if there are no τ–mutually erasable patterns.

As a consequence of this theorem we have the following statement.

Corollary 3.2.6 (MM–property for the full shift) For an amenable group
Γ, the full shift AΓ has the MM–property.
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3.3 The Moore–Myhill Property for Subshifts of

A
Z

As far as irreducible shifts of finite type are concerned, we have the following
result that stems from the works of Hedlund [H] and Coven and Paul [CovP].

Theorem 3.3.1 [LinMar, Theorem 8.1.16] Let X be an irreducible shift of finite
type, Y a shift and τ : X → Y a local function. Then τ is pre–injective if and
only if ent(X) = ent(τ (X)).

Corollary 3.3.2 (MM–property for irreducible subshifts of finite type
of A

Z) An irreducible subshift of finite type of AZ has the MM–property.

Proof If τ is pre–injective, then by Theorem 3.3.1 we have ent(X) =
ent(τ (X)). By Theorem 1.7.4, there does not exist a proper subshift of X whose
entropy equals that of X . Thus τ(X) = X and τ is surjective. Conversely, if τ
is surjective we have ent(X) = ent(τ (X)) and Theorem 3.3.1 applies. 2

Now we show that the irreducibility condition in the above theorem cannot
be dropped.

Counterexample 3.3.3 Myhill–property no longer holds for a subshift of fi-
nite type of AZ but not irreducible.

Let X be the full shift over the alphabet A = {0, 1}; clearly X is irreducible
and of finite type. Consider the set X̄ ⊆ {0, 1, 2}Z given by the union X ∪ {2̄},
where 2̄ is the bi–infinite word constant in 2. The set X̄ is a shift of finite type
over the alphabet Ā = {0, 1, 2} with set of forbidden blocks:

{02, 20, 12, 21}.

Moreover X̄ is not irreducible; indeed we have 1, 2 ∈ L(X̄) but for no word
w ∈ L(X̄) the word 1w2 belongs to L(X̄).

Consider the transition function τ : X̄ → X̄ defined by:

τ (c) =

{
c if c ∈ X
0̄ if c = 2̄.

Clearly τ is 1–local where the local rule is given by δ(a) = a if a 6= 2 and
δ(2) = 0. This function is not surjective because the word 2̄ has no pre–images,
but it is pre–injective. Actually, if c1 and c2 are different configurations which
only differ on a finite subset of Z, then they must belong to X and so their
images under τ are different. 2

Counterexample 3.3.4 Moore–property no longer holds for a shift of finite
type but not irreducible.
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Let X be the shift over the alphabet A = {0, 1, 2} with set of forbidden
blocks {01, 02}. The shift X is not irreducible; indeed for no word u ∈ L(X)
the word 0u1 belongs to L(X).

Consider the transition function τ : X → X defined by the local rule:

δ(a1a2a3) =

{
a2 if a3 6= 0
0 if a3 = 0.

The function τ is surjective because a generic word of X , for example,

. . . 1211122121212212121 0 0000000000000 . . .

has two pre–images:

. . . 1211122121212212121 1 0000000000000 . . .

and
. . . 1211122121212212121 2 0000000000000 . . .

This also shows that τ is not pre–injective. 2

Using the generalizations to dimension 2 of Counterexamples 3.3.3 and 3.3.4,
we obtain two irreducible shifts of finite type of AZ

2

which give the following
counterexamples.

Counterexample 3.3.5 MM–property no longer holds for an irreducible shift
of finite type contained in AZ

2

.

Consider the cellular automaton of Counterexample 3.3.3; it is clear that the
1–local function τ can be extended to a 1–local function τ 2 : X̄2 → X̄2 with
the same local rule (δ(a) = a if a 6= 2 and δ(2) = 0). The function τ 2 is, as τ ,
pre–injective and non–surjective.

For the cellular automaton of Counterexample 3.3.4, we have similarly that
the extended function τ2 is surjective and not pre–injective 2.

We now prove that a result similar to Theorem 3.3.1 holds for irreducible
sofic shifts.

Theorem 3.3.6 Let X be an irreducible sofic shift, Y a shift and τ : X → Y a
local function. Let G = (G,L) be the minimal deterministic presentation of X.
Then τ ◦ L is pre–injective if and only if ent(X) = ent(τ (X)).

Proof The labeled graph G = (G,L) being a presentation of X , we have
X = XG = L(XG). By Corollary 1.5.8, XG is an irreducible shift of finite
type. Moreover τ ◦ L : XG → Y is a local function; thus, by Theorem 3.3.1,
τ ◦ L is pre–injective if and only if ent(XG) = ent(τ (L(XG))) = ent(τ (X)). By
Proposition 1.7.2, ent(XG) = ent(X) and the claim is proved. 2

Corollary 3.3.7 (Myhill–property for irreducible sofic shifts) Let X be
an irreducible sofic shift and τ : X → X a transition function. Then τ pre–
injective implies τ surjective.
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Proof Let G = (G,L) be the minimal deterministic presentation of X ; we
prove that if τ ◦L is not pre–injective, then τ is not pre–injective either. Suppose
that there exist two bi–infinite paths c1, c2 ∈ XG which are different only on a
finite path and such that τ (L(c1))) = τ (L(c2)). Then one can write c1 and c2,
respectively, as:

c1 : · · · e−2−→ i−1
e−1−→ i0

e0−→ i1
e1−→ · · · en−1−→ in

en−→ in+1
en+1−→ . . .

and

c2 : · · · e−2−→ i−1
e−1−→ i0

f0−→ j1
f1−→ · · · fn−1−→ jn

fn−→ in+1
en+1−→ . . . ,

with e0 6= f0. Setting ai := L(ei) and bi := L(fi), the graph G being determin-
istic we have a0 6= b0 and hence

L(c1) = a−2a−1 a0a1 . . . an−1an an+1 . . .

and
L(c2) = a−2a−1 b0b1 . . . bn−1bn an+1 . . .

are two configurations in X which differ only on a finite (non empty) set and
whose images under τ are equal. Therefore τ is not pre–injective.

Thus, if τ is pre–injective, then τ ◦L is also pre–injective; by Theorem 3.3.6,
we have ent(X) = ent(τ (X)). X being irreducible and by Theorem 1.7.4, τ (X)
cannot be a proper subshift of X . Hence τ(X) = X , i.e. τ is surjective. 2

3.3.1 A counterexample to Moore–property for a sofic

subshift of A
Z

We now give an example of an irreducible sofic shift not of finite type for
which the transition function is surjective but not pre–injective (that is, Moore–
property no longer holds in general if the finite type condition is dropped). Our
example will be the even shift Xe, that is the subshift of {0, 1}Z with forbidden
blocks

{102n+11 | n ≥ 0}.
The shift Xe is sofic, indeed it is accepted by the following labeled graph.

I��
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We define a transition function τ as follows:

τ(c)|z = δ(c|z−2, c|z−1, c|z, c|z+1, c|z+2)

where δ is the local rule:

δ(a1a2a3a4a5) =

{
1 if a1a2a3 = 000 or a1a2a3 = 111 or a1a2a3a4a5 = 00100,
0 otherwise.

First we prove a Lemma.

Lemma 3.3.8 If a block 0n1 with n ≥ 3, has a pre–image under τ of length
n + 5 in the language of Xe

a1 a2 a3 a4 . . . an+1 an+2 an+3 an+4 an+5

0 0 . . . 0 0 1
,

then this pre–image can be only of type

1. (i) a1a2 xx (1− x)(1− x) . . . 11 00 11 000an+4an+5,

(ii) a1a2 xx (1− x)(1− x) . . . 11 00 11 00100,

(iii) a1a2 (1− x)(1− x) xx . . . 00 11 00 111an+4an+5,

when n is even and for a suitable x ∈ {0, 1};

2. (i) a1a2 (1− x) xx . . . 11 00 11 000an+4an+5,

(ii) a1a2 (1− x) xx . . . 11 00 11 00100

(iii) a1a2 x (1− x)(1− x) . . . 00 11 00 111an+4an+5

when n is odd and for a suitable x ∈ {0, 1}.

Proof We prove the statement by induction on n ≥ 3. Assume that
τ(a1a2a3a4a5a6a7a8) = 0001; we distinguish three cases.

• a4a5a6 = 000

a1 a2 a3 0 0 0 a7 a8

0 0 0 1
.

Then a3 = 1 otherwise δ(a3a4a5a6a7) = δ(0000a7) = 1 6= 0.

• a4a5a6a7a8 = 00100

a1 a2 a3 0 0 1 0 0
0 0 0 1

.

Then, for the same reasons as above, a3 = 1.

• a4a5a6 = 111
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a1 a2 a3 1 1 1 a7 a8

0 0 0 1
.

Then a3 = 0 otherwise δ(a3a4a5a6a7) = δ(1111a7) = 1 6= 0.

Now let us suppose that the statement is true for n and that we have
τ(a1 . . . an+6) = 0n+11:

a1 a2 a3 a4 . . . an+2 an+3 an+4 an+5 an+6

0 0 . . . 0 0 1
.

If n is even, by the inductive hypothesis one has either

a4 . . . an+4 = xx (1− x)(1− x) . . . 11 000

or
a4 . . . an+6 = xx (1− x)(1− x) . . . 11 00100

or
a4 . . . an+4 = (1− x)(1− x) xx . . . 00 111

for a suitable x ∈ {0, 1}.
In any case we have a4 = a5. If a3 = a4, then δ(a3a4a5a6a7) = δ(a4a4a4a6a7)

= 1 6= 0. Thus a3 6= a4.
It follows, in the three cases, that either

a1 . . . an+6 = a1a2 (1− x) xx (1− x)(1− x) . . . 11 000an+5an+6

or
a1 . . . an+6 = a1a2 (1− x) xx (1− x)(1− x) . . . 11 00100

or
a1 . . . an+6 = a1a2 x (1− x)(1− x) xx . . . 00 111an+5an+6.

If n is odd, by the inductive hypothesis we have either

a4 . . . an+4 = (1− x) xx . . . 11 000

or
a4 . . . an+6 = (1− x) xx . . . 11 00100

or
a4 . . . an+4 = x (1− x)(1− x) . . . 00 111

for a suitable x ∈ {0, 1}.
In any case a4 6= a5 = a6. If a3 6= a4, then a3a4a5 = a5a4a5 so that a4 = 1

(otherwise we had a forbidden block). For the same reason, a2 = a3 = 0. This
implies δ(a2a3a4a5a6) = δ(00100) = 1 6= 0. Thus a3 = a4.

It follows, in the three cases, that either

a1 . . . an+6 = a1a2 (1− x)(1− x) xx . . . 11 000an+5an+6
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or
a1 . . . an+6 = a1a2 (1− x)(1− x) xx . . . 11 00100

or
a1 . . . an+6 = a1a2 xx (1− x)(1− x) . . . 00 111an+5an+6.

Then the statement is still true for 0n+11. 2

Proposition 3.3.9 The local function τ is a transition function, that is τ (Xe)
⊆ Xe.

Proof τ (Xe) being a subshift of {0, 1}Z, it suffices to prove that no forbidden
block 10n1 with n odd, has a pre–image of length n + 6 in the language of Xe.
First we prove that there is no block a1a2a3a4a5a6a7 of length 7 such that
τ(a1a2a3a4a5a6a7) = 101:

a1 a2 a3 a4 a5 a6 a7

1 0 1
.

We distinguish two cases.

• a3a4 = 00

a1 a2 0 0 a5 a6 a7

1 0 1

Then a2 = 1 otherwise δ(a2a3a4a5a6) = δ(000a5a6) = 1 6= 0. Then δ(a1a2a3a4a5)
= δ(a1100a5a6) = 0 6= 1.

• a3a4a5 = 111

a1 a2 1 1 1 a6 a7

1 0 1

Then a2 = 0 otherwise δ(a2a3a4a5a6) = δ(1111a6) = 1 6= 0. Thus δ(a1a2a3a4a5)
= δ(a10111a6) = 0 6= 1. We have proved that no block of length 7 goes to 101
under τ .

Let us now prove that no block a1 . . . an+6 of length n+6 has 10n1 as image
under τ , where n ∈ N is odd and strictly greater than 1. If

a1 a2 a3 a4 a5 . . . an+3 an+4 an+5 an+6

1 0 0 . . . 0 1
,

by Lemma 3.3.8 we have a4a5a6 . . . = x(1−x)(1−x) . . . , and being δ(a1a2a3a4a5)
= 1, we distinguish two cases:

• x = 0
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a1 a2 a3 0 1 1 . . . an+3 an+4 an+5 an+6

1 0 0 0 . . . 0 1

Then a3 = 0 (otherwise we had a forbidden block) and a2 = 1 because δ(a2a3a4

a5a6) = δ(a20011) = 0 and δ(00011) = 1. Then δ(a1a2a3a4a5) = δ(a11001) =
0 6= 1.

• x = 1

a1 a2 a3 1 0 0 . . . an+3 an+4 an+5 an+6

1 0 0 0 . . . 0 1

If a3 = 0 then a2 = 0 and δ(a2a3a4a5a6) = δ(00100) = 1 6= 0. Thus a3 =
1. Then δ(a2a3100) = δ(a21100) and δ(a21100) = 0 implies a2 = 0. Thus
δ(a1a2a310) = δ(a10110) = 0 6= 1. Hence 10n1 has no pre–image under τ . 2

Proposition 3.3.10 The transition function τ : Xe → Xe is surjective.

Proof To prove the surjectivity of τ it suffices, as we have seen, to prove
the non–existence of GOE patterns or, equivalently, the non–existence of GOE
words. To this aim, as it can be easily seen, it is enough to prove that each block
of kind 10n110n2 . . . 10nk1 (where n1, . . . nk are even integers), has a pre–image
block. Indeed each word in L(Xe) is contained in such a special word.

First we prove that every block of the type 10n1 where n is even, has a
pre–image a1 . . . an+6 in the language of Xe of length n + 6

a1 a2 a3 a4 a5 . . . an+2 an+3 an+4 an+5 an+6

1 0 0 . . . 0 0 1
,

in each of the three cases in which an+4 7→ 1.
If n = 0

• 0 0 0 0 a5 a6

1 1
,

• 0 0 0 1 0 0
1 1

,

and

• 1 1 1 1 a5 a6

1 1
.

If n = 2

• a1 a1 1 0 0 0 a5 a6

1 0 0 1
,
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• a1 a1 1 0 0 1 0 0
1 0 0 1

,

and

• 0 0 0 1 1 1 a5 a6

1 0 0 1
.

If n ≥ 4, for a suitable x ∈ {0, 1},

• 1− x 1− x 1− x x x . . . 0 0 0 an+5 an+6

1 0 0 . . . 0 0 1
.

Similarly

• 1− x 1− x 1− x x x . . . 0 0 1 0 0
1 0 0 . . . 0 0 1

and, finally,

• x x x 1− x 1− x . . . 1 1 1 an+5 an+6

1 0 0 . . . 0 0 1
.

Now, fix a word of kind 10n110n2 . . . 10nk1; we can construct a pre–image of
this word starting from the first on the right block 10nk1 (over the first on the
right 1 we can write, arbitrarily, 000**, 111** or 00100). In this way we get
a word a1 . . . a5 over the second on the left 1 and we can start from this word
over 1 to construct a pre–image for the second on the right block 10nk−11, and
so on:

←− ←−
. . . b1 b2 b3

. . . 0 0 1
b4 b5 . . . a1 a2

0 0 . . . 0 0
︸ ︷︷ ︸

nk−1

a3

1
a4 a5 . . . * *
0 0 . . . 0 0

︸ ︷︷ ︸

nk

* * *
1

In each of the possible choices we can find a block whose image under τ is
our fixed word.

For what we have stated before, τ is surjective. 2

Proposition 3.3.11 The transition function τ : Xe → Xe is not pre–injective.

Proof Let us consider the configuration c1:

. . . 0 0 0 0 0 1 0 0 1 0 0 0 0 0 . . .

and the configuration c2:
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. . . 0 0 0 0 0 0 1 1 1 0 0 0 0 0 . . . .

These configurations are different only on a finite subset of Z, but they have
the same image under τ , that is the configuration

. . . 1 1 1 1 1 1 0 0 1 0 0 1 1 1 . . . .

Thus τ is not pre–injective. 2

3.4 Gromov’s Theorem

Recently, Gromov has proved a GOE–like theorem in a setting of graphs much
more general than Cayley graphs, for alphabets not necessarily finite and for
subset of the “universe” not necessarily invariant under translation. Because
of the weakness of these hypotheses, in his theorem are needed properties that
are stronger than ours (as we will see in next section), for example the bounded
propagation of the spaces. In this section we apply Gromov’s theorem to our
cellular automata proving that all the properties required in the hypotheses of
this theorem are satisfied.

Definition 3.4.1 A closed subset X ⊆ AΓ is of bounded propagation ≤ M if
for each pattern p ∈ AF with support F one has

p|F∩D(α,M) ∈ XF∩D(α,M) for each α ∈ F ⇒ p ∈ XF .

If γ ∈ Γ, the left translation iγ : Γ→ Γ defined by iγ(α) = γα is an isometry.
Indeed

dist(γα, γβ) = ‖α−1γ−1γβ‖ = ‖α−1β‖ = dist(α, β).

It is clear that not all the isometries are of this kind; for example consider
Z2 = 〈a, b | ab = ba〉 and the unique homomorphism extending the function
i : Z2 → Z2 defined by

{
i(a) = b
i(b) = a

;

clearly ‖i(α)‖ = ‖α‖. Then

dist(i(α), i(β)) = ‖i(α)−1i(β)‖ = ‖i(α−1β)‖ = dist(α, β).

But i is not a translation.

Consider a subgroup Γ̄ ≤ Γ and the set I(Γ̄) consisting of all restriction to
each finite subset F of Γ of the left translations by an element of Γ̄; a generic
element of I(Γ̄) is iγ |F : F → γF . The set I(Γ̄) is a pseudogroup of partial

isometries that is, following Gromov’s definition:

1. idF : F → F is an element of I(Γ̄), indeed idF = i1|F ;
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2. if γ ∈ Γ̄ and iγ |F : F → γF is an element of I(Γ̄), then (iγ |F )−1 : γF → F

is still in I(Γ̄) because (iγ |F )−1 = iγ−1
|γF

;

3. if iγ1 |F
: F → γ1F and iγ2 |γ1F

: γ1F → γ2γ1F are two elements of I(Γ̄),

then their composition is still in I(Γ̄) because iγ2 |γ1F
◦ iγ1 |F

= iγ2γ1 |F
;

4. the restriction of each element of I(Γ̄) defined on F to a (finite) subset
E ⊆ F , is still in I(Γ̄).

Two elements α, β inΓ are Γ̄–equivalent if there exists γ ∈ Γ̄ such that
γα = β, that is Γ̄α = Γ̄β. Then the equivalence classes are the right cosets
{Γ̄α | α ∈ Γ}. The pseudogroup I(Γ̄) is dense if each equivalence class Γ̄α is
such that for some R = R(α) ∈ N one has

⋃

γ∈Γ̄

D(γα, R) = Γ.

We prove that this property is equivalent to the existence of R ∈ N such that
⋃

γ∈Γ̄

D(γ, R) = Γ (3.1)

Indeed if (3.1) holds and β ∈ Γ there exists γ ∈ Γ̄ such that dist(β, γ) ≤ R
hence

dist(β, γα) ≤ R + dist(γ, γα) = R + ‖α‖
and then, fixed a right coset representative α of Γ̄α, we have

⋃

γ∈Γ̄ D(γα, R +

‖α‖) = Γ. Moreover, we can prove that (3.1) holds if and only if Γ̄ has finite
index. Indeed, suppose that (3.1) holds; consider the right cosets Γ̄α with
α ∈ DR. It is clear that these are finitely many; furthermore

⋃

α∈DR
Γ̄α = Γ

because if β ∈ Γ by (3.1), we have β ∈ γDR with γ ∈ Γ̄. Hence Γ̄ has finite
index.

Conversely, if Γ̄ has finite index, fix a set {α1, . . . , αn} of cosets representa-
tives. Let R := maxi ‖αi‖. If α ∈ Γ, we have that α = γαi for some γ ∈ Γ̄ and
some i. Hence dist(α, γ) = ‖αi‖ ≤ R, that is α ∈ D(γ, R).

Now consider a stable (i.e. closed) and Γ̄–invariant space X ⊆ AΓ; if we
consider the finite subsets of Γ and the elements of Γ̄, a family of functions

HF,γ : XF → XγF = Xiγ (F )

which commute with the restriction (i.e. (HF,γ(c|F ))|γE = HE,γ(c|E) or, in
other words, the following diagram

XF

HF,γ−−−−→ XγF


y



y

XE

HE,γ−−−−→ XγE

52



commutes), gives rise to a set of holonomy maps. In particular, we have a set
of holonomy maps H(Γ̄) defining

HF,γ(c|F ) := cγ−1

|γF ;

indeed (HF,γ(c|F ))|γE = (cγ−1

|γF )|γE = cγ−1

|γE = HE,γ(c|E).

The set H(Γ̄) is a pseudogroup of holonomies, that is

1. idXF
: XF → XF is an element of H(Γ̄), indeed idXF

= HF,1;

2. if γ ∈ Γ̄ and HF,γ : XF → XγF is an element of H(Γ̄), then (HF,γ)−1 :
XγF → XF is still in H(Γ̄) because (HF,γ)−1 = HγF,γ−1 ;

3. if HF,γ1
: XF → Xγ1F and Hγ1F,γ2

: Xγ1F → Xγ2γ1F are two elements of
H(Γ̄), then their composition is still in H(Γ̄) because Hγ1F,γ2

◦ HF,γ1
=

HF,γ2γ1
;

4. the restriction of each element of H(Γ̄) defined on XF to XE (where E is
a finite subset E ⊆ F ), is still in H(Γ̄).

Finally, if I(Γ̄) is dense (that is, if Γ̄ has finite index), we have defined a
dense pseudogroup of holonomies.

If Y ⊆ AΓ is another stable and Γ̄–invariant space, a function τ : X →
Y is of bounded propagation ≤ M if it is the limit of a family of functions
τF : XF → YF−M that commute with the restrictions; then a function of
bounded propagation is such that τ(c)|α = τD(α,M)(c|D(α,M))|α and, in gen-

eral, τF (c|F ) = τ (c)|F−M .

If τ is a function of bounded propagation, we have that the holonomies in
H(Γ̄) commute with τ if τ commutes with the Γ̄–action:

XF

HF,γ−−−−→ XγF

τF



y



yτγF

XF−M

H
F−M ,γ−−−−−−→ XγF−M

Indeed (notice that γ(F−M ) = (γF )−M ),

τγF (HF,γ(c|F )) = τγF ((cγ−1

)|γF )) = τ(cγ−1

)|(γF )−M

and
HF−M ,γ(τF (c|F )) = HF−M ,γ(τ (c)|F−M ) = (τ (c)γ−1

)|γF−M .

In this case, provided that I(Γ̄) is dense, we say that the function τ admits a
dense holonomy.

Under these hypotheses and supposing that Γ is amenable, we have the
following theorem.
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Theorem 3.4.2 Let X, Y ⊆ AΓ be stable spaces of bounded propagation and
τ : X → Y a map of bounded propagation admitting a dense holonomy, then
ent(X) = ent(Y ) implies that τ is surjective if and only if it is pre–injective.

Suppose that τ is a bounded propagation ≤ M function between two Γ̄–
invariant stable spaces and τ commutes with the Γ̄–action, if the pseudogroup
I(Γ̄) is dense, we can write each α ∈ Γ as α = γd (γ ∈ Γ̄, d ∈ DR) and

τ (c)|α = τ (c)|γd = (τ (cγ))|d = τD(d,M)(c
γ
|D(d,M))|d = τDM+R

(cγ
|DM+R

)|d.

This means that in order to know the function τ it is sufficient to know how
the image under τ of a configuration in X acts on DR. In other words, it is
sufficient to know the function τDM+R

: XDM+R
→ τ (X)DR

.
On the other hand, if τ is M–local between two shift spaces, we have

τ (c)|α = τ(cα)|1 = τDM
(cα

|DM
)|1

that is it suffices to know how the image under τ of a configuration in X acts
on the identity of Γ, i.e. the local rule δ.

For this reasons, the notion of bounded propagation is a generalization of
the notion of local function as far as stable spaces not necessarily Γ–invariant
are concerned.

Hence, if Γ is amenable, the next two theorems follow from Theorem 3.4.2.

Corollary 3.4.3 (GOE–theorem for shifts of bounded propagation) Let
X, Y ⊆ AΓ shift spaces of bounded propagation and τ : X → Y a local function,
then ent(X) = ent(Y ) implies τ surjective ⇐⇒ τ pre–injective.

Corollary 3.4.4 (MM–property for shifts of bounded propagation) If
X ⊆ AΓ is a shift space of bounded propagation then X has the MM–property.

3.5 Strongly Irreducible Shifts

In this section we give the definition of strong irreducibility for a shift. In general,
as we have seen at the end of Section 1.2, it is possible to give a definition
of irreducibility that generalizes the one–dimensional one. But although we
can prove the MM–property for irreducible shifts of finite type of AZ, this
irreducibility is too weak in the general case of subshifts of finite type of AΓ (see
Counterexample 3.3.5). We prove the MM–property for the strongly irreducible
shifts of finite type of AΓ. On the other hand, we will see that a shift of bounded
propagation (that has, by Gromov’s theorem, the MM–property ), is strongly
irreducible and of finite type, but the converse does not hold.

Definition 3.5.1 A shift X is called M–irreducible if for each pair of finite sets
E, F ⊆ Γ such that dist(E, F ) > M and for each pair of patterns p1 ∈ XE and
p2 ∈ XF , there exists a configuration c ∈ X that satisfies c = p1 in E and c = p2

in F . The shift X is called strongly irreducible if it is M–irreducible for some
M ∈ N.
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In the particular case Γ = Z, it can be easily seen that a shift X ⊆ AZ is
M–irreducible if for each n ≥M and for each pair of words u, v ∈ L(X), there
exists a word w ∈ L(X) with |w| = n, such that uwv ∈ L(X).

The following theorem will be proved in the next section in the case of groups
with non–exponential growth and semi–strongly irreducible shift.

Proposition 3.5.2 Let Γ be an amenable group. Let X be a strongly irreducible
shift of finite type and let τ : X → AΓ be a local and pre–injective function. Then
ent(τ (X)) = ent(X).

Proof Suppose that the memory of X is M , that X is M–irreducible and
that τ is M–local. Set Y := τ(X) and fix an amenable sequence (En)n; we have

|Y
E

+2M
n
| ≤ |YEn

||A||∂+

2M
En|

and then
log |Y

E
+2M
n
|

|En|
≤ log |YEn

|
|En|

+
|∂+

2MEn| log |A|
|En|

.

Taking the maximum limit and being

lim
n→∞

|∂+
2MEn|
|En|

= 0,

we have

lim sup
n→∞

log |YE+2M
n
|

|En|
≤ ent(Y ).

Suppose that ent(Y ) < ent(X); then

lim sup
n→∞

log |Y
E

+2M
n
|

|En|
< lim sup

n→∞

log |XEn
|

|En|
;

so that there exists n ∈ N such that

log |Y
E

+2M
n
|

|En|
<

log |XEn
|

|En|

that is
|Y

E
+2M
n
| < |XEn

|.

Fix v ∈ X∂
+

2M
E

+M
n

; since dist(∂+
2ME+M

n , En) = M + 1 > M for each u ∈ XEn

there exists a pattern p ∈ X
E

+3M
n

that coincides with u on En and with v on

∂+
2ME+M

n . Then

|{p ∈ X
E

+3M
n
| p|∂+

2M
E

+M
n

= v}| ≥ |XEn
| > |Y

E
+2M
n
|.

Since τE
+3M
n

: XE
+3M
n

→ YE
+2M
n

is surjective, there exist two patterns p1, p2 ∈
X

E
+3M
n

such that p1 6= p2 but p1 = v = p2 on ∂+
2ME+M

n and τ
E

+3M
n

(p1) =
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τ
E

+3M
n

(p2). By Corollary 1.3.4, there exist two configurations c1, c2 ∈ X which

extend p1 and p2 and which coincide outside E+M
n . We prove that τ (c1) =

τ(c2), and hence that τ is not pre–injective. If γ ∈ E+2M
n we have γDM ⊆

E+3M
n and hence, if DM = {α1, . . . , αm}, τ (c1)|γ = δ(c1|γα1

, . . . , c1|γαm
) =

δ(p1|γα1
, . . . , p1|γαm

) = τ
E

+3M
n

(p1)|γ = τ
E

+3M
n

(p2)|γ = δ(p2|γα1
, . . . , p2|γαm

) =

δ(c2|γα1
, . . . , c2|γαm

) = τ(c2)|γ . If γ /∈ E+2M
n , we have γDM ⊆ {(E+M

n ) and

hence τ (c1)|γ = τ(c2)|γ , since c1 coincide with c2 on {(E+M
n ). 2

Lemma 3.5.3 If Γ is a finitely generated group, there exists a sequence of disks
(Fj)j∈N obtained by translation of a disk D and at distance > M such that
⋃

j∈N
F+R

j = Γ for a suitable R > 0.

Proof Let D be the disk centered at 1 and of radius ρ; define the following
sequence of finite subsets of Γ:

Γ0 := {1},

Γ1 := {γ ∈ Γ | ‖γ‖ = 2ρ + M + 1}
and, in general,

Γn := {γ ∈ Γ | ‖γ‖ = n(2ρ + M + 1)}.
It is clear that for each n, dist(Γn, Γn+1) = 2ρ + M + 1. Inside the set Γn, fix
γn,1 and eliminate all the points in Γn whose distance from γn,1 is less than
2ρ + M + 1.

Next, fix γn,2 among the remaining points and eliminate all the points whose

distance from γn,2 is less than 2ρ + M + 1. In this way, we will get a set Γ̄n

whose elements have mutual distance ≥ 2ρ + M + 1 and such that for each
element γn of Γn there exists an element of Γ̄n whose distance from γn is less
than 2ρ + M + 1.

We now prove that, denoting by (βj)j∈N the sequence of the elements of
⋃

n∈N
Γ̄n, the sequence (βjD)j∈N is a (D, M, R)–net with R := 2ρ + 2M ; so

that we can set Fj := βjD.
Let then γ ∈ Γ; there exists γn ∈ Γn such that dist(γ, γn) ≤ ρ + M . Since

γn belongs to Γn, there is γ̄n ∈ Γ̄n such that dist(γn, γ̄n) ≤ 2ρ + M and hence
dist(γ, γ̄n) ≤ 3ρ + 2M ; then γ ∈ (γ̄nD)+(2ρ+2M). 2

We call the above sequence a (D, M, R)–net.

Lemma 3.5.4 Let Γ be an amenable group and let (En)n be a fixed amenable
sequence of Γ. Let (Fj)j∈N be a (Dr, 2M, R)–net, let X be an M–irreducible
shift and let Y be a subset of X such that YFj

⊂ XFj
for every j ∈ N. Then

ent(Y ) < ent(X).

Proof Let (pj)j∈N be a sequence of patterns such that pj ∈ XFj
\YFj

; let

N(n) be the number of Fj ’s such that F+M
j ⊆ En and denote by Fj1 , . . . , FjN

56



these disks. Set ξ := |XD+M | and denote by πji
: XEn

→ XFji
the restriction

to Fji
of the patterns of XEn

. We prove that

|XEn
\

N⋃

i=1

π−1
ji

(pji
)| ≤ (1− ξ−1)N |XEn

| (3.2)

by induction on m ∈ {1, . . . , N}. We have

|XEn
| ≤ |X

F
+M
j1

||X
En\F

+M
j1

|

then
|XEn

| ≤ ξ|X
En\F

+M
j1

|.

Since X is an M–irreducible shift and since dist(Fj1 , En\F+M
j1

) > M , given a
pattern p ∈ XEn\F

+M
j1

, there exists a pattern p̄ defined on all En that coincides

with p on En\F+M
j1

and with pj1 on Fj1 ; then

|X
En\F

+M
j1

| ≤ |π−1
j1

(pj1)|.

Hence
1

ξ
|XEn

| ≤ |π−1
j1

(pj1)|

and

|XEn
\π−1

j1
(pj1 )| ≤ |XEn

| − 1

ξ
|XEn

| = (1− ξ−1)|XEn
|.

Suppose

|XEn
\

m−1⋃

i=1

π−1
ji

(pji
)| ≤ (1− ξ−1)m−1|XEn

|.

Since

|XEn
\

m−1⋃

i=1

π−1
ji

(pji
)| ≤ |X

F
+M
jm

||{p|En\F
+M
jm

| p ∈ XEn
\

m−1⋃

i=1

π−1
ji

(pji
)}|,

and, being |X
F

+M
jm

| = ξ,

|XEn
\

m−1⋃

i=1

π−1
ji

(pji
)| ≤ ξ|{p|En\F

+M
jm

| p ∈ XEn
\

m−1⋃

i=1

π−1
ji

(pji
)}|.

Moreover, since X is M–irreducible,

|{p|En\F
+M
jm

| p ∈ XEn
\

m−1⋃

i=1

π−1
ji

(pji
)}| ≤

≤ |{p ∈ XEn
\

m−1⋃

i=1

π−1
ji

(pji
) | p|Fjm

= pjm
}|.
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Hence

1

ξ
|XEn

\
m−1⋃

i=1

π−1
ji

(pji
)| ≤ |{p ∈ XEn

\
m−1⋃

i=1

π−1
ji

(pji
) | p|Fjm

= pjm
}|

and then

|XEn
\

m⋃

i=1

π−1
ji

(pji
)| = |

(

XEn
\

m−1⋃

i=1

π−1
ji

(pji
)
)

\ π−1
jm

(pjm
)| ≤

≤ |
(

XEn
\

m−1⋃

i=1

π−1
ji

(pji
)
)

\ {p ∈ XEn
\

m−1⋃

i=1

π−1
ji

(pji
) | p|Fjm

= pjm
}| ≤

≤ |XEn
\

m−1⋃

i=1

π−1
ji

(pji
)| − 1

ξ
|XEn

\
m−1⋃

i=1

π−1
ji

(pji
)| ≤

≤ (1− 1

ξ
)(1− ξ−1)m−1|XEn

| = (1− ξ−1)m|XEn
|.

Hence (3.2) holds, and since |YEn
| ≤ |XEn

\⋃N
i=1 π−1

ji
(pji

)|, we have

log |YEn
|

|En|
≤ N(n) log(1− ξ−1)

|En|
+

log |XEn
|

|En|
. (3.3)

Observe that

En ⊆
N⋃

i=1

F+R
ji
∪ (En\E−(R+2r+M)

n ). (3.4)

Indeed suppose that γ ∈ En and γ /∈ ⋃N
i=1 F+R

ji
; (Fj)j being a (Dr, 2M, R)–

net, we have that γ ∈ F +R
k for some k, that is γ ∈ βD+R with β such that

βD+M 6⊆ En. Hence dist(γ, β) ≤ r + R so that β ∈ γD+R. If γ ∈ E
−(R+2r+M)
n ,

then β ∈ γD+R ⊆ E
−(r+M)
n so that F+M

k = βD+M ⊆ En which is excluded.
From (3.4), we have

|En| ≤ N(n)|D+R|+ |En\E−(R+2r+M)
n |

so that

1 ≤ N(n)

|En|
|D+R|+ |∂

−
R+2r+MEn|
|En|

;

taking the minimum limit and being limn→∞
|∂−

R+2r+M
En|

|En| = 0,

ζ := lim inf
n→∞

N(n)

|En|
> 0

and then from (3.3) it follows

ent(Y ) ≤ ζ log(1− ξ−1) + ent(X) < ent(X). 2
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Proposition 3.5.5 Let X be a strongly irreducible shift of finite type, let τ :
X → AZ be a local function such that ent(τ (X)) = ent(X). Then τ is pre–
injective.

Proof Suppose that X has memory M , that is X is M–irreducible and that
τ is M–local. Moreover suppose that τ is not pre–injective; then there exist
c1, c2 ∈ X and a disk D contained in Γ, such that c1 6= c2 on D, c1 = c2 out of
D and τ (c1) = τ (c2). Set (Fj)j∈N = (βjD

+2M )j∈N a (D+2M , 2M, R)–net and
denote by Y the subset of X defined by

Y := {c ∈ X | (cβj )|D+2M 6= c2|D+2M for every j ∈ N},

that is the subset of X avoiding the pattern c2|D+2M on the disk D+2M and

on the translated disks Fj = βjD
+2M . The set Y is a subset of X such that

YFj
⊂ XFj

; we prove that τ(Y ) = τ(X). Indeed if c ∈ X\Y , there exists a

subset J ⊆ N such that for every j ∈ J , we have (cβj )|D+2M = c2|D+2M . Define
c̄ ∈ X in the following way:

• c̄ = c1
β
−1

j on Fj for every j ∈ J ,

• c̄ = c out of the union
⋃

j∈J Fj .

That is, c̄ is obtained from c substituting all the occurences of c2|D+2M with
c1|D+2M .

By Proposition 1.3.3, we have c̄ ∈ X and moreover c̄ ∈ Y ; we prove that
τ(c̄) = τ(c).

If γ ∈ βjD
+M for some j ∈ J , we have γDM ⊆ Fj and then τ(c̄)|γ =

τ(c1
β
−1

j )|γ = τ (c1)|β−1

j
γ = τ(c2)|β−1

j
γ = τ (c2

β
−1

j )|γ = τ (c)|γ .

Suppose that γ /∈ βjD
+M for every j ∈ J ; then γDM ⊆ {(βjD) and hence

τ(c̄)|γ = τ (c)|γ . Indeed c̄ and c coincide on
⋃

j∈J {(βjD): if j ∈ J and γ ∈
∂+
2MβjD = Fj\βjD, we have c̄|γ = (c1

β
−1

j )|γ = c1|β−1

j
γ . Since β−1

j γ ∈ ∂+
2MD

one has c1|β−1

j
γ = c2|β−1

j
γ = (c2

β
−1

j )|γ = c|γ .

Then, by Lemma 3.5.4,

ent(τ (X)) = ent(τ (Y )) ≤ ent(Y ) < ent(X). 2

Proposition 3.5.6 Let Γ be an amenable group. Let X be a shift, let Y be
a strongly irreducible shift and let τ : X → Y be a local function such that
ent(τ (X)) = ent(Y ). Then τ is surjective.

Proof Let X and Y be as in the hypotheses and let τ : X → Y be a local
function. We prove that if τ (X) ⊂ Y , then ent(τ (X)) < ent(Y ). Indeed if
τ(X) ⊂ Y , there exists a configuration c ∈ Y which does not belong to τ (X)
and then there exists a disk D such that c|D ∈ YD\(τ (X))D. Let (Fj)j∈N be
a (D, 2M, R)–net; then (τ (X))Fj

⊂ YFj
; by Lemma 3.5.4, ent(τ (X)) < ent(Y ).

2

59



Theorem 3.5.7 Let Γ be an amenable group. Let X be a strongly irreducible
shift of finite type, let Y be a strongly irreducible shift and let τ : X → Y be a
local function with ent(X) = ent(Y ). Then τ is pre–injective if and only if is
surjective.

Proof If τ is pre–injective we have, by Proposition 3.5.2, that ent(τ (X)) =
ent(X). Then ent(τ (X)) = ent(Y ) so that, by Proposition 3.5.6, τ is surjective.

If, conversely, τ is surjective then ent(τ(X)) = ent(Y ) that is ent(τ (X)) =
ent(X). By Proposition 3.5.5, τ is pre–injective. 2

Corollary 3.5.8 (MM–property for strongly irreducible shifts of finite
type) If Γ is an amenable group, a strongly irreducible subshift of finite type of
AΓ has the MM–property.

We conclude this section proving that the property of bounded propagation
for a shift is strictly stronger than the union of strong irreducibility and finite
type condition.

Lemma 3.5.9 A shift X is of finite type with memory M if and only if each
configuration c ∈ AΓ such that c|D(α,M) ∈ XD(α,M) for every α ∈ Γ, belongs to
X.

Proof Let X be a shift of finite type with memory M , let F a finite set of
forbidden blocks each one with support DM and let c ∈ AΓ be a configuration
such that c|D(α,M) ∈ XD(α,M) for every α ∈ Γ.

We prove that c ∈ X ; it is clear that for each α, cα
|DM

∈ XDM
and hence

we have cα
|DM

/∈ F , that is c ∈ XF = X .
For the converse, suppose that each configuration c ∈ AΓ such that c|D(α,M) ∈

XD(α,M) for every α ∈ Γ, belongs to X . Define

F := {c|DM
| c|DM

/∈ XDM
};

if c ∈ X we have that for each α, cα
|DM
∈ XDM

⇒ cα
|DM

/∈ F and c ∈ XF . If
c ∈ XF we have for each α that cα

|DM
∈ XDM

⇒ c|αDM
∈ XαDM

and c ∈ X .
2

Now we can prove the following statement.

Proposition 3.5.10 If X ⊆ AΓ is a shift of bounded propagation, then X is
strongly irreducible and of finite type.

Proof Suppose that X has bounded propagation ≤M ; if E, F ⊆ Γ are such
that dist(E, F ) > M and p1 ∈ XE , p2 ∈ XF are two patterns of X , consider
the pattern p with support E ∪ F given by the union of the functions p1 and
p2. Clearly p ∈ XE∪F because if α ∈ E ∪ F and, for instance α ∈ E, we have
(E ∪ F ) ∩ αDM ⊆ E and hence p|(E∪F )∩αDM

∈ X(E∪F )∩αDM
. A configuration

in X extending p is such that c|E = p1 and c|F = p2. Hence X is M–irreducible.
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Now suppose that c ∈ AΓ is such that c|D(α,M) ∈ XD(α,M) for every α ∈ Γ.
Then if n ≥M and α ∈ Dn we have

c|Dn∩D(α,M) = (c|D(α,M))|Dn∩D(α,M) ∈ XDn∩D(α,M);

X being of bounded propagation we have c|Dn
∈ XDn

. X being closed we have
c ∈ X . 2

If Γ = Z and X is an edge shift, then also the converse of this theorem holds.

Proposition 3.5.11 If X ⊆ AZ is a is strongly irreducible edge shift, then it
is of bounded propagation.

Proof Let G be a graph such that X = XG; notice that if uv, vw ∈
L(X), then uvw ∈ L(X) for every word v ∈ L(X) such that |v| ≥ 1. In-
deed if e1, . . . , en, f1, . . . , fm, g1, . . . , gl ∈ E(G) are edges of G such that u =
e1 . . . en, v = f1 . . . fm and w = g1 . . . gl, we have:

uv : i1
e1−→ i2

e2−→ · · · en−→ in+1
f1−→ in+2

f2−→ · · · fm−→ in+m+1

vw : in+1
f1−→ jn+2

f2−→ · · · fm−→ in+m+1
g1−→ in+m+2

g2−→ · · · gl−→ in+m+l+1.

Then it is clear that the word

uvw : i1
e1−→ · · · en−→ in+1

f1−→ · · · fm−→ in+m+1
g1−→ · · · gl−→ in+m+l+1

belongs to L(X).
Suppose that X is M–irreducible; we prove that X has bounded propagation

≤M .
Let F be the interval [1, L] and let p ∈ AF a pattern such that for each

α ∈ F we have p|F∩D(α,M) ∈ XF∩D(α,M); then there exist q ≥ 0 and 0 ≤ r < M
for which L = qM + r + 1. Set α1 := M + 1, then F ∩D(α1, M) = [1, 2M + 1]
and hence p|[1,2M+1] ∈ X[1,2M+1]. Set α2 := 2M + 1, then F ∩ D(α2, M) =
[M +1, 3M +1] and hence p|[M+1,3M+1] ∈ X[M+1,3M+1]. By the above property,
we have that p|[1,3M+1] ∈ X[1,3M+1]. In this way we can prove that p|[1,qM+1] ∈
X[1,qM+1]. Set αq := qM +1, then F ∩D(αq, M) = [(q− 1)M +1, L] and hence
p = p|[1,L] ∈ X[1,L] = XF .

If F is the union of two disjoint intervals F1 = [1, L1] and F2 = [L1 + n, L2]
at distance n ≤ M , we already have from the above case that p|F1

∈ XF1
and

p|F2
∈ XF2

. Set α := L1, then F ∩D(α, M) = F1 ∪ [L1 + n, L1 + M ] and hence
p|F1∪[L1+n,L1+M ] ∈ XF1∪[L1+n,L1+M ]. Then there exists a word u of length n−2
such that p|F1

u p|[L1+n,L1+M ] ∈ L(X) and the word p|F2
∈ L(X). For the above

property we have p|F1
u p|F2

∈ L(X) and hence p ∈ XF .
Finally, if F is the union of two disjoint intervals F1 and F2 at distance > M ,

we have that p ∈ XF for the M–irreducibility of X .
Because each finite subset F of Z is a finite union of intervals, we have that

the property holds for every F . 2
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Now we prove that in general strong irreducibility and finite type condition
do not imply the bounded propagation property. Consider the subshift X ⊆
{0, 1}Z with set of forbidden blocks:

{010, 111}.

Clearly X is a strongly irreducible (in fact 2–irreducible) shift of finite type; if
M ≥ 1 consider the following pattern p with F := supp(p)

0 1 1 1 . . . 1 1
︸ ︷︷ ︸

M copies of 1

1 0

In this case we have p|F∩D(α,M) ∈ XF∩D(α,M) but p /∈ XF ; hence X is not of
bounded propagation ≤M for each M ≥ 1.

3.6 Semi–Strongly Irreducible Shifts

As we have seen, the MM–property holds for irreducible subshifts of finite type
of AZ. On the other hand we have that the MM–property holds, in general, for
strongly irreducible subshifts of finite type of AΓ (provided that Γ is amenable).
In this section we define another form of irreducibility: the semi–strong irre-
ducibility. For sofic shifts, this notion is equivalent to the general irreducibility in
the one–dimensional case and, in all other cases, allows us to prove the Myhill–
property for the subshifts of finite type (if Γ has non–exponential growth).

Definition 3.6.1 A shift X is called (M, k)–irreducible (where M, k are natural
numbers such that M ≥ k) if for each pair of finite sets E, αD ⊆ Γ (the second
one is a ball centered at α) such that dist(E, αD) > M and for each pair of
patterns p1 ∈ XE and p2 ∈ XαD, there exists a configuration c ∈ X that satisfies
c = p1 in E and c = p2 in αεD, where ε ∈ Γ is such that ‖ε‖ ≤ k. The shift X
is called semi–strongly irreducible if it is (M, k)–irreducible for some M, k ∈ N.

Hence the difference between this new property and the strong irreducibility
one, lies in the fact that the support of the second pattern must be a ball and
the configuration c merging the two patterns moves this support “slightly”.
Notice that this move is a translation and hence it make sense to say that the
configuration c restricted to αεD coincides with p2 ∈ XαD. Moreover, under
the previous hypotheses, the translated disk αεD is still contained in (αD)+M ;
indeed if D = Dr and γ ∈ αεDr, then dist(γ, α) ≤ dist(γ, αε) + dist(αε, α) ≤
r + ‖ε−1‖ ≤ r + k. In particular we have that E ∩ αεD = ∅.

In Definition 3.6.1 is in fact essential that, given a finite set F ⊆ Γ, it exists
α ∈ Γ such that the translated set αF is still contained in F +M . If the group is
not abelian, the set αF could be quite far from F . On the other hand the set
Fα is α–near to F , but it is not, in general, obtained from F under translation.
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Consider, for example, the free group F2 generated by the elements a and b. If
F = {an, bn} with n > M , we have that does not exist an α 6= 1 such that

αF = {αan, αbn} ⊆ F+M = D(an, M) ∪D(bn, M).

Indeed, if the reduced form of α is ᾱb or ᾱb−1 then dist(αan, an) = ‖a−nαan‖ =
‖a−nᾱb±1an‖ ≥ n + 1 and dist(αan, bn) = ‖b−nαan‖ = ‖b−nᾱb±1an‖ ≥ n, that
is αan /∈ F+M . If, otherwise, the reduced form of α is ᾱa±1 then αbn /∈ F+M .

To have a counterexample also in the amenable case, consider the infinite
dihedral group C2 ∗C2 with the presentation 〈a, b | a2 = b2 = 1〉; we have that
if M = 1 there is no α 6= 1 such that α{a, b} ⊆ D(a, 1) ∪ D(b, 1). Indeed if
α = (ab)n with n > 0 then αa = (ab)na = a(ba)n, hence

dist(αa, a) = ‖aαa‖ = ‖(ba)n‖ = 2n > 1

and
dist(αa, b) = ‖bαa‖ = ‖ba(ba)n‖ = ‖(ba)n+1‖ = 2(n + 1) > 1.

In both cases, we have that αa /∈ D(a, 1) ∪ D(b, 1). If α = (ab)na with n > 0
then αa = (ab)n, hence

dist(αa, a) = ‖a(ab)n‖ = ‖(ba)n−1b‖ = 2(n− 1) + 1 = 2n− 1

and
dist(αa, b) = ‖b(ab)n‖ = ‖(ba)nb‖ = 2n + 1 > 1.

To have αa ∈ D(a, 1)∪D(b, 1), it must be n = 1. Hence α = aba and αb = abab.
But, in this case, we have

dist(αb, a) = ‖bab‖ = 3 and dist(αb, b) = ‖babab‖ = 5.

For the symmetry between a and b, we have an analogous result if α = (ba)nb
or α = (ba)n.

This is the reason why, to avoid this problem, we require that the second set
in Definition 3.6.1 is a ball centered at α. Then we consider the new center αε
(which is ε–near to α). The ball αεD having the same radius as αD, is obtained
by translation of it. As we have seen, if Γ has non–exponential growth the sets
in the amenable sequence (En)n are balls centered at 1. Hence if M is large
enough we have that εEn ⊆ E+M

n .

In the particular case Γ = Z, it can be easily seen that a shift X ⊆ AZ is
(M, k)–irreducible if for each n ≥ M and for each pair of words u, v ∈ L(X),
there exists a word w ∈ L(X) with n−k ≤ |w| ≤ n+k, such that u w v ∈ L(X).

In order to see that in the one–dimensional case irreducibility and semi–
strong irreducibility are equivalent, we state the well–known Pumping Lemma
as follows.
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Lemma 3.6.2 (Pumping Lemma) Let L be a regular language. There exists
M ≥ 1 such that if uwv ∈ L and |w| ≥M , there exists a decomposition

w = xyz

with 0 < |y| ≤M so that for each n ∈ N we have uxynzv ∈ L.

Moreover, one can take as M the number of vertices of a graph accepting L.

Corollary 3.6.3 If X ⊆ AZ is a sofic shift, then

X irreducible ⇐⇒ X semi–strongly irreducible.

Proof If X is irreducible, we claim that X is (M, M)–irreducible, where M
is given by the Pumping Lemma.

If n ≥ M and u, v ∈ L(X), there exists w ∈ L(X) such that uwv ∈ L(X).
We distinguish two cases.

If |w| > n + M , then w = x1y1z1 with 0 < |y1| ≤M and if w1 := x1z1, then
uw1v ∈ L(X) and |w|−M ≤ |w1| ≤ |w|−1. If |w1| ≤ n+M , moreover we have
|w1| ≥ |w|−M > n > n−M . If |w1| > n+M , we repeat the above construction
to obtain, for some i ≥ 1, a string of elements w1, . . . , wi, wi+1 such that for
each j = 1, . . . , i + 1

1. uwjv ∈ L(X)

2. wj = xjyjzj with 0 < |yj | ≤M

3. wj+1 = xjzj

4. |wj | > n + M for each j = 1, . . . , i

5. |wi+1| ≤ n + M .

Then |wi+1| ≥ |wi| −M > n > n−M so that we can set w := wi+1.
In the second case, suppose that |w| < n−M ; there exists w1 ∈ L(X) such

that uwv w1 uwv ∈ L(X) and |wv w1 uw| > |w|. In this way we obtain a
word wi ∈ L(X) such that uwiv ∈ L(X) and |wi| ≥ n − M . If, moreover,
|wi| > n + M , we can apply the former case. 2

Now we prove a fundamental result that in the amenable case has been
proved in Proposition 3.5.2 of previous section. We refer to that proof for the
details.

Proposition 3.6.4 Let Γ be a group of non–exponential growth. Let X be a
semi–strongly irreducible shift of finite type and let τ : X → AΓ be a local and
pre–injective function. Then ent(τ(X)) = ent(X).
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Proof Suppose that the memory of X is M , that X is (M, k)–irreducible
and that τ is M–local. Set Y := τ(X) and fix an amenable sequence of disks
(En)n; as we have seen in the proof of Proposition 3.5.2 we have

lim sup
n→∞

log |Y
E

+2M
n
|

|En|
≤ ent(Y ).

Let l = l(k) be the number of ε’s such that ‖ε‖ ≤ k and suppose that ent(Y ) <
ent(X); then

lim sup
n→∞

log |YE+2M
n
|

|En|
< lim sup

n→∞

log |XEn
|

|En|
= lim sup

n→∞

log(
|XEn |

l
)

|En|
;

so that there exists n ∈ N such that

log |Y
E

+2M
n
|

|En|
<

log(
|XEn |

l
)

|En|
that is

|Y
E

+2M
n
| < |XEn

|
l

.

Fix v ∈ X
∂
+

2M
E

+M
n

; since dist(∂+
2ME+M

n , En) = M + 1 > M for each u ∈ XEn

there exists an ε ∈ Dk and a pattern p ∈ X
E

+3M
n

that coincides with u on εEn

and with v on ∂+
2ME+M

n . Then

|{p ∈ XE
+3M
n
| p|∂+

2M
E

+M
n

= v}| ≥ |XEn
|

l
> |YE

+2M
n
|.

Since τ
E

+3M
n

: X
E

+3M
n

→ Y
E

+2M
n

is surjective, there exist two patterns p1, p2 ∈
X

E
+3M
n

such that p1 6= p2 but p1 = v = p2 on ∂+
2ME+M

n and τ
E

+3M
n

(p1) =
τE

+3M
n

(p2). By Corollary 1.3.4, there exist two configurations c1, c2 ∈ X which

extend p1 and p2 and which coincide outside E+M
n . As we have seen in the proof

of Proposition 3.5.2, one has τ (c1) = τ (c2); hence τ is not pre–injective. 2

Observe that for semi–strongly irreducible shifts, Lemma 3.5.4 does not nec-
essarily hold. Indeed consider the subshift X = {01, 10} ⊆ AZ; this shift is of
finite type. Being accepted by the graph

I��
��

J��
��

q

0

i

1
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the shift X is (2, 2)–irreducible. Now ({5j})j∈Z is a ({0}, 4, 10)–net. If c is the
configuration = 0 on the even numbers and = 1 on the odd ones, set Y := {c};
we have Y{5j} ⊂ Y{5j} but ent(Y ) = ent(X) = 0.

The following lemma is very similar to Lemma 3.5.4 but as one can see the
hypotheses are quite stronger.

Lemma 3.6.5 Let Γ be a group with non–exponential growth and let (En)n

be a fixed amenable sequence of disks. Let (Fj)j∈N = (D(βj , r))j∈N be a
(Dr, 2M, R)–net, let X be an (M, k)–irreducible shift and let Y be a subset of X
such that for each j ∈ N, there exists a pattern pj ∈ XFj

for which pj /∈ YD(βjε,r)

whenever ε ∈ Dk. Then ent(Y ) < ent(X).

Proof Let N(n) be the number of Fj ’s such that F+M
j ⊆ En and denote by

Fj1 , . . . , FjN
these disks. Set ξ := |XD+M | and denote by Pjm

⊆ XEn
the set of

the blocks p of XEn
such that p|D(βjm

ε,r) = pjm
for some ε ∈ Dk; we prove that

|XEn
\

N⋃

i=1

Pji
| ≤ (1− ξ−1)N |XEn

| (3.5)

by induction on m ∈ {1, . . . , N}. We have

|XEn
| ≤ |XF

+M
j1

||XEn\F
+M
j1

|

then
|XEn

| ≤ ξ|X
En\F

+M
j1

|.

Since X is (M, k)–irreducible and since dist(Fj1 , En\F+M
j1

) > M , given a pat-
tern p ∈ X

En\F
+M
j1

there exists a pattern p̄ defined on all En that coincides with

p on En\F+M
j1

and with pj1 on some D(βj1
ε, r); then

|XEn\F
+M
j1

| ≤ |Pj1 |.

Hence we have
1

ξ
|XEn

| ≤ |Pj1 |

so that

|XEn
\Pj1 | ≤ |XEn

| − 1

ξ
|XEn

| = (1− 1

ξ
)|XEn

|.

Suppose

|XEn
\

m−1⋃

i=1

Pji
| ≤ (1− ξ−1)m−1|XEn

|;

since

|XEn
\

m−1⋃

i=1

Pji
| ≤
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≤ |X
F

+M
jm

||{p ∈ X
En\F

+M
jm

| p|D(βji
ε,r) 6= pji

for each i = 1, . . . , m−1 and each ε}|

and being |X
F

+M
jm

| = ξ, we have

|XEn
\

m−1⋃

i=1

Pji
| ≤

≤ ξ|{p ∈ X
En\F

+M
jm

| p|D(βji
ε,r) 6= pji

for each i = 1, . . . , m− 1 and each ε|}.

Moreover, since X is (M, k)–irreducible,

|{p ∈ X
En\F

+M
jm

| p|D(βji
ε,r) 6= pji

for each i = 1, . . . , m− 1 and each ε}| ≤

≤ |{p ∈ XEn
| p|D(βji

ε,r) 6= pji
for each i = 1, . . . , m− 1 and each ε

and p|D(βjm
ε̄,r) = pjm

for some ε̄}|.
Hence

1

ξ
|XEn

\
m−1⋃

i=1

Pji
| ≤ |{p ∈ XEn

\
m−1⋃

i=1

Pji
| p|D(βjm

ε,r) = pjm
for some ε}|

and then

|XEn
\

m⋃

i=1

Pji
| = |

(

XEn
\

m−1⋃

i=1

Pji

)

\ Pjm
| ≤

≤ |
(

XEn
\

m−1⋃

i=1

Pji

)

\ {p ∈ XEn
\

m−1⋃

i=1

Pji
| p|D(βjm

ε,r) = pjm
for some ε}| ≤

≤ |XEn
\

m−1⋃

i=1

Pji
| − 1

ξ
|XEn

\
m−1⋃

i=1

Pji
| ≤

≤ (1− 1

ξ
)(1− ξ−1)m−1|XEn

| = (1− ξ−1)m|XEn
|.

Hence (3.5) holds, and since |YEn
| ≤ |XEn

\⋃N
m=1 Pjm

|, we have

log |YEn
|

|En|
≤ N(n) log(1− ξ−1)

|En|
+

log |XEn
|

|En|
. (3.6)

As we have proved in Lemma 3.5.4,

ζ := lim inf
n→∞

N(n)

|En|
> 0;

then taking the maximum limit in (3.6), it follows

ent(Y ) ≤ ζ log(1− ξ−1) + ent(X) < ent(X). 2

The following statement is an easy consequence of Lemma 3.6.5 and gener-
alizes the result given in Theorem 1.7.4.
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Corollary 3.6.6 Let Γ be a group with non–exponential growth and let X be
a semi–strongly irreducible subshift of AΓ. If Y is a proper subshift of X then
ent(Y ) < ent(X).

Proof Let X be (M, k)–irreducible. If Y ⊂ X , there exists a configuration
c ∈ X which does not belong to Y and then there exists a disk Dr such that
c|Dr

∈ XDr
\YDr

. Let (Fj)j∈N = (D(βj , r))j∈N be a (Dr, 2M, R)–net; then
c|Dr

/∈ YD(βjε,r) whenever ε ∈ Dk; by Lemma 3.6.5, ent(Y ) < ent(X). 2

Proposition 3.6.7 Let Γ be a group with non–exponential growth. Let X be a
shift, let Y be a semi–strongly irreducible shift and let τ : X → Y be a local
function such that ent(τ (X)) = ent(Y ). Then τ is surjective.

Proof Let X and Y be as in the previous hypotheses and let τ : X → Y be
a local function. Clearly τ (X) is a subshift of Y . By Corollary 3.6.6, we have
that if τ(X) ⊂ Y , then ent(τ (X)) < ent(Y ). 2

Theorem 3.6.8 Let Γ be a group of non–exponential growth, let X be a semi–
strongly irreducible shift of finite type and let Y be a semi–strongly irreducible
shift. If τ : X → Y is a local function and ent(X) = ent(Y ), then τ pre–injective
implies τ surjective.

Proof If τ is pre–injective we have, by Proposition 3.6.4, that ent(τ (X)) =
ent(X). Then ent(τ (X)) = ent(Y ) so that, by Proposition 3.6.7, τ is surjective.
2

Hence we may conclude stating this (partial) generalization of Corollary
3.5.8.

Corollary 3.6.9 (Myhill–property for semi–strongly irreducible shifts
of finite type) Let Γ be a group of non–exponential growth. Let X be a semi–
strongly irreducible subshift of finite type of AΓand let τ : X → X be a transition
function. Then τ pre–injective implies τ surjective.
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