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Optimization models

are used to find the best configuration of
processes, systems, products, etc.

rely on a theory developed mostly in the past 50
years

applied in an industrial, financial, military corte
yield a better use of budget/resources or a higher
revenue



An example

You work at a company that sells food in tin cans,
and are charged with designing the next generation
can, which is a cylinder made of tin

The can must contai = (33 cl)
Cut and solder tin foll to produce cans
Tin (foll) Is expensive, use as little as possible)

Design a cylinder with volum¥ using as little tin
(.e., total area) as possible.



An example

If we knew radiug and height,
the volume would ber?h
guantity of tin would be &2 + 27rh
r°hmust bev = 20 irf =>h = V/r?

Rewrite the quantity of tin a3(r) = 2712 + 271 V/mr?
Q(r) =22+ 2Vir

Find the minimum of)(r)!
Or minimize the quantity of tin!



Minimize the quantity of tin
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Your First Optimization model

r: radius of the can’s base
h: height of the can

Objective:
27Tr% + 271 h (Minimize)

Constraints:
rth=V
h>0
r>0
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Optimization models have

> Height and radius, number of trucks, . ..

The unknown (and desired) part of the problem (one thing your
boss cares about).

ConstraintsPhysical, explicit (V = 20 i), imposed by law,
budget limits . . .

They define all and only values of the variables that give
possible solutions.

Objective functionwhat the boss really cares about. Quantity
of tin, total cost of trucks, total estimated revenue, . . .

A function of the




The general optimization problem

Consider a vectoix O R" of variables.
An optimization problem can be expressed as:

P.  minimizefo(X)
subject tof,(X) <b
fZ(X) < b2

f3(X) <Dy

f (x)<b.



Feasible solutions

DefineF = {x [/R": f,(X) <b,, f,(X) <b,, . . .,
f (X) b}, that is,F Is thefeasible seof an
optimization problem.

All points x [1 F are calledeasible solutions
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Local Optimum

A vectorx O R"is a optimum if
X' 0 F (a feasible solution)

there is a neighborhood N ofwith no better
point than X fy(x) = f,(X) /X LN n F
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Global optimum

A vectorx8 //R"Is aglobaloptimum if
x9 [1 F (a feasible solution)
there Is nox U F better thans, I.e.,
fo(X) = fo(x9) Ox LI F
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Local optima, global optima

Local Optima
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Global Optimum
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Relaxation of an Optimization problem
Consider an optimization problem
P: min f,(x)

s.t. i()=h,
f,(x)<b,

f.(X)<b,,

Let us denoté& the set of pointg that satisfy all
constraintsk is the feasible set):

F={xJR: f(X)<hb,
fZ(X) < b2’

frm(X) <0}

So we can denote P :migfx) : x L/F} for short.
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Relaxation of an Optimization problem
Consider a problem P : mifi{(x) : x L/F }.

A problem P’ :min§;'(x) : X /F’'} Iis a relaxation of P If:
F OF
f'o(X) < fy(X) for allx U F.

If P’ is a relaxation of a problef, then the global optimum
of P’ Is < the global optimum o:

min{f,'(X) : Xx ZF'} < min{fy(x) : X /F}
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Restriction of an optimization problem

Consider again a problem
P :min{fy(x) : f,(X) < b, L,(X) <b,, ..., {(X) <b.}, or
P : min{fy(x) : x U F} for short.
deletinga constraint from P provides a relaxation of P.

addinga constraint_,,(X) < b.,., to a problem P provides a
restrictionof P, I.e., the opposite:

F* = {x JR: f,(X)<h,
f,(x) <h,

f (X)<b_,
fra(¥<b, 3 OF
and therefore
min{fy(X) : xOF” } = min{fy,(x) : x U F}
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Lower and upper bounds

Consider an optimization problem P : nmfigik) : x U F}: for
any feasible solutior J F, the corresponding objective

function valuefy(x) Is anupper bound.

the most interesting upper bounds are local optima.

alower boundof P is instead a valuesuch that
z<min{fy(x) : x U F}.
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Upper vs. Lower bounds

Situation #1.

You: “We found a solution that will only cost $.”
Boss:“Ok, that sounds good.”

Situation #2:

You: “We found a solution that will only cost $.”

Boss:“That’s too much, find something better.”

You: “We found another solution that costs $.”
Boss:“Can’t you do better than that?”

You: “l can try again, but here’s the proof that we can’'t go
below550,500%$.” === ower bound

Boss:“Ok then, that’s a good solution.”
18



What relaxations are for

If P"is a relaxation of a problem P, then the global optimum
of P’ Is< the global optimum of P.

Hence, any relaxation P’ of P providemaer boundon P.

=) fa problem P is difficult but a relaxation P’ of P is easier to
solve than P itself, we can still try and solve P’ :

(i) we get a lower bound and
(i1) the solution of P’ may help solve P.
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The Knapsack problem

At a flea market in Rome, you spobbjects (old pictures, a

vessel, rusty medals . . . ) that you could re-sell in your antique
shop for aboutloublethe price.

You want these objects to pay for your flight ticket to Rome,
which costC.

Also, your knapsack can carry all of them, but you don’t want
It heavy, so you want to buy the objects that will load your
knapsack as little as possible.

How do you solve this problem?
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The Knapsack problem

Each object=1, 2, ... nhas a pricegp. and a weightv..

> Variables: one variabbe foreachi=1,2 ... n. Thisis a
“yes/no” variable, i.e., either you take th# object or not.

> Constraint: total revenue must be at |[€aéfAs you’ll double

the price when selling them at your store, the revenue for each
object is exactly,)

> ODbjective function: the total weight
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Your first (non -trivial) optimization model

min ) ; w;x;

>oim1pixi = C
xe{0,1Fy ¥Mi=1,2,...,n

Let’s try a relaxation: delete the only linear constraint.

min Y1 wix;
He {01} Vi=1,2 gh

Variablesx; are integer

What is the optimal solution of this problem? Does it give us a
lower bound?
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Relaxing the Knapsack problem

. fn
min ), WiX;
M ;
i—1 pl"'}"." E C
BLx:<1 Vi=1.2.0.0

Relaxingintegrality of the variables gives a relaxation where

we admit of objects.
It doesn’t make sense physically (and monetarily . . . ), but it’s
a relaxation, and doesgive us a better lower bound.
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Linear Programming
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Canonical LP Formulation

Consider an optimization problem
P: min f,(x)

s.t. i()=h,
f,(x)<b,

f.(X)<b,,

P is alinear programming problerLP) if f;: R" — R,
f.: R"— RM"arelinear forms.
LP in canonical form is

min, c'x
st Az <b ;|[C]
x>0

Ais the (m x n) coefficient matrixb is theright-hand
side vectorandc is theobjective coefficient vector
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Canonical LP Formulation

We can reformulate inequalities to equations by adding a non-
negativeslack variable x,, > O:

Tl n

Z a;T; < h =5 Z jT5 + Tptl = 0 N By 210
=1 7=l
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Standard form

A LP formulation in standard form is the following (with all
iInequalities transformed to equations):

i, {v::"'}TI
st. Az=0b ;|[9]

Wherex = (X;, . . ., X, X .-« ., X, A = (A ),
c'=(c0,...,0
~ Of sizem

The standard form is useful because linear systems of
equations are computationally easier to deal with than
systems of inequalities

This form is used in simplex algorithm (solver CPLEX)
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Maximization problems
They are not so different from their minimization counterpart.
max{f(x) :x € F} = —min{—f(x):x e F}
we should take the opposite of the objective funabioky.
Example:

max{2x — 3 :xin [4, 5]} = —-min {-2x + 3 : X In [4, 5]}
7 =—(-7)
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Example

Consider this problem:

max I+ Is

1,79
SI 71+ 2x9 <2
2¢] +x3 < 2
7 =0
In standard form:
—min; —%F] — L9

S1 z14+ 219t X3 =
201 + 19 + 14 =
x>0

R R

Objective functionmax f = -min (-f)




Integer Programming
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Mixed-Integer Linear Programming

min 01Xy 40X ... HXy
ﬁl]I] '|iI'lEI: e _;'ﬂ'l.l'l:Ilt f-_ I!"l
Iy HInXs oo HiRYy <h
Ba1Xy +HEoXy ... Xy < bm
X; eZ Yie]C{L2....n}

>A much more powerful modeling tool than LP:
syes/no decisions variables. in {0,1}
>Much more difficult than LP models.
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Why can’t we just round numbers up/down?

p 2

> Optimal solution of the LP relaxation: (3.7, 0), obj. f.: 3.7

> Instead, the optimal solution of the original problem: (0, 3),
obj. f.: 3.03

sHence, the LP relaxation solution is completely different from
the integer solution 2



Binary variables, logical operators

smodel yes/no decisiong:in {0, 1}

sX. = 0 If the decision is “no”,

sX. = 1ifitis “yes”

scan use logical operators: implications, disjunctions, etc.:
sKevin or Daniel will have ice cream, but not both:

')XKevin + XDaniel <=1

>At least one among Kevin and Daniel will have ice cream:
»>X + X >=1

Kevin _ Daniel_ _ _
>If Kevin has ice cream, then Michel will have one too:

»Xievin <= Xviichel
sDaniel gets ice cream if and only if Mario does not get any:

')XDanieI =1- )ﬁ\/lario
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Binary variables and operations with sets

Binary variables are useful to model problemsets E.g.:
> Choose a subseétof a setA of elements such th&thas
certain properties (e.g. not more théelements, etc.)
> Each elementin Ahas a cost,
> The cost of a solutiofis 3
> Define variablex:

ics i

. _J 1 itie5
"] 0 otherwise

> Now the cost of a solutiofiis: Z = Z cix,

1icAx.=1 icA



Binary variables and operations with sets

sdefine properties similarly, e.g.

S|<Kis ) x<K
€A
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Example: the edge covering problem

sln a graphG = (V, E)as in the figure, choose a subSeff
edges such that all nodes are “coveredablasione edge in
S. Minimize the number of edges used.
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Example: the edge covering problem

sln a graphG = (V, E)as in the figure, choose a subSeff
edges such that all nodes are “coveredablasione edge in
S. Minimize the number of edges used.

6 7
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min
Node 1
Node 2

Node 7

Mathematical formulation of the
edge covering problem

X13 -|—.’{'14
X13 +Xu
X13

X14
X13, Xi4,

‘ X,3=1 means that the edge (1,3) is selected

-|—.'{'1 5
+X15

-|—,T24

X4

X724

X724,

X5

+X 75

+X 75

+X 2%

+X %

+X26

TX36 TX57
>1
=3
+X36 > 1
+xs7 21
+X34 > 1
X7 2 1
36, X5
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Mathematical formulation of the
edge covering problem

min )y ier X{ij) |
ZjEV:{f,j}eE X{ijy 2 1 VieV
xijy € 10,1} v{i.j} € E
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AMPL (A Modeling Language
for Mathematical Programming )

http://www.ampl.com/

edge_covering.model:

param n; # number of nodes

set V=1..n; # set of nodes

set E within {iinV, j in V: i<j};# subset of set of node pairs
var x {E} binary;

minimize numEdges: sum {(i,)) in E} X[i,j];

subject to covering_constraint {i in V}.

sum {j in V: (i,)) in E} X[i,J]] + sum {j in V: (},i) in E} X[},I] >= 1;

edge covering.data:
paramn = /;
set E :=(1,3) (1,4) (1,5) (2,4) (2,5) (2,6) (3,4) (3,6) (5,7);
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Cplex (a Mathematical Programming Solver)

model edge covering.mod;
data edge covering.dat;

option solver ‘cplexamp’; runfile.run
option log_file ‘ffile.log";

option ...;

solve;

# This Is a comment.

#display the processing time (in seconds) to get the optimal solution
display solve user time > results processingTioie.o

display numEdges > results humEdges.out;
# display the edges chosen by the solution

display x > results_chosenEdges.out;
quit;



Solution

martignon@XXX:~/ExampleAMPL$ cat results_processingd.out
_solve_user _time = 0.008

martignon@XXX:~/ExampleAMPL$ cat results_numEdges.ou
numEdges =4

martignon@XXX:~/ExampleAMPL$ cat results _chosenEdyas
X =
13
14
15
24
25
26
34
36
57
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