
1

Fabio Martignon

Introduction to optimization

Laboratoire de Recherche en Informatique

Université Paris Sud

2

Lecture calendar

� Formulations

� Relaxations

� Lower/upper bounds

� Linear Programming models

� Integer Programming models

3

Optimization models

� are used to find the best configuration of
processes, systems, products, etc.

� rely on a theory developed mostly in the past 50
years

� applied in an industrial, financial, military context,
yield a better use of budget/resources or a higher
revenue

� You work at a company that sells food in tin cans,
and are charged with designing the next generation
can, which is a cylinder made of tin

� The can must contain V = 20 cu.in.(33 cl)

� Cut and solder tin foil to produce cans

� Tin (foil) is expensive, use as little as possible)

� Design a cylinder with volume V using as little tin
(i.e., total area) as possible.

4

An example

� If we knew radiusr and heighth,
� the volume would beπr2h
� quantity of tin would be 2πr2 + 2πrh
� πr2h must beV = 20 in3 => h = V/πr2

� Rewrite the quantity of tin asQ(r) = 2πr2 + 2πr V/πr2

� Q(r) = 2πr2 + 2V/r

5

An example

Find the minimum of Q(r)!
Or minimize the quantity of tin!

r

h

6

� r = 1.471 in

� h = = 2.942 in

Minimize the quantity of tin

π (1.471)2
V

7

Your First Optimization model

� Variables:

� r: radius of the can’s base

� h: height of the can

� Objective:

2π r2 + 2π r h (minimize)

� Constraints:

� π r2h = V

� h > 0

� r > 0

r

h

8

Optimization models have
� Variables: Height and radius, number of trucks, . . .

The unknown (and desired) part of the problem (one thing your
boss cares about).

� Constraints: Physical, explicit (V = 20 in3), imposed by law,
budget limits . . .

They define all and only values of the variables that give
possible solutions.

� Objective function: what the boss really cares about. Quantity
of tin, total cost of trucks, total estimated revenue, . . .

A function of the variables

9

The general optimization problem

� Consider a vector of variables.
� An optimization problem can be expressed as:

nRx∈

mm bxf

bxf

bxf

bxf

xf

≤

≤
≤
≤

)(

...

)(

)(

)(

)(

33

22

11

0P: minimize

subject to

10

Feasible solutions

� DefineF = {x ∈ Rn : f1(x) ≤ b1, f2(x) ≤ b2, . . . ,
fm(x) ≤ bm}, that is,F is thefeasible setof an
optimization problem.

� All points x ∈ F are calledfeasible solutions.

11

Local Optimum

� A vectorxl ∈ Rn is alocaloptimum if

� xl ∈ F (a feasible solution)

� there is a neighborhood N of xl with no better
point than xl: f0(x) ≥ f0(xl) ∀ x ∈ N ∩ F

12

Global optimum

� A vectorxg ∈ Rn is aglobaloptimum if

� xg ∈ F (a feasible solution)

� there is nox ∈ F better thanxg, i.e.,

f0(x) ≥ f0(xg) ∀x ∈ F

13

Local optima, global optima

14

Relaxation of an Optimization problem
� Consider an optimization problem

,)(

...

)(

)(

)(

22

11

0

mm bxf

bxf

bxf

xf

≤

≤
≤

P: min

s.t.

� Let us denote F the set of points x that satisfy all
constraints (F is the feasible set):

})(

...

,)(

,)(

22

11

mm bxf

bxf

bxf

≤

≤
≤

� So we can denote P :min{f0(x) : x ∈ F} for short.

F = {x ∈ Rn :

15

Relaxation of an Optimization problem

� A problem P’ :min{f0’(x) : x ∈ F’ } is a relaxation of P if:

� F’ F

� f ’ 0(x) ≤ f0(x) for all x ∈ F.

� If P’ is a relaxation of a problemP, then the global optimum
of P’ is ≤ the global optimum ofP:

min{ f0’(x) : x ∈ F’ } ≤ min{ f0(x) : x ∈ F}

� Consider a problem P : min{ f0(x) : x ∈ F }.

⊇

16

Restriction of an optimization problem
Consider again a problem

P : min{f0(x) : f1(x) ≤ b1, f2(x) ≤ b2, . . . , fm(x) ≤ bm}, or

P : min{f0(x) : x ∈ F} for short.

� deletinga constraint from P provides a relaxation of P.

� addinga constraintfm+1(x) ≤ bm+1 to a problem P provides a
restrictionof P, i.e., the opposite:

Fbxf

bxf

bxf

bxf

mm

mm

⊆≤
≤

≤
≤

++ })(

,)(

...,

,)(

,)(

11

22

11F’’ = {x ∈ Rn :

and therefore
min{ f0(x) : x ∈ F’’ } ≥ min{ f0(x) : x ∈ F}

17

Lower and upper bounds

� Consider an optimization problem P : min{f0(x) : x ∈ F}: for
any feasible solutionx ∈ F, the corresponding objective
function valuef0(x) is anupper bound.

� the most interesting upper bounds are local optima.

� a lower boundof P is instead a valuez such that

z ≤ min{ f0(x) : x ∈ F} .

18

Upper vs. Lower bounds

� Situation #1:

� You: “We found a solution that will only cost 572,000 $.”

� Boss: “Ok, that sounds good.”

� Situation #2:

� You: “We found a solution that will only cost 572,000 $.”

� Boss: “That’s too much, find something better.”

� . . .

� You: “We found another solution that costs 554,000 $.”

� Boss: “Can’t you do better than that?”

� You: “I can try again, but here’s the proof that we can’t go
below 550,500 $.”

� Boss: “Ok then, that’s a good solution.”

Lower bound

19

What relaxations are for

� If P’ is a relaxation of a problem P, then the global optimum
of P’ is ≤ the global optimum of P.

� Hence, any relaxation P’ of P provides alower boundon P.

If a problem P is difficult but a relaxation P’ of P is easier to
solve than P itself, we can still try and solve P’ :

(i) we get a lower bound and

(ii) the solution of P’ may help solve P.

20

The Knapsack problem

At a flea market in Rome, you spot n objects (old pictures, a
vessel, rusty medals . . .) that you could re-sell in your antique
shop for about doublethe price.

You want these objects to pay for your flight ticket to Rome,
which cost C.

Also, your knapsack can carry all of them, but you don’t want
it heavy, so you want to buy the objects that will load your
knapsack as little as possible.

How do you solve this problem?

21

The Knapsack problem

Each object i = 1, 2, . . . , n has a price pi and a weight wi.
� Variables: one variable xi for each i = 1, 2 . . . , n. This is a
“yes/no” variable, i.e., either you take the i-th object or not.
� Constraint: total revenue must be at least C (As you’ll double
the price when selling them at your store, the revenue for each
object is exactly pi)
� Objective function: the total weight

22

Your first (non -trivial) optimization model

Let’s try a relaxation: delete the only linear constraint.

What is the optimal solution of this problem? Does it give us a
lower bound?

Variables xi are integer

23

Relaxing the Knapsack problem

Relaxing integrality of the variables gives a relaxation where
we admit fractionsof objects.
It doesn’t make sense physically (and monetarily . . .), but it’s
a relaxation, and it does give us a better lower bound.

xi have real values

24

Linear Programming

25

Canonical LP Formulation

P is a linear programming problem (LP) if f0 : Rn
→ R,

fi : Rn
→ Rm are linear forms.

LP in canonical form is:

A is the (m × n) coefficient matrix, b is the right-hand
side vector, and c is the objective coefficient vector.

� Consider an optimization problem

,)(

...

)(

)(

)(

22

11

0

mm bxf

bxf

bxf

xf

≤

≤
≤

P: min

s.t.

26

Canonical LP Formulation

We can reformulate inequalities to equations by adding a non-
negative slack variable xn+1 ≥ 0:

27

Standard form
A LP formulation in standard form is the following (with all
inequalities transformed to equations):

Where x = (x1, . . . , xn, xn+1, . . . , xn+m), A' = (A, Im),
c' = (c, 0, ... ,0)

The standard form is useful because linear systems of
equations are computationally easier to deal with than
systems of inequalities
This form is used in simplex algorithm (solver CPLEX)

Of size m

28

Maximization problems

They are not so different from their minimization counterpart.

we should take the opposite of the objective function only.

Example:
max{2x − 3 : x in [4, 5]} = −min {−2x + 3 : x in [4, 5]}

7 = −(−7)

29

Example

Consider this problem:

In standard form:

Objective function: max f -min (-f)

30

Integer Programming

31

Mixed-Integer Linear Programming

�A much more powerful modeling tool than LP:
�yes/no decisions variables : xi in {0,1}
�Much more difficult than LP models.

32

� Optimal solution of the LP relaxation: (3.7, 0), obj. f.: 3.7
� Instead, the optimal solution of the original problem: (0, 3),
obj. f.: 3.03
�Hence, the LP relaxation solution is completely different from
the integer solution

Why can’t we just round numbers up/down?

33

�model yes/no decisions: xi in {0, 1}
�xi = 0 if the decision is “no”,
�xi = 1 if it is “yes”
�can use logical operators: implications, disjunctions, etc.:
�Kevin or Daniel will have ice cream, but not both:
�xKevin + xDaniel <= 1
�At least one among Kevin and Daniel will have ice cream:
�xKevin + xDaniel >= 1
�If Kevin has ice cream, then Michel will have one too:
�xkevin <= xMichel
�Daniel gets ice cream if and only if Mario does not get any:
�xDaniel = 1 − xMario

Binary variables, logical operators

34

Binary variables are useful to model problems on sets. E.g.:
� Choose a subset Sof a set A of elements such that Shas

certain properties (e.g. not more than K elements, etc.)
� Each element i in A has a cost ca
� The cost of a solution S is
� Define variable xi:

� Now the cost of a solution S is:

Binary variables and operations with sets

35

�define properties similarly, e.g.

Binary variables and operations with sets

36

�In a graph G = (V, E)as in the figure, choose a subset Sof
edges such that all nodes are “covered” by at leastone edge in
S. Minimize the number of edges used.

Example: the edge covering problem

37

�In a graph G = (V, E)as in the figure, choose a subset Sof
edges such that all nodes are “covered” by at leastone edge in
S. Minimize the number of edges used.

Example: the edge covering problem

38

Mathematical formulation of the
edge covering problem

X13 =1 means that the edge (1,3) is selected

Node 1

Node 2

Node 7

39

Mathematical formulation of the
edge covering problem

40

AMPL (A Modeling Language
for Mathematical Programming)

http://www.ampl.com/
edge_covering.model:
param n; # number of nodes
set V=1..n; # set of nodes
set E within {i in V, j in V: i<j};# subset of set of node pairs
var x {E} binary;
minimize numEdges: sum {(i,j) in E} x[i,j];
subject to covering_constraint {i in V}:
sum {j in V: (i,j) in E} x[i,j] + sum {j in V: (j,i) in E} x[j,i] >= 1;

edge_covering.data:
param n := 7;
set E := (1,3) (1,4) (1,5) (2,4) (2,5) (2,6) (3,4) (3,6) (5,7);

J. Elias: Réseaux, Théorie des Jeux et Optimisation

41

Cplex (a Mathematical Programming Solver)
model edge_covering.mod;
data edge_covering.dat;
option solver 'cplexamp';
option log_file 'ffile.log';
option ...;
solve;
This is a comment.

#display the processing time (in seconds) to get the optimal solution
display _solve_user_time > results_processingTime.out;

display numEdges > results_numEdges.out;

display the edges chosen by the solution
display x > results_chosenEdges.out;
quit;

runfile.run

42

Solution
martignon@XXX:~/ExampleAMPL$ cat results_processingTime.out
_solve_user_time = 0.008

martignon@XXX:~/ExampleAMPL$ cat results_numEdges.out
numEdges = 4

martignon@XXX:~/ExampleAMPL$ cat results_chosenEdges.out
x :=
1 3 0
1 4 1
1 5 0
2 4 0
2 5 0
2 6 1
3 4 0
3 6 1
5 7 1;

