
1

Fabio Martignon

Laboratoire de Recherche en Informatique

Network Optimization

Université Paris Sud

2

Lecture overview

� Multi-commodity flow problem

� Network design problem

– Node positioning

– Users’ coverage (Assignment problem)

– Traffic routing

� Radio/coverage planning

3

Multi-commodity flow
problem

4

Multi-commodity flow problem

Given:

An oriented graph G = (N, A).

The capacity uij and the cost cij are associated with
each arc (i , j) ∈ A.

A set of demands K, where each demand k is
characterized by:

�Source sk ∈ N

�Destination tk ∈ N

�An amount of flow dk

� Problem:

� Route all the demands at the least cost, taking into
account the capacity constraints of the arcs.

5

Multi-commodity flow problem (cont.)

6

Model

Decision variables:

The amount of flow (xk
ij) of demand k routed on arc

(i , j):

Objective function:

7

Model

Constraints:

(1) Flow Balance constraints:

(2) Capacity constraints:

if

if

if

8

Model

Constraints:

(3) Positivity constraints:

9

Formulation dimension

� Number of variables: |A||K|

� Number of constraints: |N||K| + |A|

10

Network design problem

11

Candidate Sites
Test Points
Destinations

12

Candidate Sites
Test Points
Destinations

13

Candidate Sites
Test Points
Destinations
Routers

14

Candidate Sites
Test Points
Destinations
Routers

15

Network design problem
Given

� A set of Candidate Sites (CSs, where to install nodes)

� A set of test points (TPs) and a set of destinations (DNs)

– source-destination traffic pairs (sk, tk)

Problem

� Install nodes, links, and route traffic demands
minimizing the total network installation cost

16

Network model
Notations and parameters:
� S: the set of CSs

� I: the set of TPs

� D: the set of DNs

� cI
j: cost for installing a node in CS j

� cB
jl: cost for buying one bandwidth unit between

CSsj and l

� cA
ij: Access cost per bandwidth unit between TP i

and CS j

� cE
jk: Egress cost per bandwidth unit between CS j

and DN k

17

Notations and parameters:

� dik: traffic generated by TP i towards DN k

� ujl: maximum capacity that can be reserved on link (j,l)

� vj: maximum capacity of the access link of CS j

� hjk: maximum capacity that can be reserved on egress
link (j,k)

� aij: 0-1 parameter that indicates if TP i can access the
network through CS j

� bjl: 0-1 parameter that indicates if CSj can be connected
to CSl

� ejk: 0-1 parameter that indicates if CS j can be connected
to DN k

Network model (cont.)

18

Network model (cont.)
Decision variables:

� xij: 0-1 variable that indicates if TP i is assigned to
CS j

� zj: 0-1 variable that indicates if a node is installed
in CS j

� wjk: 0-1 variable that indicates if CSj is connected
to DN k

� fk
jl: flow variable which denotes the traffic flow

routed on link (j,l) destined to DN k

� fjk: flow variable which denotes the traffic flow
routed on egress link(j, k)

19

Network model (cont.)
Objective function:
The objective function accounts for the total network cost,
including installation costs and the costs related to the
connection of nodes, users’ access and egress costs.

Network model (cont.)
Constraints:

21

Network model (cont.)
Constraints:

22

� AMPL means “A Mathematical Programming Language”

� AMPL is an implementation of the Mathematical
Programming language

� Many solvers can work with AMPL

� AMPL works as follows:

� translates a user-defined model to a low-level
formulation (called flat form) that can be understood
by a solver

� passes the flat form to the solver

� reads a solution back from the solver and interprets it
within the higher-level model (called structured form)

AMPL basics

23

� AMPL usually requires three files:

� the model file (extension .mod) holding the MP formulation

� the data file (extension .dat), which lists the values to be assigned to
each parameter symbol

� the run file (extension .run), which contains the (imperative) commands
necessary to solve the problem

� The model file is written in the MP language

� The data file simply contains numerical data together with the corresponding
parameter symbols

� The run file is written in an imperative C-like language (many notable
differences from C, however)

� Sometimes, MP language and imperative language commands can be mixed in
the same file (usually the run file)

� To run AMPL, type ampl my-runfile.run from the command line

AMPL basics (cont.)

24

costModel.mod
set D; # set of destinations
set TP; # set of TPs
set CS; # set of CSs

param ITP{TP,CS}; # Matrix aij (TP/CS)
param ID{CS,D}; # Matrix eij (CS/D)
param ICS{CS,CS}; # Matrix bjl (CS/CS)
param d{TP,D}; # Traffic generated by each TP, destined to destination D
param U{CS,CS}; # Capacity on the link CS/CS
param costU{CS,CS}; # Transport cost (per unit of bandwidth) for traffic on the transport link
between the CSs
param V{CS}; # Capacity of the link between each TP and CS
param costR{CS}; # Router installation cost
param costD{CS,D}; # Cost (per bandwidth unit) for traffic on the link between the CS and the

destination D
param costTP{TP,CS}; # Cost (per bandwidth unit) for traffic on the link between the TP and the

CS
param H{CS,D}; # Capacity of the egress link CS/D

var x{TP,CS} binary; # Binary variable of assignment of each TP to a CS
var z{CS} binary; # Binary variable of installation of a router in a CS
var f{CS,CS,D} >=0; # Flow variable per destination D on the link between CSs
var w{CS,D} binary; # Binary variable of connection of CS to a destination node D
var fw{CS,D} >=0; # Flow variable on the link between a CS and a destination D

25

costModel.mod (cont.)
minimize total_cost: sum {j in CS} (costR[j] * z[j]) +

sum {j in CS, l in CS, k in D} (costU[j,l] * f[j,l,k]) +
sum {j in CS, k in D} (costD[j,k] * fw[j,k]) +
sum {j in CS, i in TP, k in D} d[i,k] * x[i,j] * costTP[i,j];

subject to assignment {i in TP}: sum {j in CS} x[i,j] = 1;
subject to existence {i in TP, j in CS}: x[i,j] <= ITP[i,j] * z[j];

subject to flow_balance_constraints {j in CS, k in D}: sum {i in TP} d[i,k]*x[i,j] + sum
{l in CS} (f[l,j,k] - f[j,l,k]) - fw[j,k] = 0;
subject to max_flow_per_TP_CS {j in CS}: sum {i in TP, k in D} d[i,k] * x[i,j] <= V[j];

subject to connect_CS_D {j in CS, k in D}: w[j,k] <= ID[j,k] * z[j];
subject to flow_CS_D {j in CS, k in D}: fw[j,k] <= H(j,k) * w[j,k];

subject to link_existence_1 {j in CS, l in CS: j!=l}: sum {k in D} f[j,l,k] <= U[j,l] *
ICS[j,l] * z[j];
subject to link_existence_2 {j in CS, l in CS: j!=l}: sum {k in D} f[j,l,k] <= U[j,l] *
ICS[j,l] * z[l];

J. Elias: Réseaux, Théorie des Jeux et Optimisation

26

model costModel.mod;
data outfile.dat;
option solver 'cplexamp';
option log_file 'ffile.log';
option cplex_options 'timing 1' 'mipdisplay=1' 'integrality=1e-09';
option display_1col 1000000;
solve;

display _solve_user_time > results_processingTime.out;
display (sum {i in TP, j in CS} x[i,j] + (sum {j in CS, k in D: fw[j,k]!= 0} 1) + sum {j in CS, l in
CS: (sum {k in D} f[j,l,k]) != 0} 1) > results_nbrOfLinks.out;
display x > results_xy.out;
display z > results_z.out;
display f > results_perk_f.out;
display sum {j in CS} z[j] > results_nbrOfRouters.out;
display w > results_w.out;
display {j in CS, l in CS} (sum {k in D} f[j,l,k]) > results_f.out;
display fw > results_fw.out;
display total_cost > results_totalCost.out;
display sum {j in CS} (costoR[j] * z[j]) > results_zcost.out;
display solve_result_num > solve.tmp;
quit;

runfile_costModel.run

27

Solution
Node log . . .
Best integer = 4.390008e+03 Node = 0 Best node = 4.046214e+03
Best integer = 4.238774e+03 Node = 0 Best node = 4.052842e+03
Best integer = 4.099293e+03 Node = 0 Best node = 4.057592e+03
Best integer = 4.096009e+03 Node = 40 Best node = 4.072417e+03
Best integer = 4.094250e+03 Node = 138 Best node = 4.085538e+03
Best integer = 4.093422e+03 Node = 178 Best node = 4.089841e+03

Implied bound cuts applied: 5
Flow cuts applied: 708
Mixed integer rounding cuts applied: 1

Times (seconds):
Input = 0.084005
Solve = 106.719
Output = 0.48003
CPLEX 11.0.1: optimal integer solution within mipgap or absmipgap; objective 4093.422
22401 MIP simplex iterations
204 branch-and-bound nodes
absmipgap = 0.279608, relmipgap = 6.83066e-05
708 flow-cover cuts
5 implied-bound cuts
1 mixed-integer rounding cut

28

- Randomly
generated
topology

- LxL square,
with L=1000

40 Candidate
Sites

20 Test Points
20 Destination

Nodes

Exampleof a plannednetwork

Network Design Applications:
Service Overlay Network

� SON is an application-layer network built on
top of the traditional IP-layer networks

Network
Domain

Network
Domain

Network
Domain

Access
network

SON

Logical link

Service
Gateway

Access
network

29

What is a Service Overlay
Network?

� SON is operated by an “overlay ISP”

� The SON operator owns one or more overlay
nodes (also called “service gateways”) hosted
in the underlying ISP domains

� Overlay nodes are interconnected by virtual
overlay links that are mapped into paths of
the underlying network

� SON operator purchases bandwidth for
virtual links from ISPs with bilateral SLAs

� SON provides QoS guarantees to customers
implementing application specific traffic
management mechanisms

30

Why using SONs ?

� SONs provide a simple solution to
end-to-end QoS both from a technical
and an economical perspective

� SONs don’t require any changes in the
underlying networks

� SONs provide a unified framework that
can be shared by different applications

ISP ISPISP user user user

SON Operator
SLAs SLAs

31

� Problem Statement:
� Given a set of Candidate Sites (where to install overlay nodes)

and source-destination traffic pairs:

� Goals:
Deploy a SON that:

1. Minimizes the total network installation cost

2. Maximizes the profit of the SON operator

� Taking into account the SON operator’s budget

� Critical issues:
� Revenue: the model must take explicitly into account the

SON operator’s revenue in the optimization procedure

� The number and location of overlay nodes are not pre-
determined

� Capacity constraints on overlay links are considered

� Fast and efficient heuristics must be developed to deal with
large-scale network optimization and to support periodical
SON redesign based on traffic statistics measured on-line

Topology Design & Bandwidth
Provisioning of SONs

32

We now illustrate an optimization framework
for planning SONs

� Two mathematical programming models:

1.The first model (FCSD) minimizes the

network installation cost while providing
full coverage to all users

2.The second model (PMSD) maximizes

the SON profit choosing which users to
serve based on the expected gain and
taking into account the budget
constraint

33

Topology Design & Bandwidth
Provisioning of SONs

� Two efficient heuristics to get near-
optimal solutions for large-size network
instances with a short computing time

1. The Cost Minimization SON Design
Heuristic (H-FCSD)

2. The Profit Maximization SON Design
Heuristic (H-PMSD)

34

Topology Design & Bandwidth
Provisioning of SONs

Mathematical Models
FCSD

Objective Function:
(FCSD: Full-Coverage SON Design model)

Node
Installation

cost

Access
cost

Egress
cost

Overlay links
bandwidth cost

Subject to:
Flow Conservation constraints
Access and Egress coverage

Coherence and Integrality constraints

PMSD

Objective Function:
(PMSD: Profit Maximization SON Design

model)

SON revenue

35

Profit Maximization Model

� The SON planner may define a budget
(B) to limit the economic risks in the
deployment of its network:

Budget Constraint

Budget constraint

36

45

Radio planning

46

Network architecture

47

Wireless Network
� Wireless networks are mainly access networks

� Fixed access point (cellular systems, WLAN,
WMAN)

48

Cellular coverage: the territory coverage is obtained by
Base Stations–BS (or Access Points) that provide radio
access to Mobile Stations (MSs) within a service area
called CELL

Wireless Network

49

What is radio planning?
� When we have to install a new wireless network or

extend an existing one into a new area, we need to design
the fixed and the radio parts of the network. This phase is
called radio planning.

� The basic decisions that must be taken during the radio
planning phase are:

– Where to install base stations (or access points,
depending on the technology)

– How to configure base stations (antenna type, height,
sectors orientation, maximum power, device capacity,
etc.)

50

What is radio planning?
� The basic decisions that must be taken during the radio planning phase are:

– Where to install base stations (or access points, depending on the technology)

– How to configure base stations (antenna type, height, sectors orientation,
maximum power, device capacity, etc.)

51

Antenna positioning

� The selection of possible antenna sites depends on
several technical (traffic density and distribution,
ground morphology, etc.) and non-technical
(electromagnetic pollution, local authority rules,
agreements with building owners, etc.) issues.

� We denote with S the set of Css

� We can assume that the channel gain gij between TP i
and CS j is provided by a propagation prediction tool.

52

Antenna positioning
� The antenna configuration affects the signal level received

at TPs

� For each CS j we can define a set of possible antenna
configurations Kj

� We can assume that the channel gain gijk between TP i and
CS j depends also on configuration k.

� Based on signal quality requirement and channel gain we
can evaluate if TP i can be covered by CS j with an antenna
with configuration k, and define coefficients:

53

Coverage planning

� The goal of the coverage planning is to:

– Select where to install base stations

– Select antenna configurations

� To ensure that the signal level in all TPs is high
enough to guarantee a good communication quality

� Note that interference is not considered here

54

Decision variables and parameters

� Decision variables:

� yjk: 0-1 decision variable that indicates if a base
station with configuration k is installed in CS j

� Installation cost:

� cjk:cost related to the installation of a base station in
CS j with configuration k

55

Set covering problem

Objective function:
Total cost

Full coverage
constraints

One configuration
per site

Integrality
constraints

