POLYTECH’
PARIS-SUD

How To Route Packets

OUnicast Routing
mDistance Vector Basics
mLink State Basics

Unicast Routing

Routing functionalities are fundamental for
internetworking

In TCP/IP networks:

B Routing allows the communication of two nodes A
and B not directly connected

iy
“

7

Unicast Routing
Layer 3 entities along the path route (choose the
exit SAP) packets according to the destination

address
The correspondence Exit SAP - destination
address is stored in the routing table

: Entity A
{ Entity B] { Routing one} { Entity C]

Routing Protocol

Comprises two different functionalities

B Info exchange on network topology, traffic,
etc. (1)

B routing table creation and maintenance (2)
Formally, (1) is the routing protocol

Practically, (1) and (2) are joint phases.
The way the routing tables are created
depends on the routing message
exchange and viceversa

Routing Algorithms

A routing algorithm defines the criteria
on how to choose a path between a
source and a destination...

...and builds the routing tables

'he choice criteria depend on the type
of network (datagram, virtual circuit)

Routing and Network
Capacity

In broadcast networks no need of
routing

hus the maximum supported traffic
depends on the capacity of the
channel

In meshed IP networks, multiple links
can be used at the same time

'hus, WHICH links are used has a
deep impact on the network capacity

Routing and Capacity

Dumb Routing Planning

Link Capacity =C
Max Traffic=C
D,

K e

SV

-

1

Routing and Capacity

Wise routing planning

@ Link Capacity=C
®Max Traffic=3C
D2

=y

N e
Vg

-

Routing in the Internet

[0 The type of forwarding impacts the routing policy
0 IP forwarding is:

B destination-based

B next-hop based
[0 Consequence:

B All the packs destined to D arriving at router R follow
the same path after R

Routing in the Internet
[0 Thus, we have the following constraints on the
routing:

B All the paths from all the sources to a destination D
must form a tree, for each D

sgD

S1

S2

B Source-Destination Couples cannot be routed
independently from other couples.

Shortest Path Routing

TCP/IP Routing: the shortest path to a
destination is chosen

The computation of the shortest path is
performed on the graph representing the
network (device=vertex, link=edge, edge
weight=metrics)

Shortest Path properties:

B All the paths to a destination form a tree

B Easy and simple algorithms (polynomial
complexity, even distributed)

Routing Algorithms

A Flavor of Graph Theory
Bellman-Ford algorithm
Dyijkstra algorithm

Some Definition on Graphs
digraph G(N,A)

®m /N nodes

B A= {(/{), iCN, jON} edges (ordered couple of
nodes

path (n,, n,, ..., n) set of nodes with (n,
n;..) LA, without repeated nodes

cycle: route with n,= n,

Connected digraph: for each couple /i and j
at least one path from i to j exists

Weighted digraph: d; weights associated to
the edge (i,j) [A

Path (n, n,, ..., n;) length :
dnl, n2+ dn2,n3+"' +dn(l-1), nl

Finding the Shortest Path

Given G(N,A) and two nodesi and |,
find the path with minimum length

'he problem has polynomial
complexity in the number of
nodes

Property:

|f node k Is traversed by the shortest path from i
to], also the path from 1 to k iIsthe shortest

Bellman-Ford Algorithm

Assumptions:
B Positive-negative weights
B No negative cycles

larget:

B Find the shortest paths from a source
to all the other nodes

B Find the shortest paths from all the
nodes to a destination

Bellman-Ford Algorithm

Variables:

m DM : length of the shortest path from the source

(assumed to be node 1) to node i with a number of
hops <h

Initialization: D!” =0 [h
DY =0 [i#£1

Iterations:
D™ = m n[D™, m_in(D@ +d,)}

J J

The algorithm stops after N-1 iterations

An Example

Initialization

1] Dsh=0

B D,O=inf

B D, O=inf

@ First Iteration

m D,'=min (D,°, D.°+1)=1, NH:S
m D,'=min (D,°, D.°+3)=3, NH:S
Second Iteration

® D,’=min (D;!, D,1+1)=1, NH:S
® D,2=min (D,!, D;1+1)=2, NH:1

Distributed Bellman-Ford

It can be shown that the algorithm does
converge in a finite number of iterations, even
in its distributed form

Nodes periodically send out their estimation of
the shortest path and update such estimation
according to the rule:

\/
<o

D. = min[Di ,m,iﬂ(Dj +dji)}

|
J

Bellman-Ford in practice

Each node is assigned a label (n, L)
where n is the next hop on the path
and L is the path length

Each node updates its label looking at
its neighbors’ labels

When the labels do not change any
longer the shortest path tree can be
built

Example : Bellman-Ford

1.2
(1.2
(1.2

2(_’ OO)

(1,0)
(1,0)
(1, 0)
(L0 1 \

(5 3)
(1,5)
(1.9)

(-)
3
'

1

4
(_’ OO)
(1,1)
(1,1)

1.1

(o)
-)
4,2)
4,2)

(5, 4)
(3,9
(-,)
6 (-, @)

Dijkstra Algorithm

Assumptions:
B Positive weighted edges

larget:

B Find out the shortest paths form a source
node (1) and all the other nodes

Initialization:

P =11,

D, =0, D{”=d, 0zl

B d,=c if the edge i-j does not exist

Dijkstra Algorithms

1. find 1 J(N-P):
D. = min D.

' o(N-P)
and set
P-=PO{i}. If P=N,then STOP.
2. for each | L1 (N-P) neighbor of any nodein P set :
D, = miniDj ,mkin(Dk +dkj)
3.GoTol.

Dijkstra in practice

Same label criteria as Bellman-Ford
Label can be temporary or permanent

In the beginning, the only permanent
label is the one of the source

At each iteration, the temporary label
with the lowest cost of the path is made
permanent

Example: Dijkstra

(1.2
(1.2

1 2)

e
N

(1,0 1

(5 3)
(5 3)
(1, 5)
(1.9)
(1.5
, 3

1

4
(1, 1)
(1, 1)

(_’ 00)5
(4,2)
(4,2)

(4,2)

(5 4)
(5 4)
(5 4)
(-,)
(-,)
6 (-,)

On Complexity

Bellman-Ford:

B N-1 iterations

B N-1 nodes to be checked each iteration

B N-1 comparisons per node
O Complexity: O(N3)

Dijkstra:

B N-1 iterations

B N operations each iteration on average
O Complexity: O(N?2)

Dijkstra is generally more convenient

Routing IP

Sends packet on the shortest path to
the destination

'he length of the path is measured
according to a given metrics

he shortest path computation is
implemented in a distributed way
through a routing protocol

In the routing table, only the next hop
is stored, thanks to the property that
sub-paths of a shortest path are
shortest themselves.

Routing Protocols

Handle the message exchange among
routers to compute the paths to a
destination

Two classes
B Distance Vector (RIP, IGRP)
B Link State (OSPF,IS-IS)

Differences

B Type of metrics

B Type of messages exchanged

B Type of procedures used to exchange messages

POLYTECH’
PARIS-SUD

Distance Vector Routing Protocols

Distance Vector Protocols

Routers exchange specific connectivity
information: the Distance Vector (DV):

[destination address, distance]

DV is sent only to directly connected
routers

DV is sent periodically and/or
whenever the network topology
changes

Distance estimation is performed using
Bellman-Ford distributed algorithm

Distance Vector: Algorithm

DV reception

. Increase the distance to the specified
destination of the current link cost

. For each specified destination

B If the destination is not in the routing table
[0 Add destination/distance

B Otherwise

[0 If the next hop in the routing table is the DV sender
B Update the stored information with the new one

0 Otherwise

B If the stored distance to the destination is bigger to
the one specified in the DV

= Update the stored info with the new one

. End

Distance Vector

DV Is sent
B periodically

B Whenever something changes upon the
reception of another DV

Routers calculate distances if:
B A new DV is received
B Something changes in the local network

topology (local link failure)
/dk/l./.k Dy

Computation: D/ = min, [D + d,] j,g\‘

Routing Tables Update

message
from C ‘message
Net2 4 from C after
Net3] increment
Net6 4 Net2 5
Net8 3 ‘ Net3 9
NetO 5 Net6 5
Net8 4
Old routing table Netd 6 New routing table
Netl 7 A ‘ Netl 7 A
Net2 2 C Net2 5 C
Updating - Net3 9 C
Net6 8 F algorithm
g Net6 5 C
Net8 4 E
Net9 4 F Net3 4 E
NetO 4 F
Rules

Netl: No news, don’t change

Net2: Same next hop, replace

Net3: A new router, add

Net6: Different next hop, new hop count smaller, replace

Net8: Different next hop, new hop count the same, don’t change
Net9: Different next hop, new hop count larger, don’t change

Distance Vector Example (1)

Simple Network Topology:
O RO

4

3

Assume each link has cost = 1

Distance Vector Example (2)

Assume all the nodes wake up at the
same time

& cold start procedure

Each node knows its local connectivity

situation (directly connected links and
interfaces)

Start Up routing table for node A:

FromATo Link Cost
A local 0

Distance Vector Example (3)

A sets up its Distance Vector

A=0 and sends it out to all of its
neighbors (on local links)

B and D receive the DV and enlarge

their knowledge of the network

oy (e
3 4

5

‘" 6

Distance Vector Example (4)

Node B, upon reception of the Distance
Vector, updates the distance adding the
link cost (A=1) and checks the DV against
its routing table. A is still unknown, thus
routing table update

FromB To Link Cost
B local 0
A 1 1
The same thing for node D
FromD To Link Cost
D local 0
A 3 1

Distance Vector Example (5)
Node B prepares its DV ...

B=0, A=1
... and fires it through its local links

The same for node D:

D=0, A=1
1

Distance Vector Example (6)

The DV from B is received by A,C and E
whilst that from D is received by A and E

A receives the two DVs 1 2
From B: B=0, A=1
From D: D=0, A=1 3 4
... and updates its routing table 6
FromA to Link Cost
A local 0
B 1 1
D 3 1

Distance Vector Example (7)

C receives from B on link 2

B=0, A=1

... and updates its routing table :

1 2
3 ? 5
6

From Cto Link Cost
C local 0
B 2 1
A 2 2

Distance Vector Example (8)
Node E receives from B on link 4

B=0, A=1
and from D on link 6
D=0, A=1

... and updates its routing table

3

12

[0 Note that the distance to A is the same
through links 4 and 6

FromE To Link Cost
E local 0
B 4 1
A 4 2
D 6 1

Distance Vector Example (9)

The nodes A, C and E have updated their
routing tables, hence they transmit their own
DVs:

NOC
NOC
NOC

Distance Vector Example (10)

Node B:
FromB To Link Cost
B|local |0 A: A=0, B=1, D=1 i Ioial (1)
Al 1 |1 C: C=0, B=1, A=2 5 ; 2
E: E=0, B=1, A=2, D=1 C 5 1
E 4 1
NOde D FromD To Link Cost
D |local |0 A: A=0, B=1, D=1 2 Iogal 2
Al 3 1 E: E=0, B=1, A=2, D=1 B 3 2
E 6 1

Node E
From E verso Link Cost
E| local |O : s ;
Bl 4 |1 C: C=0, B=1, A=2 B 4 1
A 4 2
A 4 2 D 6 1
D 6 1 C 5 1

Distance Vector Example (11)

The nodes B, D and E transmit their own DVs:
e B: B=0, A=1, D=2, C=1, E=1

NOC
NOC

NOC

Distance Vector Example (12)

Node A FromA To Link Cost
- A local 0
A |local |0 B=0, A=1, D=2, C=1, E=1 B 1 1
Bl1 1| D: D=0, A=1, B=2, E=1 g f ;
NOde C FromCTo Link Cost
Clioco] 80/ A1 D=2 ct £ | |
B|2 1 T s e A 2 2
Al2 |2 £ > L
D 5 2

Node D
Dl Local 10 FromD To Link Cost
D local 0
Al3 1| E=0.B=1,A=2,D=1,C=1 A 3 1
B 3 2
Bl 3 2 c g 1
E|l6 1 C 6 2

Distance Vector Example (13)

[he algorithm has reached
convergence

'he nodes keep transmitting their
DVs periodically but the routing
tables do not change

I &
> <
<
<
A A

A4

3

Distance Vector: Link 1 Failure

Link 1 goes down

® <O
3 4

O
Nodes A and B get aware of the link failure

... and update their routing table assigning
cost = infinity to link 1

Distance Vector: Link 1 Failure

FromA To Link Cost FromB To Link Cost
A local 0 B local 0
B 1 1= inf A 1 1= inf
D 3 1 D 1 2= inf
C 1 2= Inf C 2 1
E 1 2= inf E 4 1

New DVs are sent:
node A: A=0, B=inf, D=1, C=inf, E=inf
node B: B=0, A=inf, D=inf, C=1, E=1

Distance Vector: Link 1 Failure

[0 The DV from A is received by D, which compares it
against its routing table

[0 All the costs specified in the DV are greater or equal
than the ones stored in the routing table, but node D
updates its routing table since the link it receives the DV
from is the one it uses to reach all the destinations

@® <O-

3 4 5 FromD to Link Cost
D local 0
6 A 3 1
B 3 2= Inf
E 6 1
C 6 2

Distance Vector: Link 1 Failure

Also nodes C and E update their tables

From C to Link Cost From E to Link Cost
C local 0 E local 0
B 2 1 B 4 1
A 2 2= inf A 4 2= inf
E 5 1 D 6 1
D 5 2 C 5 1

Distance Vector: Link 1 Failure

nodes D, C and E transmit their DVs
node D: D=0, A=1, B—inf E=1, C=
node C: C=0, B=1, A=inf, E=1, D
node E: E=0, B=1, A=inf, D=1, C

® <0-_
1 1
3 4

2
2
1

O

Distance Vector: Link 1

Failure
[hese DVs update the tables of A,B,D
and E
From A to Link Cost FromB To Link Cost
A local 0 B local 0
B 1 inf A 1 inf
D 3 1 D 1=4 inf= 2
C 1= 3 Inf=3 C 2 1
E 1= 3 inf=2 E 4 1
FromD To Link Cost FromE To Link Cost
D local 0 E local 0
A 3 1 B 4 1
B 3=6 Inf=2 A 4—6 inf=2
E 6 1 D 6 1
C 6 2 C 5 1

Distance Vector: Link 1
Failure

[0 Nodes A,B,D and E transmit the new DVs
node A: A=0, B=inf, D=1, C=3, E=2
node B: B=0, A=inf, D=2, C=1, E=1
node D: D=0, A=1, B=2, E=1,C=2
noceEEOBlAZDl,Cl
[0 A, B and C update their tables
FromBTo Link Cost
FromA To Link Cost B local 0
A local 0 A 1=4 Inf=3
B 1=3 inf=3 D 4 2
D 3 1 C 2 1
C 3 3 E 4 1
E 3 2 FromC To Link Cost
= The algorithm has C local 0
reached a new steady . == —
state !l E 5 1
D 5 2

Distance Vector: Main Features

PROs:
B \Very easy

CONs:

B High time to convergence
B Limited by the lowest node
B Possible loops

B Instability in big networks
(counting to infinity)

Convergence Time

0 seconds 15 seconds nx 15 seconds

Rn

Grows proportionally with the number
of nodes (Low Scalability)

Distance Vector: counting to infinity

Suppose link 6 goes down

2

Distance Vector: counting to
infinity

Node D detects /ink 6 failure and
updates its routing table

FromD To Link Cost
D local 0)
A 3 1
B 6 2= Inf
E 6 1= inf
C 6 2= Inf

if D immediately transmits the new DV,

node A updates its routing table (the
only reachable node is D)

Distance Vector: counting to infinity

[0 Buf if node A transmits its DV before D; what
happens?

node A: A=0, B=3, D=1, C=3, E=2
=) NOde D updates its routing table !!!

FromD To Link Cost
D local 0
A 3 1
B 6=3 inf=4
E 6= 3 inf=3
C 6= 3 inf= 4
A loop is created between nodes A and D

The algorithm does not reach convergence

At each step the distances to B, C and E
grows by 2 < counting to infinity

Counting to infinity: Remedies

Hop Count Limit:

B The counting to infinity is broken if infinity is
represented by a finite value

B Such value must be bigger than the length of the
longest path in the network

B When any distance reaches such value the
corresponding node is declared unreachable

B During the counting to infinity :
[0 Packets loop
[0 Congested links

[0 High packet loss probability (including routing
packets)

* Convergence may be very slow

Counting to infinity: Remedies

Split-Horizon:

B if node A sends to D the packets meant for X, it’s
pointless for A to announce X in its own DV to D

B node A does not advertise to D the destination X

Distance Vector: Split Horizon

Node A sends different DV on different
local links

Two Flavors of Split Horizon:

B Basic: the node omits any information on the
destination which it reaches through the link it
IS using

B Poisonous Reverse: the node includes all the
destinations, setting to infinity the distance to
those reachable through the link it is using

Split Horizon does not work with some

topologies

Distance Vector: Split

Horizon
ﬁ 2
3 4

@ <
when link 6 goes down this is the situation
of nodes B,C and E

From Link Cost
BtoD 4 2
CtoD 5 2
EtoD 6 1= inf

Distance Vector: Split
Horizon

Node E advertises on links 4 and 5 that
the distance to D is infinity

Suppose that such message is received
by B but not by C (for example, due to
an error on such routing

message/packet)
From Link Cost
BtoD 4 2= Inf
CtoD 5 2
EtoD 6 Inf

Distance Vector: Split
Horizon

Node C fires its DV (Split Horizon with

Poisonous Reverse On)

B To node E: C=0, B=1, A=inf, E=inf, D=inf
[0 On link 5 to reach D costs infinity

B to node B: C=0, B=inf, A=3, E=1, D=2

0 On link 2 to reach D costs 2 5

Distance Vector: Split

Horizon
B updates its routing table and sends its DV
(Split Horizon Poisonous Reverse On):
B on /ink 2 D is reachable with cost = infinity
B on /ink 4 D is reachable with cost 3

nodes B,C and E:

From Link Cost
BtoD 4— 2 Inf=3
CtoD 5 2
EtoD 6=4 Inf=4

loop among nodes B,C and E until the cost
threshold is reached

AGAIN counting to infinity

Counting to infinity: remedies

Use of Counters/Timers (Hold down)

If for Tinvalid No info from the first hop to
a specific destination, destination is no

longer valid (not advertised in the DVs,
DVs from other nodes skipped)

after Trush the route is flushed

Tinvalid - Tfiush must be set so that the new
information propagate within the whole
network

Invalid routes advertised with distance =
infinity

Nodes receiving an invalid route set the
route as invalid themselves

Counting to infinity: remedies

Triggered Update

B Explicit advertisement of the changes in
the topology

B Speed up convergence
B Prompt failures discovery

Link State Routing Protocols

Link State Routing Protocols

Each node knows neighboring nodes and
the relative costs to reach them

Each node sends to ALL the other nodes
such information (flooding) through Link
State Packet (LSP)

All the nodes keep a LSP data base and
a complete map of the network topology

(graph)

On the complete graph shortest paths
are computed using Dijkstra

Link State: PROs

Flexibility and Optimality in the path
definition (complete map of the
network topology)

LSP information is not sent periodically
but only when something changes

All the nodes get promptly aware of
any change in the network topology

Link State: CONs

[1 Signaling protocol required to keep
the topological information (Hello)

[1 flooding needed
[0 LSP must be acknowledged
(1 Difficult to implement

Link State: example

a 1
¢ Ig 1 L SP generated by R2
R2 O
Rl 2
R3 4

Flooding

Each entering packet is transmitted through
all the interfaces except the incoming one

possible loops and consequent traffic
congestion

Sequence number (SN) + SN database in
each node to avoid multiple transmissions of

the same packet
Hop counter (same as TTL in IP)

Example

Each node owns a LSP data base

Example

[0 The LSP data base represents the network topology

From Link Cost | Sequence Number
1 1

-

glhlolwla|Nd[B[N]FR]|w
N
RlRr(RrlRP|IP|PR[R[R]|~

mimimlo|lolo|lo|lu|w|m|>|>
UOUUrn:DmUUrnOZDUUUg'

(@))
=
=

[0 Each node can easily calculate the shortest path to all the
other nodes in the network

Upon reception of an LSP

If the LSP has not been received yet or if the
SN is greater than the one already stored:

B Store the new LSP

B Apply the flooding

If the LSP has the same SN of the one stored
B Do nothing

If the LSP is older than the one stored
B Transmit the newer one to the sender

Link State: Example

[0 The routing protocol must update the network topology
whenever something changes

® <0

3 4

N
0 Jink 1 failure is detected by nodes A and B which send an
LS update packet on links 3, 2 and 4

node A: From A, To B, Link 1, Cost=inf, Number=2
node B: From B, To A, link 1, Cost= inf, Number=2

Link State: Example

he messages are received by nodes D,E
and C which update their data base and
flood on the local links

'he new data base after flooding is:

From To Link Cost | Sequence Number
A B 1 1= inf 1=2
A D 3 1 1
B A 1 1= inf 1=2
B C 2 1 1
B E 4 1 1
C B 2 1 1
C E 5 1 1
D A 3 1 1
D E 6 1 1
E B 4 1 1
E C 5 1 1
E D 6 1 1

