
How To Route Packets
�Unicast Routing

�Distance Vector Basics
�Link State Basics

Unicast Routing

� Routing functionalities are fundamental for
internetworking

� In TCP/IP networks:

� Routing allows the communication of two nodes A
and B not directly connected

A

B

Unicast Routing
� Layer 3 entities along the path route (choose the

exit SAP) packets according to the destination
address

� The correspondence Exit SAP – destination
address is stored in the routing table

Entity A
Routing one Entity CEntity B

Routing Protocol

� Comprises two different functionalities

� Info exchange on network topology, traffic,
etc. (1)

� routing table creation and maintenance (2)

� Formally, (1) is the routing protocol

� Practically, (1) and (2) are joint phases.
The way the routing tables are created
depends on the routing message
exchange and viceversa

Routing Algorithms

� A routing algorithm defines the criteria
on how to choose a path between a
source and a destination…

� …and builds the routing tables

� The choice criteria depend on the type
of network (datagram, virtual circuit)

Routing and Network
Capacity

� In broadcast networks no need of
routing

� Thus the maximum supported traffic
depends on the capacity of the
channel

� In meshed IP networks, multiple links
can be used at the same time

� Thus, WHICH links are used has a
deep impact on the network capacity

Routing and Capacity

� Dumb Routing Planning

S1

D1

S2

D2

Link Capacity = C
Max Traffic = C

Routing and Capacity

� Wise routing planning

S1

D1

S2

D2

�Link Capacity = C
�Max Traffic = 3C

Routing in the Internet

� The type of forwarding impacts the routing policy

� IP forwarding is:

� destination-based

� next-hop based

� Consequence:

� All the packs destined to D arriving at router R follow
the same path after R

R D

Routing in the Internet

� Thus, we have the following constraints on the
routing:

� All the paths from all the sources to a destination D
must form a tree, for each D

� Source-Destination Couples cannot be routed
independently from other couples.

S5

D

S1

S2

S3

S4

S6

Shortest Path Routing

� TCP/IP Routing: the shortest path to a
destination is chosen

� The computation of the shortest path is
performed on the graph representing the
network (device=vertex, link=edge, edge
weight=metrics)

� Shortest Path properties:

� All the paths to a destination form a tree

� Easy and simple algorithms (polynomial
complexity, even distributed)

Routing Algorithms

A Flavor of Graph Theory

Bellman-Ford algorithm

Dyijkstra algorithm

Some Definition on Graphs

� digraph G(N,A)
� N nodes
� A={(i,j), i∈N, j∈N} edges (ordered couple of

nodes)

� path: (n1, n2, …, nl) set of nodes with (ni,
ni+1)∈A, without repeated nodes

� cycle: route with n1= nl

� Connected digraph: for each couple i and j
at least one path from i to j exists

� Weighted digraph: dij weights associated to
the edge (i,j) ∈A

� Path (n1, n2, …, nl) length :
dn1, n2+ dn2,n3+…+dn(l-1), nl

Finding the Shortest Path

� The problem has polynomial
complexity in the number of
nodes

Given G(N,A) and two nodes i and j,
find the path with minimum length
Given G(N,A) and two nodes i and j,
find the path with minimum length

Property:

If node k is traversed by the shortest path from i
to j, also the path from i to k is the shortest

Property:

If node k is traversed by the shortest path from i
to j, also the path from i to k is the shortest

Bellman-Ford Algorithm

� Assumptions:
� Positive-negative weights

� No negative cycles

� Target:
� Find the shortest paths from a source

to all the other nodes

� Find the shortest paths from all the
nodes to a destination

Bellman-Ford Algorithm
� Variables:

� Di
(h) : length of the shortest path from the source

(assumed to be node 1) to node i with a number of
hops ≤ h

� Initialization:

� Iterations:

� The algorithm stops after N-1 iterations

()




 +=+

ji
h

j
j

h
i

h
i dDDD)()()1(min,min

1

 0
)0(

)(
1

≠∀∞=

∀=

iD

hD

i

h

An Example

� Initialization

� Ds
h=0

� D1
0=inf

� D2
0=inf

� First Iteration

� D1
1=min (D1

0 , Ds
0+1)=1, NH:S

� D2
1=min (D2

0 , Ds
0+3)=3, NH:S

� Second Iteration

� D1
2=min (D1

1 , D2
1+1)=1, NH:S

� D2
2=min (D2

1 , D1
1+1)=2, NH:1

S 1

2

1

1
3

Distributed Bellman-Ford
� It can be shown that the algorithm does

converge in a finite number of iterations, even
in its distributed form

� Nodes periodically send out their estimation of
the shortest path and update such estimation
according to the rule:

()




 += jij

j
ii dDDD min,min:

Dj

Bellman-Ford in practice

� Each node is assigned a label (n, L)

where n is the next hop on the path

and L is the path length

� Each node updates its label looking at

its neighbors’ labels

� When the labels do not change any

longer the shortest path tree can be

built

Example : Bellman-Ford

2

2
1

5

3

1

1

2

4

(-, ∞) (-, ∞)

(-, ∞) (-, ∞)

(-, ∞)(1, 0) 1

2 3

6

4 5

(1, 2) (1, 5)

(1, 1) (-, ∞)

(-, ∞)(1, 0)

(3, 9)

(4, 2)

(1, 5)(1, 2)

(1, 0)

(1, 1)

(5, 4)

(5, 3)(1, 2)

(4, 2)(1, 1)

(1, 0)

Dijkstra Algorithm

� Assumptions:

� Positive weighted edges

� Target:

� Find out the shortest paths form a source
node (1) and all the other nodes

� Initialization:

� dij=∞ if the edge i-j does not exist

{ }
1 ,0

,1

1
)0(

1 ≠∀==
=

jdDD

P

jj

Dijkstra Algorithms

{ }

()[]
1. To Go 3.

: setP in nodeany of neighbor each for 2.

 STOP.then , If

 setand

: find 1.

kjk
k

jj

j
)PN(j

i

dDmin,DminD

(N-P)j

NP.iPP:

DminD

(N-P)i

+=
∈

=∪=

=
∈

−∈

Dijkstra in practice

� Same label criteria as Bellman-Ford

� Label can be temporary or permanent

� In the beginning, the only permanent
label is the one of the source

� At each iteration, the temporary label
with the lowest cost of the path is made
permanent

Example: Dijkstra

2

2
1

5

3

1

1

2

4

(1, 2) (1, 5)

(1, 1) (-, ∞)

(-, ∞)(1, 0) 1

2 3

6

4 5

(1, 2) (1, 5)

(1, 1) (4, 2)

(-, ∞)(1, 0)

(-, ∞)

(4, 2)

(1, 5)(1, 2)

(1, 0)

(1, 1)

(1, 2)

(5, 4)

(5, 3)

(4, 2)(1, 1)

(1, 0)

(5, 3)

(5, 4)
(5, 4)

On Complexity
� Bellman-Ford:

� N-1 iterations

� N-1 nodes to be checked each iteration

� N-1 comparisons per node

� Complexity: O(N3)

� Dijkstra:

� N-1 iterations

� N operations each iteration on average

� Complexity: O(N2)

� Dijkstra is generally more convenient

Routing IP

� Sends packet on the shortest path to
the destination

� The length of the path is measured
according to a given metrics

� The shortest path computation is
implemented in a distributed way
through a routing protocol

� In the routing table, only the next hop
is stored, thanks to the property that
sub-paths of a shortest path are
shortest themselves.

Routing Protocols

� Handle the message exchange among
routers to compute the paths to a
destination

� Two classes

� Distance Vector (RIP, IGRP)

� Link State (OSPF,IS-IS)

� Differences

� Type of metrics

� Type of messages exchanged

� Type of procedures used to exchange messages

Distance Vector Routing Protocols

Distance Vector Protocols

� Routers exchange specific connectivity
information: the Distance Vector (DV):

[destination address, distance]

� DV is sent only to directly connected
routers

� DV is sent periodically and/or
whenever the network topology
changes

� Distance estimation is performed using
Bellman-Ford distributed algorithm

Distance Vector: Algorithm

� DV reception
1. Increase the distance to the specified

destination of the current link cost
2. For each specified destination

� If the destination is not in the routing table
� Add destination/distance

� Otherwise
� If the next hop in the routing table is the DV sender

� Update the stored information with the new one

� Otherwise
� If the stored distance to the destination is bigger to

the one specified in the DV

� Update the stored info with the new one

3. End

Distance Vector

� DV is sent

� periodically

� Whenever something changes upon the
reception of another DV

� Routers calculate distances if:

� A new DV is received

� Something changes in the local network
topology (local link failure)

Computation: Dj’ = mink [Dk + dkj]
k, Dk

j, Dj

dkj

Routing Tables Update

Distance Vector Example (1)

� Simple Network Topology:

� Assume each link has cost = 1

A B

ED

C
1 2

3

6

5
4

Distance Vector Example (2)

� Assume all the nodes wake up at the
same time

� cold start procedure

� Each node knows its local connectivity
situation (directly connected links and
interfaces)

� Start Up routing table for node A:

From A To Link Cost
A local 0

Distance Vector Example (3)

� A sets up its Distance Vector
A=0 and sends it out to all of its
neighbors (on local links)

� B and D receive the DV and enlarge
their knowledge of the network

A B

ED

C
1 2

3

6

5
4

Distance Vector Example (4)

� Node B, upon reception of the Distance
Vector, updates the distance adding the
link cost (A=1) and checks the DV against
its routing table. A is still unknown, thus
routing table update

� The same thing for node D

From B To Link Cost
B local 0
A 1 1

From D To Link Cost
D local 0
A 3 1

Distance Vector Example (5)

� Node B prepares its DV …

B=0, A=1

… and fires it through its local links

� The same for node D:

D=0, A=1

A B

ED

C
1 2

3

6

5
4

Distance Vector Example (6)

� The DV from B is received by A,C and E
whilst that from D is received by A and E

� A receives the two DVs

From B: B=0, A=1

From D: D=0, A=1

… and updates its routing table

From A to Link Cost
A local 0
B 1 1
D 3 1

A B

ED

C
1 2

3

6
5

4

Distance Vector Example (7)

� C receives from B on link 2

B=0, A=1

… and updates its routing table :

From C to Link Cost
C local 0
B 2 1
A 2 2

A B

ED

C
1 2

3

6
5

4

Distance Vector Example (8)
� Node E receives from B on link 4

B=0, A=1

and from D on link 6

D=0, A=1

… and updates its routing table
� Note that the distance to A is the same

through links 4 and 6

From E To Link Cost
E local 0
B 4 1
A 4 2
D 6 1

A B

ED

C
1 2

3

6
5

4

Distance Vector Example (9)
� The nodes A, C and E have updated their

routing tables, hence they transmit their own
DVs:

node A: A=0, B=1, D=1

node C: C=0, B=1, A=2

node E: E=0, B=1, A=2, D=1

A B

ED

C
1 2

3

6

5
4

Distance Vector Example (10)

� Node B:

� Node D:

� Node E

B local 0

A 1 1

A: A=0, B=1, D=1

C: C=0, B=1, A=2

E: E=0, B=1, A=2, D=1

From B To Link Cost
B local 0
A 1 1
D 1 2
C 2 1
E 4 1

D local 0

A 3 1

A: A=0, B=1, D=1

E: E=0, B=1, A=2, D=1

From D To Link Cost
D local 0
A 3 1
B 3 2
E 6 1

E local 0

B 4 1

A 4 2

D 6 1

C: C=0, B=1, A=2

From E verso Link Cost
E local 0
B 4 1
A 4 2
D 6 1
C 5 1

Distance Vector Example (11)

� The nodes B, D and E transmit their own DVs:

node B: B=0, A=1, D=2, C=1, E=1

node D: D=0, A=1, B=2, E=1

node E: E=0, B=1, A=2, D=1, C=1

A B

ED

C
1 2

3

6

5
4

Distance Vector Example (12)

� Node A:

� Node C:

� Node D

A local 0

B 1 1

D 3 1

B=0, A=1, D=2, C=1, E=1

D: D=0, A=1, B=2, E=1

C local 0

B 2 1

A 2 2

B=0, A=1, D=2, C=1, E=1

E=0, B=1, A=2, D=1, C=1

D Local 0

A 3 1

B 3 2

E 6 1

E=0, B=1, A=2, D=1, C=1

From A To Link Cost
A local 0
B 1 1
D 3 1
C 1 2
E 1 2

From C To Link Cost
C local 0
B 2 1
A 2 2
E 5 1
D 5 2

From D To Link Cost
D local 0
A 3 1
B 3 2
E 6 1
C 6 2

Distance Vector Example (13)

� The algorithm has reached
convergence

� The nodes keep transmitting their
DVs periodically but the routing
tables do not change

A B

ED

C
1 2

3

6

5
4

Distance Vector: Link 1 Failure

� Link 1 goes down

� Nodes A and B get aware of the link failure

� … and update their routing table assigning
cost = infinity to link 1

A B

ED

C
1 2

3

6

5
4

Distance Vector: Link 1 Failure

�New DVs are sent:

node A: A=0, B=inf, D=1, C=inf, E=inf

node B: B=0, A=inf, D=inf, C=1, E=1

From A To Link Cost
A local 0
B 1 1⇒⇒⇒⇒ inf
D 3 1
C 1 2⇒⇒⇒⇒ inf
E 1 2⇒⇒⇒⇒ inf

From B To Link Cost
B local 0
A 1 1⇒⇒⇒⇒ inf
D 1 2⇒⇒⇒⇒ inf
C 2 1
E 4 1

� The DV from A is received by D, which compares it
against its routing table

� All the costs specified in the DV are greater or equal
than the ones stored in the routing table, but node D
updates its routing table since the link it receives the DV
from is the one it uses to reach all the destinations

A B

ED

C
1 2

3

6
5

4

Distance Vector: Link 1 Failure

From D to Link Cost
D local 0
A 3 1
B 3 2⇒⇒⇒⇒inf
E 6 1
C 6 2

� Also nodes C and E update their tables

From C to Link Cost
C local 0
B 2 1
A 2 2⇒⇒⇒⇒ inf
E 5 1
D 5 2

From E to Link Cost
E local 0
B 4 1
A 4 2⇒⇒⇒⇒ inf
D 6 1
C 5 1

Distance Vector: Link 1 Failure

� nodes D, C and E transmit their DVs

node D: D=0, A=1, B=inf, E=1, C=2

node C: C=0, B=1, A=inf, E=1, D=2

node E: E=0, B=1, A=inf, D=1, C=1

A B

ED

C
1 2

3

6

5
4

Distance Vector: Link 1 Failure

Distance Vector: Link 1
Failure

� These DVs update the tables of A,B,D
and E

From A to Link Cost
A local 0
B 1 inf
D 3 1
C 1⇒⇒⇒⇒3 inf⇒⇒⇒⇒3
E 1⇒⇒⇒⇒3 inf⇒⇒⇒⇒2

From B To Link Cost
B local 0
A 1 inf
D 1⇒⇒⇒⇒4 inf⇒⇒⇒⇒2
C 2 1
E 4 1

From D To Link Cost
D local 0
A 3 1
B 3⇒⇒⇒⇒6 inf⇒⇒⇒⇒2
E 6 1
C 6 2

From E To Link Cost
E local 0
B 4 1
A 4⇒⇒⇒⇒6 inf⇒⇒⇒⇒ 2
D 6 1
C 5 1

Distance Vector: Link 1
Failure

� Nodes A,B,D and E transmit the new DVs
node A: A=0, B=inf, D=1, C=3, E=2
node B: B=0, A=inf, D=2, C=1, E=1
node D: D=0, A=1, B=2, E=1, C=2
node E: E=0, B=1, A=2, D=1, C=1

� A, B and C update their tables

From A To Link Cost
A local 0
B 1⇒⇒⇒⇒3 inf⇒⇒⇒⇒ 3
D 3 1
C 3 3
E 3 2

From B To Link Cost
B local 0
A 1⇒⇒⇒⇒4 inf⇒⇒⇒⇒3
D 4 2
C 2 1
E 4 1

From C To Link Cost
C local 0
B 2 1
A 2⇒⇒⇒⇒5 inf⇒⇒⇒⇒ 3
E 5 1
D 5 2

� The algorithm has
reached a new steady
state !!!

Distance Vector: Main Features

� PROs:

� Very easy

� CONs:

� High time to convergence

� Limited by the lowest node

� Possible loops

� Instability in big networks

(counting to infinity)

Convergence Time

� Grows proportionally with the number
of nodes (Low Scalability)

Distance Vector: counting to infinity

� Suppose link 6 goes down

A B

ED

C
2

3

6

5
4

Distance Vector: counting to
infinity

� Node D detects link 6 failure and
updates its routing table

� if D immediately transmits the new DV,
node A updates its routing table (the
only reachable node is D)

From D To Link Cost
D local 0
A 3 1
B 6 2⇒⇒⇒⇒inf
E 6 1⇒⇒⇒⇒inf
C 6 2⇒⇒⇒⇒inf

Distance Vector: counting to infinity

� Buf if node A transmits its DV before D; what
happens?

node A: A=0, B=3, D=1, C=3, E=2
node D updates its routing table !!!

� A loop is created between nodes A and D
� The algorithm does not reach convergence
� At each step the distances to B, C and E

grows by 2 �counting to infinity

From D To Link Cost
D local 0
A 3 1
B 6⇒⇒⇒⇒3 inf⇒⇒⇒⇒4
E 6⇒⇒⇒⇒3 inf⇒⇒⇒⇒3
C 6⇒⇒⇒⇒3 inf⇒⇒⇒⇒4

� Hop Count Limit:

� The counting to infinity is broken if infinity is
represented by a finite value

� Such value must be bigger than the length of the
longest path in the network

� When any distance reaches such value the
corresponding node is declared unreachable

� During the counting to infinity :

� Packets loop

� Congested links

� High packet loss probability (including routing
packets)

� Convergence may be very slow

Counting to infinity: Remedies

Counting to infinity: Remedies
� Split-Horizon:

� if node A sends to D the packets meant for X, it’s
pointless for A to announce X in its own DV to D

� node A does not advertise to D the destination X

A D
X

Distance Vector: Split Horizon

� Node A sends different DV on different
local links

� Two Flavors of Split Horizon:

� Basic: the node omits any information on the
destination which it reaches through the link it
is using

� Poisonous Reverse: the node includes all the
destinations, setting to infinity the distance to
those reachable through the link it is using

� Split Horizon does not work with some
topologies

Distance Vector: Split
Horizon

� when link 6 goes down this is the situation
of nodes B,C and E

From Link Cost
B to D 4 2
C to D 5 2
E to D 6 1⇒⇒⇒⇒ inf

A B

ED

C
2

3

6

5
4

Distance Vector: Split
Horizon

� Node E advertises on links 4 and 5 that
the distance to D is infinity

� Suppose that such message is received
by B but not by C (for example, due to
an error on such routing
message/packet)

From Link Cost
B to D 4 2⇒⇒⇒⇒ inf
C to D 5 2
E to D 6 inf

Distance Vector: Split
Horizon

� Node C fires its DV (Split Horizon with
Poisonous Reverse On)

� To node E: C=0, B=1, A=inf, E=inf, D=inf

� On link 5 to reach D costs infinity

� to node B: C=0, B=inf, A=3, E=1, D=2

� On link 2 to reach D costs 2

A B

ED

C
2

3

6

5
4

Distance Vector: Split
Horizon

� B updates its routing table and sends its DV
(Split Horizon Poisonous Reverse On):

� on link 2 D is reachable with cost = infinity

� on link 4 D is reachable with cost 3

� nodes B,C and E:

� loop among nodes B,C and E until the cost
threshold is reached

� AGAIN counting to infinity

From Link Cost
B to D 4⇒⇒⇒⇒2 inf⇒⇒⇒⇒3
C to D 5 2
E to D 6⇒⇒⇒⇒ 4444 inf⇒⇒⇒⇒ 4444

Counting to infinity: remedies

� Use of Counters/Timers (Hold down)
� If for Tinvalid no info from the first hop to

a specific destination, destination is no
longer valid (not advertised in the DVs,
DVs from other nodes skipped)

� after Tflush the route is flushed
� Tinvalid - Tflush must be set so that the new

information propagate within the whole
network

� Invalid routes advertised with distance =
infinity

� Nodes receiving an invalid route set the
route as invalid themselves

Counting to infinity: remedies

� Triggered Update

� Explicit advertisement of the changes in
the topology

� Speed up convergence

� Prompt failures discovery

Link State Routing Protocols

� Each node knows neighboring nodes and
the relative costs to reach them

� Each node sends to ALL the other nodes
such information (flooding) through Link
State Packet (LSP)

� All the nodes keep a LSP data base and
a complete map of the network topology
(graph)

� On the complete graph shortest paths
are computed using Dijkstra

Link State Routing Protocols

Link State: PROs

� Flexibility and Optimality in the path
definition (complete map of the
network topology)

� LSP information is not sent periodically
but only when something changes

� All the nodes get promptly aware of
any change in the network topology

Link State: CONs

� Signaling protocol required to keep
the topological information (Hello)

� flooding needed

� LSP must be acknowledged

� Difficult to implement

Link State: example

R1

R2

R4

R5

R3

a

b

c
a 1
b 1
c 1
R2 0
R1 2
R3 4

2

41

LSP generated by R2

Flooding

� Each entering packet is transmitted through
all the interfaces except the incoming one

� possible loops and consequent traffic
congestion

� Sequence number (SN) + SN database in
each node to avoid multiple transmissions of
the same packet

� Hop counter (same as TTL in IP)

Example

� Each node owns a LSP data base

A B

ED

C
1 2

3

6

5
4

Example

� The LSP data base represents the network topology

� Each node can easily calculate the shortest path to all the
other nodes in the network

From To Link Cost Sequence Number
A B 1 1 1
A D 3 1 1
B A 1 1 1
B C 2 1 1
B E 4 1 1
C B 2 1 1
C E 5 1 1
D A 3 1 1
D E 6 1 1
E B 4 1 1
E C 5 1 1
E D 6 1 1

Upon reception of an LSP

� If the LSP has not been received yet or if the
SN is greater than the one already stored:
� Store the new LSP

� Apply the flooding

� If the LSP has the same SN of the one stored
� Do nothing

� If the LSP is older than the one stored
� Transmit the newer one to the sender

Link State: Example
� The routing protocol must update the network topology

whenever something changes

� link 1 failure is detected by nodes A and B which send an
LS update packet on links 3, 2 and 4

node A: From A, To B, Link 1, Cost=inf, Number=2
node B: From B, To A, link 1, Cost= inf, Number=2

A B

ED

C
1 2

3

6

5
4

Link State: Example
� The messages are received by nodes D,E

and C which update their data base and
flood on the local links

� The new data base after flooding is:
From To Link Cost Sequence Number

A B 1 1⇒⇒⇒⇒ inf 1⇒⇒⇒⇒2
A D 3 1 1
B A 1 1⇒⇒⇒⇒ inf 1⇒⇒⇒⇒2
B C 2 1 1
B E 4 1 1
C B 2 1 1
C E 5 1 1
D A 3 1 1
D E 6 1 1
E B 4 1 1
E C 5 1 1
E D 6 1 1

