POLYTECH

How To Route Packets

\square Unicast Routing
-Distance Vector Basics
■ink State Basics

Unicast Routing

\square Routing functionalities are fundamental for internetworking
\square In TCP/IP networks:

- Routing allows the communication of two nodes A and B not directly connected

Unicast Routing

\square Layer 3 entities along the path route (choose the exit SAP) packets according to the destination address
\square The correspondence Exit SAP - destination address is stored in the routing table

Routing Protocol

\square Comprises two different functionalities

- Info exchange on network topology, traffic, etc. (1)
- routing table creation and maintenance (2)
\square Formally, (1) is the routing protocol
\square Practically, (1) and (2) are joint phases. The way the routing tables are created depends on the routing message exchange and viceversa

Routing Algorithms

\square A routing algorithm defines the criteria on how to choose a path between a source and a destination...
\square...and builds the routing tables
\square The choice criteria depend on the type of network (datagram, virtual circuit)

Routing and Network Capacity

\square In broadcast networks no need of routing
\square Thus the maximum supported traffic depends on the capacity of the channel
\square In meshed IP networks, multiple links can be used at the same time
\square Thus, WHICH links are used has a deep impact on the network capacity

Routing and Capacity

\square Dumb Routing Planning

Link Capacity = C
Max Traffic = C

Routing and Capacity

\square Wise routing planning
\Rightarrow Link Capacity $=$ C
\rightarrow Max Traffic = 3C

Routing in the Internet

\square The type of forwarding impacts the routing policy
\square IP forwarding is:

- destination-based
- next-hop based
\square Consequence:
- All the packs destined to D arriving at router R follow the same path after R

Routing in the Internet

\square Thus, we have the following constraints on the routing:

- All the paths from all the sources to a destination D must form a tree, for each D

- Source-Destination Couples cannot be routed independently from other couples.

Shortest Path Routing

\square TCP/IP Routing: the shortest path to a destination is chosen
\square The computation of the shortest path is performed on the graph representing the network (device=vertex, link=edge, edge weight=metrics)
\square Shortest Path properties:

- All the paths to a destination form a tree
- Easy and simple algorithms (polynomial complexity, even distributed)

Routing Algorithms

A Flavor of Graph Theory Bellman-Ford algorithm
Dyijkstra algorithm

Some Definition on Graphs

\square digraph $G(N, A)$
■ N nodes

- $A=\{(i, j), i \in N, j \in N\}$ edges (ordered couple of nodes)
\square path: $\left(n_{1}, n_{2}, \ldots, n_{1}\right)$ set of nodes with ($n_{i,}$ $\left.n_{i+1}\right) \in A$, without repeated nodes
\square cycle: route with $n_{1}=n_{\text {, }}$
\square Connected digraph: for each couple i and j at least one path from i to j exists
\square Weighted digraph: $d_{i j}$ weights associated to the edge $(i, j) \in A$
\square Path $\left(n_{1}, n_{2}, \ldots, n_{1}\right)$ length :

$$
d_{n 1, n 2}+d_{n 2, n 3}+\ldots+d_{n(l-1), n 1}
$$

Finding the Shortest Path

Given $G(N, A)$ and two nodes i and j, find the path with minimum length
\square The problem has polynomial complexity in the number of nodes

Property:

If node k is traversed by the shortest path from i to j, also the path from i to k is the shortest

Bellman-Ford Algorithm

\square Assumptions:
■ Positive-negative weights

- No negative cycles
\square Target:
- Find the shortest paths from a source to all the other nodes
- Find the shortest paths from all the nodes to a destination

Bellman-Ford Algorithm

\square Variables:

- $D_{i}^{(h)}$: length of the shortest path from the source (assumed to be node 1) to node i with a number of hops $\leq h$
\square Initialization: $\quad D_{1}^{(h)}=0 \quad \forall h$

$$
D_{i}^{(0)}=\infty \quad \forall i \neq 1
$$

\square Iterations:

$$
D_{i}^{(h+1)}=\min \left[D_{i}^{(h)}, \min _{j}\left(D_{j}^{(h)}+d_{j i}\right)\right]
$$

\square The algorithm stops after N -1 iterations

An Example

\square Initialization

- $D_{s}{ }^{h}=0$
- $D_{1}{ }^{0}=\mathrm{inf}$
- $D_{2}{ }^{0}=\mathrm{inf}$
\square First Iteration
- $D_{1}{ }^{1}=\min \left(D_{1}{ }^{0}, D_{s}{ }^{0}+1\right)=1, N H: S$
- $D_{2}{ }^{1}=\min \left(D_{2}{ }^{0}, D_{s}{ }^{0}+3\right)=3, N H: S$
\square Second Iteration
- $D_{1}{ }^{2}=\min \left(D_{1}{ }^{1}, D_{2}{ }^{1}+1\right)=1, N H: S$
- $D_{2}{ }^{2}=\min \left(D_{2}{ }^{1}, D_{1}{ }^{1}+1\right)=2, N H: 1$

Distributed BelIman-Ford

\square It can be shown that the algorithm does converge in a finite number of iterations, even in its distributed form
\square Nodes periodically send out their estimation of the shortest path and update such estimation according to the rule:
D_{j}

$$
D_{i}:=\min \left[D_{i}, \min _{j}\left(D_{j}+d_{j i}\right)\right]
$$

Bellman-Ford in practice

\square Each node is assigned a label (n, L) where n is the next hop on the path and L is the path length
\square Each node updates its label looking at its neighbors' labels
\square When the labels do not change any longer the shortest path tree can be built

Example: Bellman-Ford

Dijkstra Algorithm

\square Assumptions:
■ Positive weighted edges
\square Target:
■ Find out the shortest paths form a source node (1) and all the other nodes
\square Initialization:

$$
\begin{aligned}
& P=\{1\}, \\
& D_{1}=0, \quad D_{j}^{(0)}=d_{1 j} \quad \forall j \neq 1
\end{aligned}
$$

- $d_{i j}=\infty$ if the edge $\mathrm{i}-\mathrm{j}$ does not exist

Dijkstra Algorithms

1. find $\mathrm{i} \in(\mathrm{N}-\mathrm{P})$:

$$
D_{i}=\min _{j \in(\mathbb{N}-\mathrm{P})} D_{j}
$$

and set

$$
\mathrm{P}:=\mathrm{P} \cup\{\mathrm{i}\} . \text { If } \mathrm{P}=\mathrm{N} \text {, then STOP. }
$$

2. for each $\mathrm{j} \in(\mathrm{N}-\mathrm{P})$ neighbor of any node in P set :

$$
D_{j}=\min \left[D_{j}, \min _{k}\left(D_{k}+d_{k j}\right)\right]
$$

3.GoTol.

Dijkstra in practice

\square Same label criteria as Bellman-Ford
\square Label can be temporary or permanent
\square In the beginning, the only permanent label is the one of the source
\square At each iteration, the temporary label with the lowest cost of the path is made permanent

Example: Dijkstra

On Complexity

\square Bellman-Ford:

- $\mathrm{N}-1$ iterations

■ N-1 nodes to be checked each iteration

- N-1 comparisons per node
\square Complexity: $\mathrm{O}\left(\mathrm{N}^{3}\right)$
\square Dijkstra:
- N-1 iterations
- N operations each iteration on average
\square Complexity: $\mathrm{O}\left(\mathrm{N}^{2}\right)$
\square Dijkstra is generally more convenient

Routing IP

\square Sends packet on the shortest path to the destination
\square The length of the path is measured according to a given metrics
\square The shortest path computation is implemented in a distributed way through a routing protocol
\square In the routing table, only the next hop is stored, thanks to the property that sub-paths of a shortest path are shortest themselves.

Routing Protocols

\square Handle the message exchange among routers to compute the paths to a destination
\square Two classes
■ Distance Vector (RIP, IGRP)
■ Link State (OSPF,IS-IS)
\square Differences

- Type of metrics

■ Type of messages exchanged
■ Type of procedures used to exchange messages

Distance Vector Routing Protocols

Distance Vector Protocols

\square Routers exchange specific connectivity information: the Distance Vector (DV):
[destination address, distance]
\square DV is sent only to directly connected routers
\square DV is sent periodically and/or whenever the network topology changes
\square Distance estimation is performed using Bellman-Ford distributed algorithm

Distance Vector: Algorithm

\square DV reception

1. Increase the distance to the specified destination of the current link cost
2. For each specified destination

- If the destination is not in the routing table
\square Add destination/distance
- Otherwise
\square If the next hop in the routing table is the DV sender
- Update the stored information with the new one
\square Otherwise
- If the stored distance to the destination is bigger to the one specified in the DV
- Update the stored info with the new one

3. End

Distance Vector

\square DV is sent

- periodically
- Whenever something changes upon the reception of another DV
\square Routers calculate distances if:
■ A new DV is received
- Something changes in the local network topology (local link failure)

Computation: $\mathrm{D}_{\mathrm{i}}^{\prime}=\min _{\mathrm{k}}\left[\mathrm{D}_{\mathrm{k}}+\mathrm{d}_{\mathrm{kj}}\right]$

Routing Tables Update

Rules
Net1: No news, don't change
Net2: Same next hop, replace
Net3: A new router, add
Net6: Different next hop, new hop count smaller, replace
Net8: Different next hop, new hop count the same, don't change
Net9: Different next hop, new hop count larger, don't change

Distance Vector Example (1)

\square Simple Network Topology:

- Assume each link has cost $=1$

Distance Vector Example (2)

\square Assume all the nodes wake up at the same time
(ou cold start procedure
\square Each node knows its local connectivity situation (directly connected links and interfaces)
\square Start Up routing table for node A:

From A To	Link	Cost
A	local	$\mathbf{0}$

Distance Vector Example (3)

\square A sets up its Distance Vector
A=0 and sends it out to all of its neighbors (on local links)
$\square B$ and D receive the DV and enlarge their knowledge of the network

Distance Vector Example (4)

\square Node B, upon reception of the Distance Vector, updates the distance adding the link cost ($\mathrm{A}=1$) and checks the DV against its routing table. A is still unknown, thus routing table update

From B To	Link	Cost
B	local	0
A	1	1

\square The same thing for node D

From D To	Link	Cost
D	local	0
A	3	1

Distance Vector Example (5)

ㅁ Node B prepares its DV ...

$$
B=0, A=1
$$

... and fires it through its local links
\square The same for node D:

Distance Vector Example (6)

\square The DV from B is received by A, C and E whilst that from D is received by A and E
\square A receives the two DVs
From B : $B=0, A=1$
From D: $D=0, A=1$
... and updates its routing table

From A to	Link	Cost
A	local	0
B	1	1
D	3	1

Distance Vector Example (7)

$\square C$ receives from B on link 2

$$
B=0, A=1
$$

... and updates its routing table :

From C to	Link	Cost
C	local	0
B	2	1
A	2	2

Distance Vector Example (8)

\square Node E receives from B on link 4 $B=0, A=1$
and from D on link 6
$D=0, A=1$
... and updates its routing table
\square Note that the distance to A is the same through links 4 and 6

From E To	Link	Cost
E	local	0
B	4	1
A	4	2
D	6	1

Distance Vector Example (9)

\square The nodes A, C and E have updated their routing tables, hence they transmit their own DVs:
node A : $A=0, B=1, D=1$
node C : $C=0, B=1, A=2$
node $\mathrm{E}: \mathrm{E}=0, \mathrm{~B}=1, \mathrm{~A}=2, \mathrm{D}=1$

Distance Vector Example (10)

- Node B:

B	local	0
A	1	1

$A: A=0, B=1, D=1$
$C: C=0, B=1, A=2$
$E: E=0, B=1, A=2, D=1$

From B T0	Link	Cost
B	local	0
A	1	1
D	1	2
C	2	1
E	4	1

- Node D:

D	local	0
A	3	1

A: $A=0, B=1, D=1$
$E: E=0, B=1, A=2, D=1$

From D T0	Link	Cost
D	local	0
A	3	1
B	3	2
E	6	1

\square Node E

E	Iocal	0
B	4	1
A	4	2
D	6	1

$$
C: C=0, B=1, A=2
$$

From E vers0	Link	Cost
E	local	0
B	4	1
A	4	2
D	6	1
C	5	1

Distance Vector Example (11)

\square The nodes B, D and E transmit their own DVs: node B : $B=0, A=1, D=2, C=1, E=1$
node D : $D=0, A=1, B=2, E=1$ node E : $E=0, B=1, A=2, D=1, C=1$

Distance Vector Example (12)

\square Node A:				From A To	Link	Cost
				A	local	0
A	local	0	$\begin{aligned} & B=0, A=1, D=2, C=1, E=1 \\ & D: D=0, A=1, B=2, E=1 \end{aligned}$	B	1	1
B	1	1		D	3	1
D	3	1		C	1	2
				E	1	2

\square Node C:

C	local	0
B	2	1
A	2	2
Node D		

$B=0, A=1, D=2, C=1, E=1$| | From C To | Link |
| :---: | :---: | :---: |
| | | |
| $E=0, B=1, A=2, D=1, C=1$ | C | local |
| | B | 2 |
| | A | 2 |
| | E | 5 |
| | D | 5 |

D	Local	0
A	3	1
B	3	2
E	6	1

$$
E=0, B=1, A=2, D=1, C=1
$$

FromD T0	Link	Cost
D	local	0
A	3	1
B	3	2
E	6	1
C	6	2

Distance Vector Example (13)

\square The algorithm has reached convergence
\square The nodes keep transmitting their DVs periodically but the routing tables do not change

Distance Vector: Link 1 Failure

\square Link 1 goes down

\square Nodes A and B get aware of the link failure
\square... and update their routing table assigning cost $=$ infinity to link 1

Distance Vector: Link 1 Failure

From A To	Link	Cost
A	local	0
B	1	$1 \Rightarrow$ inf
D	3	1
C	1	$2 \Rightarrow$ inf
E	1	$2 \Rightarrow$ inf

From B To	Link	Cost
B	local	0
A	1	$1 \Rightarrow$ inf
D	1	$2 \Rightarrow$ inf
C	2	1
E	4	1

\square New DVs are sent:
node A : $A=0, B=$ inf, $D=1, C=i n f, E=i n f$ node B : $B=0, A=$ inf, $D=$ inf, $C=1, E=1$

Distance Vector: Link 1 Failure

\square The DV from A is received by D, which compares it against its routing table
$\square \quad$ All the costs specified in the DV are greater or equal than the ones stored in the routing table, but node D updates its routing table since the link it receives the DV from is the one it uses to reach all the destinations

From D to	Link	Cost
D	local	0
A	3	1
B	3	$2 \Rightarrow$ inf
E	6	1
C	6	2

Distance Vector: Link 1 Failure

\square Also nodes C and E update their tables

From C to	Link	Cost
C	local	0
B	2	1
A	2	$2 \Rightarrow$ inf
E	5	1
D	5	2

From E to	Link	Cost
E	local	0
B	4	1
A	4	$2 \Rightarrow$ inf
D	6	1
C	5	1

Distance Vector: Link 1 Failure

\square nodes D, C and E transmit their DVs node $\mathrm{D}: \mathrm{D}=0, \mathrm{~A}=1, \mathrm{~B}=$ inf, $\mathrm{E}=1, \mathrm{C}=2$
node C : $C=0, B=1, A=$ inf, $E=1, D=2$
node E : $\mathrm{E}=0, \mathrm{~B}=1, \mathrm{~A}=\mathrm{inf}, \mathrm{D}=1, \mathrm{C}=1$

Distance Vector: Link 1 Failure

\square These DVs update the tables of A, B, D and E

From A to	Link	Cost
A	local	0
B	1	\inf
D	3	1
C	$1 \Rightarrow 3$	$\inf \Rightarrow 3$
E	$1 \Rightarrow 3$	$\inf \Rightarrow 2$

From B To	Link	Cost
B	local	0
A	1	\inf
D	$1 \Rightarrow 4$	$\inf \Rightarrow 2$
C	2	1
E	4	1

From D To	Link	Cost
D	local	0
A	3	1
B	$3 \Rightarrow 6$	inf $\Rightarrow 2$
E	$\mathbf{6}$	1
C	6	2

From E To	Link	Cost
E	local	0
B	4	1
A	$4 \Rightarrow 6$	$\inf \Rightarrow 2$
D	6	1
C	5	1

Distance Vector: Link 1 Failure

- Nodes A,B,D and E transmit the new DVs

$$
\text { node } A: A=0, B=\text { inf, } D=1, C=3, E=2
$$

node B : $B=0, A=$ inf, $D=2, C=1, E=1$
node D : $D=0, A=1, B=2, E=1, C=2$
node E : $E=0, B=1, A=2, D=1, C=1$
$\square A, B$ and C update their tables

From A To	Link	Cost
A	local	$\mathbf{0}$
B	$\mathbf{1} \Rightarrow \mathbf{3}$	$\inf \Rightarrow \mathbf{3}$
D	$\mathbf{3}$	$\mathbf{1}$
C	$\mathbf{3}$	$\mathbf{3}$
E	$\mathbf{3}$	2

- The algorithm has reached a new steady state !!!

From B To	Link	Cost
B	local	$\mathbf{0}$
A	$1 \Rightarrow \mathbf{4}$	inf $\Rightarrow \mathbf{3}$
D	4	2
C	2	1
E	4	1
From C To	Link	Cost
C	local	0
B	2	1
A	$2 \Rightarrow 5$	inf $\Rightarrow 3$
E	5	1
D	5	2

Distance Vector: Main Features

\square PROs:

- Very easy
\square CONs:
- High time to convergence
- Limited by the lowest node
- Possible loops
- Instability in big networks
(counting to infinity)

Convergence Time

\square Grows proportionally with the number of nodes (Low Scalability)

Distance Vector: counting to infinity

\square Suppose link 6 goes down

Distance Vector: counting to infinity

\square Node D detects link 6 failure and updates its routing table

From D To	Link	Cost
D	local	0
A	3	1
B	6	$2 \Rightarrow$ inf
E	6	$1 \Rightarrow$ inf
C	6	$2 \Rightarrow$ inf

\square if D immediately transmits the new DV, node A updates its routing table (the only reachable node is D)

Distance Vector: counting to infinity

\square Buf if node A transmits its DV before D; what happens?

$$
\text { node } A: A=0, B=3, D=1, C=3, E=2
$$

node D updates its routing table !!!

From D To	Link	Cost
D	local	0
A	3	1
B	$6 \Rightarrow 3$	$\inf \Rightarrow 4$
E	$6 \Rightarrow 3$	inf $\Rightarrow 3$
C	$6 \Rightarrow 3$	inf $\Rightarrow 4$

\square A loop is created between nodes A and D
\square The algorithm does not reach convergence
\square At each step the distances to B, C and E grows by 2 counting to infinity

Counting to infinity: Remedies

\square Hop Count Limit:

- The counting to infinity is broken if infinity is represented by a finite value
- Such value must be bigger than the length of the longest path in the network
- When any distance reaches such value the corresponding node is declared unreachable
■ During the counting to infinity :
\square Packets loop
\square Congested links
\square High packet loss probability (including routing packets)
* Convergence may be very slow

Counting to infinity: Remedies

\square Split-Horizon:

- if node A sends to D the packets meant for X, it's pointless for A to announce X in its own DV to D

- node A does not advertise to D the destination X

Distance Vector: Split Horizon

\square Node A sends different DV on different local links
\square Two Flavors of Split Horizon:

- Basic: the node omits any information on the destination which it reaches through the link it is using
- Poisonous Reverse: the node includes all the destinations, setting to infinity the distance to those reachable through the link it is using
\square Split Horizon does not work with some topologies

Distance Vector: Split Horizon

\square when link 6 goes down this is the situation of nodes B,C and E

From	Link	Cost
B to D	4	2
C to D	5	2
E to D	6	$1 \Rightarrow$ inf

Distance Vector: Split Horizon

\square Node E advertises on links 4 and 5 that the distance to D is infinity
\square Suppose that such message is received by B but not by C (for example, due to an error on such routing message/packet)

From	Link	Cost
B to D	4	$2 \Rightarrow$ inf
C to D	5	2
E to D	6	inf

Distance Vector: Split Horizon

\square Node C fires its DV (Split Horizon with Poisonous Reverse On)

- To node E : $\mathrm{C}=0, \mathrm{~B}=1, \mathrm{~A}=\mathrm{inf}, \mathrm{E}=\mathrm{inf}, \mathrm{D}=\mathrm{inf}$
\square On link 5 to reach D costs infinity
- to node B : $\mathrm{C}=0, \mathrm{~B}=\mathrm{inf}, \mathrm{A}=3, \mathrm{E}=1, \mathrm{D}=2$
\square On link 2 to reach D costs 2

Distance Vector: Split Horizon

\square B updates its routing table and sends its DV (Split Horizon Poisonous Reverse On):

- on link 2 D is reachable with cost = infinity
- on link 4 D is reachable with cost 3
\square nodes B, C and E :

From	Link	Cost
B to D	$\mathbf{4} \Rightarrow \mathbf{2}$	inf $\Rightarrow \mathbf{3}$
C to D	$\mathbf{5}$	$\mathbf{2}$
E to D	$\mathbf{6} \Rightarrow 4$	inf $\Rightarrow 4$

\square loop among nodes B,C and E until the cost threshold is reached
\square AGAIN counting to infinity

Counting to infinity: remedies

\square Use of Counters/Timers (Hold down)

- If for Tinvalid no info from the first hop to a specific destination, destination is no longer valid (not advertised in the DVs, DVs from other nodes skipped)
- after Tflush the route is flushed
- Tinvalid - Tflush must be set so that the new information propagate within the whole network
- Invalid routes advertised with distance = infinity
- Nodes receiving an invalid route set the route as invalid themselves

Counting to infinity: remedies

\square Triggered Update

- Explicit advertisement of the changes in the topology
■ Speed up convergence
- Prompt failures discovery

Link State Routing Protocols

Link State Routing Protocols

\square Each node knows neighboring nodes and the relative costs to reach them
\square Each node sends to ALL the other nodes such information (flooding) through Link State Packet (LSP)
\square All the nodes keep a LSP data base and a complete map of the network topology (graph)
\square On the complete graph shortest paths are computed using Dijkstra

Link State: PROs

\square Flexibility and Optimality in the path definition (complete map of the network topology)
\square LSP information is not sent periodically but only when something changes
\square All the nodes get promptly aware of any change in the network topology

Link State: CONs

\square Signaling protocol required to keep the topological information (Hello)
\square flooding needed
\square LSP must be acknowledged
\square Difficult to implement

Link State: example

Flooding

\square Each entering packet is transmitted through all the interfaces except the incoming one
\square possible loops and consequent traffic congestion
\square Sequence number (SN) + SN database in each node to avoid multiple transmissions of the same packet
\square Hop counter (same as TTL in IP)

Example

\square Each node owns a LSP data base

Example

\square The LSP data base represents the network topology

From	To	Link	Cost	Sequence Number
A	B	1	1	1
A	D	3	1	1
B	A	1	1	1
B	C	2	1	1
B	E	4	1	1
C	B	2	1	1
C	E	5	1	1
D	A	3	1	1
D	E	6	1	1
E	B	4	1	1
E	C	5	1	1
E	D	6	1	1

\square Each node can easily calculate the shortest path to all the other nodes in the network

Upon reception of an LSP

\square If the LSP has not been received yet or if the SN is greater than the one already stored:

- Store the new LSP
- Apply the flooding
\square If the LSP has the same SN of the one stored
- Do nothing
\square If the LSP is older than the one stored
- Transmit the newer one to the sender

Link State: Example

\square The routing protocol must update the network topology whenever something changes

\square link 1 failure is detected by nodes A and B which send an LS update packet on links 3, 2 and 4 node A: From A, To B, Link 1, Cost=inf, Number=2 node B: From B, To A, link 1, Cost= inf, Number=2

Link State: Example

\square The messages are received by nodes D,E and C which update their data base and flood on the local links
\square The new data base after flooding is:

From	To	Link	Cost	Sequence Number
A	B	$\mathbf{1}$	$\mathbf{1} \Rightarrow$ inf	$\mathbf{1} \Rightarrow \mathbf{2}$
A	D	3	1	$\mathbf{1}$
B	A	1	$1 \Rightarrow$ inf	$\mathbf{1} \Rightarrow \mathbf{2}$
B	C	2	1	1
B	E	4	1	1
C	B	2	1	1
C	E	5	1	1
D	A	3	1	1
D	E	6	1	1
E	B	4	1	1
E	C	5	1	1
E	D	6	1	1

