
Transport Layer

1

-UDP (User Datagram Protocol)

-TCP (Transport Control Protocol)

Transport Services

� The transport layer has the duty to set up logical connections
between two applications running on remote hosts.

� The transport layer makes transparent the physical transfer of
messages to the applications (software processes)

Trasport (4)

Network (3)

Underlying Technologies

TCP UDP

IP

HTTP FTP SMTP …Application (7)

Software Processes

Transport Services
� The transport layer is implemented in the

end-systems (hosts) only

�Logical connections through applications

prot. appl.

prot. appl.

IP

DL

Ph

DL

Ph

Data Link

Phisical

IP

TCP or UDP

Data Link

Phisical

IP

TCP or UDP

prot. appl.

DL

Ph

IP

DL

Ph

DL

Ph

PhPh

DL

Ph

IP

DL

Ph

DL

Ph

Logical connections between end-systems

Transport Services

�Multiple applications can be contemporary
active on the end systems
� The transport layer acts as a

multiplexing/demultiplexing entity

� Each logical link between two applications is
addressed at the transport layer

Transport
entity

Application

protocols

Network Network

Transport protocol

Transport layer

address (port)

(SAP layer 4)

http ftp smtp http ftp smtp

Trasport
entity

Addressing through ports

�Multiplexing/demultiplexing functions are
handled through addresses contained in layer 4
PDUs (also called “segments”)

�Such addresses are 16-bits long (ports)
� Port addresses can range from 0 to 65535
� Fixed port numbers are assigned to well known

application servers (HTTP, FTP, SMTP, DNS, etc.)
� Fixed port numbers are assigned to well known

application servers (HTTP, FTP, SMTP, DNS, etc.)
�Dynamic numbers are assigned to application

clients

0 1023 1024 49151 49152 65535

Known
numbers

Assigned
numbers

Dynamic
numbers

Socket

�The port number and the IP address
identifies an application process running
on a host

�Such couple is called a “socket”

transport

Network Network

appl. appl.

transport

Sockets and connections

�One client
connects to the
port of a SMTP
server, port 25
(email service)

CLIENT

Net. Add. 128.36.1.24
Port: 50358

SERVER

Net. Add. 130.42.88.22
Port: 25

� Two clients access
SERVER

Net. Add. 130.42.88.22

Port 80

CLIENT

Net. Add. 128.36.1.24

Port 53358

Net. Add. 130.6.22.15

CLIENT

Port 59562

� Two clients access
the same port (80)
of an HTTP server;
different socket
couples

Transport Services

�Different types of communication services
� Reliable transfer (guaranteed, in sequence

delivery)
� Unreliable transfer (only addressing and

multiplexing)
� Connection-oriented transfer
� Connectionless transfer� Connectionless transfer

� In the TCP/IP suite, two protocols are
defined
� TCP (Transmission Control Protocol)

connection oriented and reliable
� UDP (User Datagram Protocol)

connectionless and unreliable

Applications and Transport

Source: Computer Networking, J. Kurose

Buffering Service

� Transport protocols are implemented in the most
common OSs

�Whenever a port is assigned to a process (client
or server) two queues are defined and reserved
by the OS

�Data buffering functionalities�Data buffering functionalities

port 52300

client

port 80

server

Transport
layer

User Datagram Protocol (UDP)
RFC 768

� It does add very few things to IP:

� Applications addressing (mux/demux)

� Loose error checking (without correction)

� … thus:

� It’s a datagram protocol

� It does not guarantee the delivery

1 32

destination portsource port

length
8 Bytes

bit

checksum

� It does not guarantee the delivery

� It does not implement any control mechanism
(neither on flows, nor on errors)

Checksum: integrity check

� Redundant information in the UDP
header for error control

� The checksum field is computed by the
transmitter (16 bits) and inserted into
the headerthe header

� The receiver repeats the same
computation on the received segment
(checksum field included)

� If the result is positive it processes the
segment, otherwise it drops it

Checksum: transmitter’s side

� The segment +
pseudo-header
are divided into
16-bits chunks

� The Checksum
field is set to 0 checksum

+

+

+

…

field is set to 0

� All the chunks are
summed up

� The 1-
complement of
the result is
inserted in the
checksum field

checksum
all 0s

+

=

…

sum

1 complement

Checksum: receiver’s side

� The segment +
pseudo-header
are divided into
16-bits chunks

� All the chunks are
summed up

� The 1-
checksum

+

+

+

…

� The 1-
complement of
the result is taken
� If all 0s the

segment is
processed

� Otherwise is
dropped

checksum+

=

…

sum

1 complement

UDP Pseudo Header used for
checksum calculation

1 32

pseudo-header

bit

destination IP address

source IP address

N. Destination portN. Source port

Frame length

pseudo-header

Checksum

destination IP address

all 0s protocol UDP length

UDP-header

Transmission Control Protocol (TCP)
RFC 793 et al.

� TCP:

� Ensures reliable transfer

� Provides ordered delivery

� Provides errorless delivery

� TCP is used to build up applications relying on� TCP is used to build up applications relying on
errorless transmissions (web, emailing, file transfers
etc.)

� Original Philosophy of the Internet: simple unreliable
Network service (IP), reliable transport (TCP)

� TCP implements an end-to-end congestion control to
let the users share the common resources fairly

TCP: connection oriented

� TCP is connection oriented:

�Before data transfer, a signaling phase to set up
the communication is performed

� TCP relies on connectionless services

� TCP uses full-duplex connections

setup

data transfer

tear down

TCP: Flow control

�The incoming data flow is tailored on
the capacity of the receiver

�The flow control is based on a sliding
window

source destinationsource destination

user

Sliding Window

� The sliding window defines the bytes
which can be sent out without waiting
for an ACK

Sliding Window

ACKs of bytes 1, 2 and 3

� The window slides on the right of a number
of positions equal to the number of
acknowledged bytes (3, in this example),
now including bytes 11, 12 and 13

TCP: congestion control

�The data flow is regulated also
on the basis of the network
conditions

�If the network is congested TCP
reduces its transmission rate

�No mechanism to notify �No mechanism to notify
network congestion directly

�TCP infers network congestion
on the basis of segments loss

� It is called a black-box approach
for congestion estimation

TCP: congestion control

� Still based on a sliding window whose
dimension is regulated on the basis of the
network conditions (packet loss)

� All the flows are reduced to achieve a fair
share of the available resourcesshare of the available resources

TCP: Data Flow

� TCP handles continuous data flows (byte stream)

� TCP converts data flows in segments to be passed downwards
to IP

� Segment dimensions are variable

� TCP accumulates data received by the applications (buffering)

� Periodically, TCP builds up segments out of the buffered data

� The segment dimensions are critical for the TCP performance,� The segment dimensions are critical for the TCP performance,
dimension optimization techniques are needed

TCP: byte numbering and ACKs

� TCP implements a go-back-n like mechanism to cope
with packet loss

� Byte numbering and ACKs

� TCP numbers each transmitted byte with a sequence
number

� Each TCP segment reports the sequence number of the� Each TCP segment reports the sequence number of the
first byte carried by the segment itself

� The receiver acknowledges the received bytes sending
back the sequence number of the last received byte + 1
(It is called the next expected byte)

� If the ACK does not arrive within a time limit
(Retrasmission TimeOut, RTO), data is retransmitted

TCP Segment Format

Source Port
16 bit

U

Destination Port
16 bit

Sequence Number
32 bit

Acknowledgment Number
32 bit

WindowHLEN Reserved A P R S
FI

20
bytes

U
R
G

Window
16 bit

HLEN
4 bit

Reserved
6 bit

A
C
K

P
S
H

R
S
T

S
Y
N

FI
N

Checksum
16 bit

Urgent Pointer
16 bit

Options and Padding
Variable Length

Data
Variable Length

Up to
40

bytes

TCP Segment Header(1)

� Source port, Destination port: 16 bits each

� Sequence Number: of the first byte carried
by the segment

� Acknowledgement Number: sequence
number of the next expected byte (valid only
if the “ACK” flag field is valid, i.e. equal to 1)if the “ACK” flag field is valid, i.e. equal to 1)

� HLEN (4 bytes words): TCP header length,
must be multiple of 32 bits (4 bytes)

� Window: dimension of the receiving window
as communicated by the receiver

� Checksum: calculated on a virtual header
adding IP source and destination addresses

TCP Segment Header (2)

� Flags:

� URG: urgent data identifier; urgent pointer points to
the first byte of the urgent data

� ACK: set if the segment carriers a valid ACK;
acknowledgement number contains a valid number

� PSH: set if the transmitter uses the PUSH command;
the receiver can ignore the command (depending on the receiver can ignore the command (depending on
the implementations)

� RST: used for connection reset, without explicit tear
down

� SYN: synchronize; used during the connection setup
phase

� FIN: used for the explicit tear down of the connection

� Options and Padding: optional fields like the MSS
value (default value is 536 bytes)

Options

� 1 byte options:

� no operation: 00000001 (used for
padding)

� end of option: 00000000 (final byte
padding)padding)

� Long options:

� Maximum Segment Size (MSS)

� Window Scaling factor

� Timestamp

Options: Maximum Segment
Size (MSS)

�Maximum segment dimension to be used
during the connection

�Dimension is decided by the sender (and
confirmed by the receiver) during the
connection setup phaseconnection setup phase

�Default value is 536 byte, maximum value is
65535 byte. Typical value around 1460 bytes.

Code
(00000010)

Length
(00000100)

MSS
16 bit

Options: Scaling Factor

�Used for TCP connections running on
high speed (optical) networks

�Scaling factor of the window field in
the header

�Default is 1 byte�Default is 1 byte

�The actual window value is

window * 2Scaling_Factor

Code
(00000010)

Length
(00000011)

Scaling Factor
8 bit

Options: Timestamp

� Used to estimate the Round Trip Time (RTT)

� The TCP source prints the transmission time
in Timestamp value

� Destination prints in Timestamp echo reply
the received Timestamp value when it sends the received Timestamp value when it sends
an ACK for the current segment

Services and Ports

21 FTP signalling

�Some of the most common port-
applications bindings

21
20
23
25
53
80

FTP signalling
FTP data
telnet
SMTP
DNS
HTTP

Connection Setup

� Before connection setup, client-side applications

server
application

1. Passive Open2. Active Open

TCP

client
application

TCP

� Before connection setup, client-side applications
and server-side must communicate with TCP
software

� 1. The server makes a Passive Open, to
communicate to the TCP level that it is ready to
accept new connections (on a given, known port)

� 2. The client makes an Active Open, to communicate
to the TCP that it is ready to start a new connection
to a given socket

Connection Setup

�The TCP client randomly chooses a sequence

server
application

TCP

client
application

TCP
3. SYN, SN=67803

�The TCP client randomly chooses a sequence
number (e.g., 67803) and sends out a
SYNchronize (flag SYN=1) segment.

�Connection parameters/options can be
indicated in such first segment (MSS,
Windows Scaling factor…)

Connection Setup

server
application

TCP

client
application

TCP

4. SYN / ACK,
SN=5608, AN=67804

�Upon reception of the SYN, the TCP server
chooses a sequence number (e.g., 5608) and
sends out a SYN/ACK (flag SYN=1, flag
ACK=1) segment containing an
acknowledgment number to 67804 (ACK for
the previous packet, 67803+1 = next
expected byte)

Connection Setup

server
application

TCP

client
application

TCP
5. ACK,
SN=67804, AN=5609

�The TCP client receives the SYN/ACK segment
from the server, and sends out a ACK for
5609. The payload carries the first real data
of the connection.

�The sequence number of the first byte in the
payload is 67804. Also the server window is
advertised.

Connection Setup

server
application

TCP

client
application

TCP

7. Connection Open6. Connection Open

� The TCP client notifies to the application that
the connection is open

� Upon reception of the ACK from the client, also
the TCP server notifies to the server application
that the connection is open

Connection Setup
(summary)

7. Connection Open6. Connection Open

server
application

TCP

client
application

TCP

2. Active Open 1. Passive Open

3. SYN, SN=678033. SYN, SN=67803

4. SYN / ACK,
SN=5608, AN=67804

5. ACK,
SN=67804, AN=5609

Connection Setup

Source: TCP/IP Protocol Suite,
B. Forouzan.

Connection Tear down

server
application

TCP

client
application

TCP
1. FIN, SN=127504

2. ACK, AN=127505

�The TCP willing to close the connection
sends out a FIN (flag FIN=1) segment

�The peer TCP entity answers with a valid
ACK

Connection Tear down

server
application

TCP

client
application

TCP

SN=8763

�The connection in the opposite direction
remains open

TCPTCP

SN=9001

Connection Tear down

server
application

TCP

client
application

TCP
3. FIN, SN=9024

4. ACK, AN=9025

�Finally, also the other TCP entity closes the
connection with FIN (flag FIN=1)

�The connection is completely closed (in
both directions) when the TCP entity
answers with an ACK

Connection Tear down

server
application

TCP

client
application

TCP

server
application

TCP

client
application

TCP

1. FIN, SN=1208931. FIN, SN=120893

2. ACK,
SN=8763, AN=120894

4. ACK, AN=9026

3. FIN, SN=9025

Connection Reset

�Connection can be closed without
bidirectional messages exchange

�The RESET flag quits the connection in
both directions

�The receiving TCP entity closes the �The receiving TCP entity closes the
connection

Flow Control Implementation

�Receiver oriented flow control

�Receiver’s side:
� Reception Buffer: stores received bytes to be

absorbed by the application

�Transmitter’s side:�Transmitter’s side:
� Transmission Buffer: stores the bytes to be

transmitted

Flow Control: Receiver’s Side

� Receiver Window (RCVWND):
portion of the reception buffer
available for data storage

� Reception buffer may be filled
due to congestion in the
receiving application or OS

100 200 300

Receive Window

Receive Window

1100

1100

1101

1101 1200

1400

1400

receiving application or OS

� RCVWND goes from the last byte
absorbed by the application to
the end of the reception buffer

� RCVWND dimension is advertised
to the transmitter

Receive
Window

Receive Window

1100

1300

1101

1301

1300 1400

1600

1101 1300 data

absorption

Flow Control: TX’s Side

� Transmission buffer (Sliding
Window)
� Data waiting for

acknowledgement

� goes from the first un-acked
byte to the dimension of

100 200 300

Send Window

Send Window

1100

1100

1101

1101 1200

1400

1400

unacked
byte to the dimension of
RCVWND

� Send Window (SNDWND) is
the portion of the
transmission buffer covering
the bytes which can be
transmitted

Send
Window

Send Window

1300 1301

1300 1400

1600

1200

unacked

ACK=1201, Window = 200

ACK=1301, Window = 300

Flow Control: An Example (W=4)

SN=0source SN=1 SN=2 SN=3 SN=6SN=4 SN=5

1 2 3 4 5 60 W=RCVWND

0 1 32

A
N

=
1 W

=
3

Destination

buffer

application
0

A
N

=
2 W

=
3

1

A
N

=
6 W

=
4

2,3,4,5

A
N

=
3 W

=
3

6
A

N
=

4 W
=

2
4 5

A
N

=
6 W

=
0

A
N

=
5 W

=
1

Flow Control Problems

�Silly window syndrome – receiver’s side:

� The receiver is slow in emptying the receiving buffer

� Advertises very short RCVWND values

� The transmitter sends short segments with high
overhead

�Clark’s Solution�Clark’s Solution

� The receiver advertises null RCVWND until the
reception buffer is half empty or a MSS can be
advertised

min (1/2 Receive_Buffer_Size, Maximum_Segment_Size).

Flow Control Problems

�Silly window syndrome – transmitter’s side:

� The application (OS) generates data slowly

� The transmitter sends short segments (high
overhead)

�Nagle’s Solution

The first data are sent no matter of their dimension� The first data are sent no matter of their dimension

� All the following segments are generated and sent
only if:

�The transmission buffer contains enough data
to fill a MSS

�Upon reception of a valid ACK for a previously
sent segment

Push

�The normal flow of bytes to be delivered to
the application can be altered using the Push
functionality

�An application can use a push command to
notify the TCP about critical data (to be notify the TCP about critical data (to be
delivered promptly)

�The segment(s) carrying such data uses the
push flag set

�E.g., Telnet

URGENT Data

�Data can be marked as URGENT

� In-band signaling mechanism to carry urgent
data side by side with normal data

Source Port
16 bit

U
R
G

Destination Port
16 bit

Sequence Number
32 bit

Acknowledgment Number
32 bit

Window
16 bit

HLEN
4 bit

Reserved
6 bit

A
C
K

PS
H

R
ST

S
Y
N

FI
N

Checksum
16 bit

Urgent Pointer
16 bit

Options and Padding
Variable length

data

Error Control/Recovery

� Detection:

� Corrupted Segments

� Lost Segments

� Duplicated Segments

� Out-of-order Segments

Checksum,
Acknowledgements
Timer/Time out

� Out-of-order Segments

� Correction

� Retransmission

� Discarding

� Ordering

Error Control/Recovery

�Lost segments are mainly due to
queue overflow in routers (except in
Wireless networks !!!)

�TCP implements a Go-back-N like
retransmission mechanism with retransmission mechanism with
Timeout

�The transmission window is the
sliding window used for the flow
control

�A timeout is set for every sent
segment

Error Control
Example 1: errorless

MSS=100 byte
Window= 4 MSS

SN=100
AN=406

SN=200
AN=406

SN=400
AN=412

SN=300
AN=406

SN=500
AN=418

SN=600
AN=424

SN=700
AN=430

Each packet contains 100 bytes

SN=406
AN=201

SN=418
AN=401

SN=412
AN=301

SN=430
AN=601

SN=424
AN=501

SN=436
AN=701

In this example, each ACKnowledgmenet contains 6 bytes

Error Control
Ex 2: error on segments

MSS=100 byte
Window= 4 MSS

SN=100
AN=406

SN=200
AN=406

SN=400
AN=412

SN=300
AN=406

timeout

SN=500
AN=412

SN=200
AN=424

SN=406
AN=201

SN=412
AN=201

SN=424
AN=201

SN=418
AN=201

Error Control
Ex 3: error on ACKs

MSS=100 byte
Window= 4 MSS

SN=100
AN=406

SN=200
AN=406

SN=400
AN=406

SN=300
AN=406

SN=500
AN=412

SN=600
AN=412

SN=700
AN=412

timeout

SN=406
AN=201

SN=418
AN=401

SN=412
AN=301

SN=412
AN=601

SN=424
AN=501

SN=418
AN=701

Time-Out Management

� How to set the timeout:

� Too short: the transmitter will overflow
the communication with (useless)
retransmitted segments

� Too long: slow recovery from errors� Too long: slow recovery from errors

� The optimum depends on the delay of
the connection (local networks,
satellite networks)

� TCP sets the timeout by estimating the
RTT (Round Trip Time)

RTT Variability

RTT Estimation

�Karn and Jacobson algorithms are used to
estimate the RTT

� RTT samples {RTT (i)} are collected for every
segment (ACK reception - Transmission time)

Mean Value EstimationMean Value Estimation

�TCP calculates the Smoothed Round Trip Time
(SRTT) using Jacobson’s formula

SRTT (i) = (1-α) SRTT (i-1) + α RTT (i).

�where α ranges from 0 to 1
(practical value is 1/8)

RTT Estimation

Standard Deviation estimation

DEV = |RTT (i) - SRTT (i-1)|

�A smoothed value of the standard deviation is �A smoothed value of the standard deviation is

calculated:

SDEV (i) = 3/4 SDEV (i-1)+1/4 DEV

RTT Estimate Quality

Time Out Calculation

� Timeout is given by:

TIMEOUT = SRTT + 2 SDEV

� Initial conditions

� SRTT(0) = 0

� SDEV (0) = 1.5 s � SDEV (0) = 1.5 s

� Timeout =3 s

� If a segment is retransmitted, the Karn’s algorithm is
adopted to set the timeout:

� RTT estimate does not get updated

� The timeout is multiplied by 2

� The same rule is applied for consecutive
retransmissions

� A maximum number of retransmissions is defined

Congestion Control

�Flow Control

� Depends on the receiver’s “capacity” only

� Is not effective in avoiding network congestion

�The INTERNET does not implement congestion
control mechanisms at the network layer (e.g. control mechanisms at the network layer (e.g.
traffic admission control)

�Congestion control is delegated to the TCP!!!

�Since TCP runs end-to-end, the congestion
control in the Internet is also end-to-end

Congestion Control
� The congestion control is implemented through a sliding

window (again)

� A Congestion Window (CWND) is kept by the
transmitter

� CWND dimension depends on the status of the network
as perceived by the transmitter (ACKs, expired
timeout)timeout)

� The transmitter cannot transmit more than the
minimum between RCVWND and CWND

TCP

How to set CWND dimension?
How to know about congestion?

Congestion Control

�A segment loss is interpreted by the TCP as a
congestion event

�TCP reacts to such event by reducing the
CWND dimension

TCP

Slow Start & Congestion Avoidance

�The value of CWND dimension is regulated
through an algorithm

�The update rule depends on the communication
phase

�Two phases are defined:

Slow Start � Slow Start

� Congestion Avoidance

�The transmitter keeps the variable SSTHRESH to
distinguish between the two phases:

� if CWND < SSTHRESH: Slow Start

� if CWND >= SSTHRESH: Congestion Avoidance

Slow Start

� In the beginning, CWND is set to 1 segment (MSS), and
SSTHRESH to a (very) higher default value (“infinite”)

� Since CWND < SSTHRESH, connection is in Slow Start

� In Slow Start:

�CWND is incremented by 1 for each received ACK
(exponential increase)

RTTRTTRTTRTT

2 4 81

Slow Start

�Exponential increase of the transmission rate
(not so slow, indeed!)

Slow Start

�Such phase goes on until

� The first congestion event (segment loss)

� CWND < SSTHRESH

� CWND < RCWND

�The average transmission rate can be �The average transmission rate can be
estimated as:

[bit/s]
RTT

CWND
R =

Congestion Event

�One link on the path to destination gets
congested

�The sum of the traffic flow using that link is
higher than the link capacity

�Overflow and loss in some queue

∑ >
i

i CR

Congestion Event

�Effect: a timeout expires

�TCP first updates the SSTHRESH value
according to the following equation





= CWND

,2max MSSSSTHRESH

�And then sets CWND = 1








=
2

CWND
,2max MSSSSTHRESH

Congestion Event

�As a result:
� CWND (equal to 1) is lower than SSTHRESH (which

is now >=2) and the connection falls back to the
Slow Start phase

�Obviously, all lost packets are retransmitted
(go-back-N) starting from the packet from(go-back-N) starting from the packet from
which the timeout has expired (the lost one)

�The SSTHRESH value is (ideally) an indicator
of the optimum CWND to avoid future
congestion events

Congestion Avoidance

�Slow start goes on until CWND = SSTHRESH,
after that the Congestion Avoidance phase starts

� In Congestion Avoidance:

�CWND is incremented by 1/CWND for each
received ACK (linear increase)

� In other words, if all the segments of the

RTTRTTRTTRTT

W+1 W+2 W+3W

� In other words, if all the segments of the
transmission window are acknowledged, the next
transmission window size is augmented by 1

W+4

Congestion Avoidance

�Linear window increase

TCP Connection Lifetime:
an example

Timeout

Timeout

Segment
loss

Segment

Slow Start Waiting
for
timeout

Slow Start Congestion
Avoidance

Waiting
for
timeout

Slow
Start

Congestion
Avoidance

SSTHRESH

Timeout

Time

loss

CWND

Fast Retransmit and
Fast Recovery

� Modification to the TCP operation
implemented in TCP Reno

� Duplicated ACKs:
� If the TCP receives out of order

segments, it advertises the numbers of
the missing one(s)
segments, it advertises the numbers of
the missing one(s)

� Dup-ACKs may be due to the loss of
single segments

� Fast retransmit and Fast recovery
try to cope rapidly with such losses

Fast Retransmit and
Fast Recovery

� Concept:

� If dup-ACKs are received, only one
segment has been lost

� All the following segments have been
received correctly (low congestion received correctly (low congestion
probability)

� CWND can be incremented by the
number of segments arrived at
destination (dup-ACKs)

� Problems:

� Multiple losses cannot be recovered

Fast Retransmit and
Fast Recovery
1. Upon reception of the 3rd dup-ACK:

2. The missing segment is fast retransmitted

3.








= MSSSSTHRESH 2,
2

FlightSize
max

MSSSSTHRESHCWND ⋅+= 33.

4. For each dup ACK received afterwards, CWND
is incremented by 1

5. New segments are transmitted if allowed by
the CWND and RWND values

6. Upon reception of a ACK for new data the fast
recovery quits and:

MSSSSTHRESHCWND ⋅+= 3








== MSSSSTHRESHCWND 2,
2

FlightSize
max

