
Lecture 3

One-time Pad
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One-Time Pad

• Basic Idea: Extend Vigenère cipher so that the 

key is as long as the plaintext

– No repeat, cannot be broken by finding key length

+ frequency analysis

• Key is a random string that is at least as long 

as the plaintext

• Encryption is similar to Vigenère
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One-Time Pad

• Key is chosen randomly

• Plaintext X = (x1 x2 … xn)

• Key K = (k1 k2 … kn)

• Ciphertext Y = (y1 y2 … yn)

• ek(X) = (x1+k1 x2+k2 …  xn+kn) mod m

• dk(Y) = (y1- k1 y2-k2 …  yn-kn) mod m
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One-Time Pad

• Intuitively, it is secure …

• The key is random, so the ciphertext too will 

be completely random
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Shannon (Information-Theoretic) Security

• Basic Idea: Ciphertext should provide no 

“information” about Plaintext

• We also say such a scheme has perfect secrecy.

• One-time pad has perfect secrecy

– E.g., suppose that the ciphertext is “Hello”, can we say any 

plaintext is more likely than another plaintext? 

(For example “Lucky”, “Later”, “Funny” … are all equally likely)

• Result due to Shannon, 1949.

Claude Elwood Shannon (1916 - 2001), an 

American electrical engineer and mathematician, 

has been called "the father of Information Theory"
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Key Randomness in One-Time Pad

• One-Time Pad uses a very long key, what if the 
key is not chosen randomly, instead, texts 
from, e.g., a book is used.

– this is not One-Time Pad anymore

– this does not have perfect secrecy

– this can be broken

• The key in One-Time Pad should never be 
reused.

– If it is reused, it is Two-Time Pad, and is insecure!
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Limitations of One-Time Pad

• Perfect secrecy  ⇒ key-length ≥ msg-length

• Difficult to use in practice
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Limitations of One-Time Pad (2)

• Example taken from «Security Engineering», Ross Anderson, 2nd
edition (Wiley)

• One-Time Pad was used in World War 2: one-time key material was 
printed on silk, which agents could conceal inside their clothing; 
whenever a key had been used, it was torn off and burnt

• Now suppose you intercepted a message from a wartime German 
agent which you know started with “Heil Hitler”, and the first 10 
letters of cyphertext were DGTYI BWPJA

• This means that the first 10 letters of the one-time pad were     
wclnb tdefj since

• Plaintext: heilhitler

• Key: wclnbtdefj

• Ciphertext: DGTYIBWPJA
A spy’s message
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Limitations of One-Time Pad (2)

• But once he has burnt the piece of silk with his key 
material, the spy can claim he’s actually a member of 
the anti-Nazi underground resistance, and the 
message actually said «Hang Hitler». This is quite
possible, as the key material could just as easily have
been wggsb tdefj :

• Ciphertext: DGTYIBWPJA

• Key: wggsbtdefj

• Plaintext: hanghitler

What the 

spy claimed
he said
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Limitations of One-Time Pad (2)

• Now we rarely get anything for nothing in cryptology, 
and the price of the perfect secrecy of the one-time 
pad is that it fails completely to protect message 
integrity. Suppose for example that you wanted to 
get this spy into trouble, you could change the 
cyphertext to DCYTI BWPJA

• Ciphertext: DCYTIBWPJA

• Key: wclnbtdefj

• Plaintext: hanghitler

Manipulating 

the message to 

entrap the spy
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The Binary Version of One-Time Pad

• Plaintext space = Ciphtertext space =

= Keyspace = {0,1}n

• Key is chosen randomly

• For example:

– Plaintext is 11011011

– Key is 01101001

– Then ciphertext is 10110010
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Bit Operators

• Bit AND

– 0 ∧ 0 = 0   0 ∧ 1 = 0   1 ∧ 0 = 0   1 ∧ 1 = 1

• Bit OR

– 0 ∨ 0 = 0   0 ∨ 1 = 1   1 ∨ 0 = 1   1 ∨ 1 = 1

• Addition mod 2 (also known as Bit XOR)

– 0 ⊕ 0 = 0 

– 0 ⊕ 1 = 1

– 1 ⊕ 0 = 1

– 1 ⊕ 1 = 0
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Unconditional Security

• The adversary has unlimited computational
resources.

• Analysis is made by using probability theory.

• Perfect secrecy: observation of the ciphertext
provides no information to an adversary.

• Result due to Shannon, 1949.

• C. E. Shannon, “Communication Theory of Secrecy 
Systems”, Bell System Technical Journal, vol.28-4, 
pp 656--715, 1949.
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Begin Math
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Elements of Probability Theory

• A random experiment has an unpredictable
outcome.

• Definition

The sample space (S) of a random 
phenomenon is the set of all outcomes for a 
given experiment.

• Definition

The event (E) is a subset of a sample space, an 
event is any collection of outcomes.
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Basic Axioms of Probability

• If E is an event, Pr(E) is the probability that 
event E occurs, then

– (a) 0 ≤ Pr(A) ≤ 1 for any set A in S.

– (b) Pr(S) = 1 , where S is the sample space.

– (c) If E1, E2, … En is a sequence of mutually 
exclusive events, that is Ei ∩ Ej = 0, for all i ≠ j then:
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Probability: More Properties

• If E is an event and Pr(E) is the probability that 

the event E occurs then

– Pr(Ê) = 1 - Pr(E) where Ê is the complimentary

event of E

– If outcomes in S are equally like, then                   

Pr(E) = |E| / |S|

(where |S| denotes the cardinality of the set S)
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Random Variable

• Definition

A discrete random variable, X, consists of a finite set 

X, and a probability distribution defined on X. The 

probability that the random variable X takes on the 

value x is denoted Pr[X =x]; sometimes, we will 

abbreviate this to Pr[x] if the random variable X is 

fixed. It must be that
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Relationships between Two Random 

Variables

• Definitions

Assume X and Y are two random variables, we define:

– joint probability: Pr[x, y] is the probability that X takes 
value x and Y takes value y.

– conditional probability: Pr[x|y] is the probability that X
takes on the value x given that Y takes value y.

• Note that joint probability can be related to conditional probability 
by the formula Pr[x, y] = Pr[x|y] Pr[y]

• Interchanging x and y we have that Pr[x, y] = Pr[y|x] Pr[x]

• This permits to obtain Bayes’ Theorem

– independent random variables: X and Y are said to be 
independent if Pr[x,y]=Pr[x]Pr[y], for all x ∈ X and all y ∈ Y
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Elements of Probability Theory

• Find the conditional probability of event X given the 

conditional probability of event Y and the unconditional 

probabilities of events X and Y.

• Bayes’ Theorem

If Pr[y] > 0 then

• Corollary

X and Y are independent random variables if and only if 

Pr[x|y] = Pr[x], for all x ∈ X and all y ∈ Y.
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End Math
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Ciphers Modeled by Random Variables

• Consider a cipher (P, C, K, E, D). We assume that:

1. there is an (a-priori) probability distribution on the 

plaintext (message) space

2. the key space also has a probability distribution. We 

assume the key is chosen before one (Alice) knows 

what the plaintext will be, therefore the key and the 

plaintext are independent random variables

3. The two probability distributions on P and K induce 

a probability distribution on C: the ciphertext is also 

a random variable
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Example

• P = {a, b};

• Pr(a) = 1/4; Pr(b) = 3/4

• K = {k1, k2, k3};

• Pr(k1) = 1/2; Pr(k2) = Pr(k3) = 1/4

• C = {1, 2, 3, 4};

• ek1(a) = 1; ek1(b) = 2;

• ek2(a) = 2; ek2(b) = 3;

• ek3(a) = 3; ek3(b) = 4

P=Plaintext

C=Ciphertext

K=Key

a b

k1 1 2

k2 2 3

k3 3 4

Encryption Matrix
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Example

• P = {a, b}; Pr(a) = 1/4; Pr(b) = 3/4

• K = {k1, k2, k3};  Pr(k1) = 1/2; Pr(k2) = Pr(k3) = 1/4

• C = {1, 2, 3, 4};
– ek1(a) = 1; ek1(b) = 2;

– ek2(a) = 2; ek2(b) = 3;

– ek3(a) = 3; ek3(b) = 4;

• We now compute the probability distribution of the ciphertext:
– Pr(1) = Pr(k1) Pr(a) = 1/2 * 1/4 = 1/8

– Pr(2) = Pr(k1) P(b) + Pr(k2) Pr(a) = 1/2 * 3/4 + 1/4 *1/4 = 7/16

– Pr(3) = 1/4

– Pr(4) = 3/16

a b

k1 1 2

k2 2 3

k3 3 4

Encryption Matrix
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Example

• P = {a, b}; Pr(a) = 1/4; Pr(b) = 3/4

• K = {k1, k2, k3};  Pr(k1) = 1/2; Pr(k2) = Pr(k3) = 1/4

• C = {1, 2, 3, 4};

• Distribution of the ciphertext:

– Pr(1) = 1/8, Pr(2) = 7/16, Pr(3) = 1/4, Pr(4) = 3/16;

• Now we can compute the Conditional probability distribution on the Plaintext, 

given that a certain ciphertext has been observed (we use Bayes)

DOES THIS CRYPTOSYSTEM HAVE PERFECT SECRECY?

a b

k1 1 2

k2 2 3

k3 3 4

Encryption Matrix
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Pp(a|1)=1 Pp(b|1)=0

Pp(a|2)=1/7 Pp(b|2)=6/7

Pp(a|3)=1/4 Pp(b|3)=3/4

Pp(a|4)=0 Pp(b|4)=1
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Perfect Secrecy

• Definition

Informally, perfect secrecy means that an attacker can 
not obtain any information about the plaintext, by 
observing the ciphertext.

What type of attack is this?

• Definition

A cryptosystem has perfect secrecy if Pr[x|y] = Pr[x], 
for all x ∈∈∈∈ P and y ∈∈∈∈ C, where P is the set of plaintext 
and C is the set of ciphertext.
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Perfect Secrecy

• What can I say about Pr[x|y] and Pr[x], 

for all x ∈ P and y ∈ C

• From Bayes’ Theorem
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Perfect Secrecy

• KNOWN, Pr[x], Pr[k]

C(k): the set of all possible ciphertexts if key is k.
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Example

• P = {a, b}; Pr(a) = 1/4; Pr(b) = 3/4

• K = {k1, k2, k3};  Pr(k1) = 1/2; Pr(k2) = Pr(k3) = 1/4

• C = {1, 2, 3, 4};
– ek1(a) = 1; ek1(b) = 2;

– ek2(a) = 2; ek2(b) = 3;

– ek3(a) = 3; ek3(b) = 4;

• Distribution of the ciphertext:
– Pr(1) = Pr(k1) Pr(a) = 1/2 * 1/4 = 1/8

– Pr(2) = Pr(k1) P(b) + Pr(k2) Pr(a) = 1/2 * 3/4 + 1/4 *1/4 = 7/16

– Similarly: Pr(3) = 1/4; Pr(4) = 3/16;

• Conditional probability distribution of the ciphertext (we use Bayes)
– Pr(a|1) = Pr(1|a)Pr(a)/Pr(1) = 1/2*1/4/(1/8) = 1

– Similarly: Pr(a|2) = 1/7; Pr(a|3) = 1/4; Pr(a|4) = 0;

– Pr(b|1) = 0; Pr(b|2) = 6/7; Pr(b|3) = 3/4; Pr(b|4) = 1

DOES THIS CRYPTOSYSTEM HAVE PERFECT SECRECY?
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Names connected with OTP

• Co-inventors of One-time-pad

– Joseph Mauborgne (1881-1971) became a Major 

General in the United States Army

– Gilbert Sandford Vernam (1890 - 1960) was AT&T 

Bell Labs engineer

• Security of OTP

– Claude Elwood Shannon (1916 - 2001), American 

electronic engineer and mathematician, was "the 

father of information theory.
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Perfect secrecy of 

One-Time Pad
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One-Time Pad has Perfect Secrecy

• P = C = K = {0,1}n, the key is chosen randomly, the key 

used only once per message

• Proof: We need to show that for any probability of 

the plaintext, ∀x ∀y , Pr [x|y] = Pr[x]
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Modern Cryptography

• One-time pad requires the length of the key to 

be the length of the plaintext and the key to 

be used only once. Difficult to manage.

• Alternative: design cryptosystems where a key 

is used more than once.

• What about the attacker? Resource 

constrained, make it infeasible for adversary 

to break the cipher.
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Stream Ciphers

• In OTP, a key is described by a random bit string 
of length n

• Stream ciphers:

• Idea: replace “rand” by “pseudo rand”

• Use Pseudo Random Number Generator (PRNG)

• PRNG: {0, 1}s → {0, 1}n

– expand a short (e.g., 128-bit) random seed into a long 
(e.g., 106 bit) string that “looks random”

– Secret key is the seed

– Eseed[M] = M ⊕ PRNG(seed)

34



Properties of Stream Ciphers

• Does not have perfect secrecy

– security depends on PRNG

• PRNG must be “unpredictable”

– given consecutive sequence of bits output (but 
not seed), next bit must be hard to predict

• Typical stream ciphers are very fast

• Used in many places, often incorrectly

– SSL( Rivest Cipher 4, or RC4), DVD (LFSR), WEP 
(RC4), etc.
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Fundamental Weaknesses of Stream 

Ciphers

• If the same key-stream is used twice ever, 

then easy to break.

• Highly malleable

– easy to change ciphertext so that plaintext 

changes in predictable, e.g., flip bits

• Weaknesses exist even if the PRNG is strong
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