Exercise 1

- Let us consider the following (simple) cryptosystem
- $P=\{a, b\} ;$
- $\operatorname{Pr}(a)=p ; \operatorname{Pr}(b)=1-p, \quad$ with $0 \leq p \leq 1$
- $K=\{k 1, k 2\} ;$
- $\operatorname{Pr}(k 1)=\operatorname{Pr}(k 2)=1 / 2 ;$
- $C=\{1,2\}$;
- $\mathrm{e}_{\mathrm{k} 1}(\mathrm{a})=1 ; \mathrm{e}_{\mathrm{k} 1}(\mathrm{~b})=2$;
- $\mathrm{e}_{\mathrm{k} 2}(\mathrm{a})=2 ; \mathrm{e}_{\mathrm{k} 2}(\mathrm{~b})=1$

Encryption Matrix

Exercise 1

- Compute the probability distribution of the ciphertext
- Compute the Conditional probability distribution on the Plaintext, given that a certain ciphertext has been observed (using Bayes)

$$
\operatorname{Pr}[x \mid y]=\frac{\operatorname{Pr}[y \mid x] \operatorname{Pr}[x]}{\operatorname{Pr}[y]}
$$

DOES THIS CRYPTOSYSTEM HAVE PERFECT SECRECY?

Exercise 2 - Affine Cipher

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

- Let us consider:
$-e(x)=a x+b \bmod 26, \quad$ with $\mathrm{a}=9$ and $\mathrm{b}=2$
- Is 9 a valid choice for parameter "a"? Why?
- Is $b=2$ a valid choice ? Why ?
- Encrypt the plaintext "affine"
- Find the decryption function $d(y)$
- Decrypt the cyphertext "zmimcab"
- Decrypt the cyphertext "ucr"

In practical situations, the « invmodn» function found here can be used http://www2.math.umd.edu/~Icw/MatlabCode/

Exercise 2 - Solution

- Yes, $\operatorname{gcd}(9,26)=1$, it is a valid choice
- Any choice for b is valid
- e('affine')=CVVWPM
- We start with $\mathrm{y}=9 \mathrm{x}+2$ and solve for x .
- Since $\operatorname{gcd}(9,26)=1$, the multiplicative inverse of 9 (modulo 26) exists. In fact, it is easy to see that $9 * 3=1$ mod 26, hence 3 is the desired inverse.
- Therefore we have $x=3(y-2)=3 y-6=3 y+20(\bmod 26)$
$-d(y)=3 y+20 \bmod 26$
- $d($ 'zmimcab') $=$ 'reseaux'
- $d\left({ }^{\prime} u r^{\prime}\right)=$ 'cat'

Exercise 3 - Affine Cipher

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

- Let us consider:
$-e(x)=a x+b \bmod 26, \quad$ with $a=13$ and $b=4$
- Is 13 a valid choice for parameter "a"? Why?
- Is 4 a valid choice for parameter "b"? Why?
- Encrypt the plaintext "input"
- Encrypt the plaintext "alter"

Exercise 3 - Solution

- No, $\operatorname{gcd}(13,26)=13$, it is not a valid choice
- Any choice for b is valid
- e('input')='ERRER'
- e('alter')='ERRER'
- It is impossible to decrypt, since several plaintext yield the same ciphertext.
- Encryption must be one-to-one, and this fails in the present case.

Exercise 4 - Chosen Plaintext Attack on Affine Cipher

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	$\mathbf{6}$	$\mathbf{7}$	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

- Consider an affine cipher:
$-e(x)=m x+n \bmod 26, \quad$ with m, n unknown
- You perform a chosen plaintext attack using 'hahaha'. The ciphertext is 'NONONO'.
- Determine the encryption function.

Exercise 4 - Solution

- Let $m \mathrm{x}+\mathrm{n}$ be the encryption function.
- Since $h=7$ and $N=13$, we have
$-m \cdot 7+n \equiv 13(\bmod 26)$.
- Using the second letters yields
$-m \cdot 0+n \equiv 14(\bmod 26)$. .
- Therefore $\mathbf{n = 1 4}$.
- The first congruence now yields
$-7 m \equiv-1(\bmod 26)$.
- This yields $\mathbf{m}=11$.
- The encryption function is therefore $\mathbf{1 1 x} \mathbf{+ 1 4}$.

Exercise 5 - Known Plaintext Attack on Affine Cipher

- With a little luck, knowing 2 letters of the plaintext and the corresponding letters of the ciphertext suffices to find the key. In any case, the number of possibilities for the key is greatly reduced and a few more letters should yield the key.
- Suppose the plaintext starts with « if » and te corresponding ciphertext is « PQ ».
- Find the key (i.e., the encryption function).

Exercise 5 - Solution

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

- In numbers we have that 8 (=i) maps to 15 (=P) and 5 maps to 16 .
- Let $\mathrm{mx}+\mathrm{n}$ be the encryption function.
- Therefore we have the equations:
$-m \cdot 8+n \equiv 15(\bmod 26)$ and $m \cdot 5+n \equiv 16(\bmod 26)$. .
- Subtracting we obtain:
$-m \cdot 3 \equiv-1 \equiv 25(\bmod 26)$, which has the unique solution $\mathrm{m}=17$.
- Using the first equation, we find $17^{*} 8+\mathrm{n} \equiv 15(\bmod 26)$, which yields $\mathbf{n}=\mathbf{9}$

Exercise 6 - Known Plaintext Attack on Affine Cipher

- Same exercise as before, but now suppose that the plaintext « go » corresponds to the ciphertext « TH ».
- Find the key (i.e., the encryption function).

Exercise 6 - Solution

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

- We have the equations:
$-m \cdot 6+n \equiv 19(\bmod 26)$ and $m \cdot 14+n \equiv 7(\bmod 26)$.
- Subtracting we obtain:
$-\quad-8^{*} m \equiv-1 \equiv 12(\bmod 26)$. Since $\operatorname{gcd}(-8,26)=2$, this has two solutions: $m=5$ and $m=18$. The corresponding values of n are both $\mathbf{1 5}$ (this is not a coincidence, it always happens when the coefficients of m in the equations are even)
- So we have 2 candidates for the key: $(5,15)$ and $(18,15)$. However, $\operatorname{gcd}(18,26)>1$, hence the key is $(m=5, n=15)$

Exercise 7 - Double Ciphering

- Suppose you encrypt using an affine cipher, $m x+n$, then encrypt the encryption using another affine cipher, ax+b (both modulo 26).
- Is there any advantage to doing this, rather than using a single cipher ?
- Why or why not ?

Exercise 7 - Solution

- Let $m x+n$ be one affine function and $a x+b$ be another. Applying the first, then the second, yields the function
$-a(m x+n)+b=(a m) x+(a n+b) . .$.
... which is still an affine function.
- Therefore, successively encrypting with two affine functions is the same as encrypting with a single affine function. There is therefore no advantage of doing double encryption in this case.
- Technical point: Since $\operatorname{gcd}(a, 26)=1$ and $\operatorname{gcd}(m, 26)=1$, it follows that $\operatorname{gcd}(a m, 26)=1$, so the affine function we obtained is still of the required form.)

