
Exercise 1 – Perfect Secrecy

• Let us consider the following cryptosystem

• P = {a, b, c};

• Pr(a) = 1/2;  Pr(b) = 1/3;  Pr(c) = 1/6

• K = {k1, k2, k3};

• Pr(k1) = Pr(k2) = Pr(k2) = 1/3; 

• C = {1, 2, 3, 4};

P=Plaintext

C=Ciphertext

K=Key

a b c

k1 1 2 3

k2 2 3 4

k3 3 4 1

Encryption Matrix
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Exercise 1 – Perfect Secrecy

• Compute the probability distribution of the ciphertext

• Compute the Conditional probability distribution on the 

Plaintext, given that a certain ciphertext has been observed 

(using Bayes)
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Exercise 1 - Solution

• P(1)=2/9, P(2)=5/18, P(3)=1/3, P(4)=1/6

P(a|1)=3/4 P(b|1)=0 P(c|1)=1/4

P(a|2)=3/5 P(b|2)=2/5 P(c|2)=0

P(a|3)=1/2 P(b|3)=1/3 P(c|3)=1/6

P(a|4)=0 P(b|4)=2/3 P(c|4)=1/3



Exercise 2 – Affine Cipher

• Encrypt the plaintext ‘howareyou’ using the 

affine function:

– e(x) = 5x+7 mod 26

• Find the decryption function d(y)

• Check that it works by decyphering what you 

obtained
In practical situations, the « invmodn » function found here can be used

http://www2.math.umd.edu/~lcw/MatlabCode/

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
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Exercise 2 - Solution

• Changing the plaintext to numbers yields 
– 7, 14, 22, 0, 17, 4, 24, 14, 20.

• Applying 5x+7 to each yields
– 5·7+7 = 42 ≡ 16 (mod 26), 5·14+7 = 77 ≡ 25 …

• Changing back to letters yields ‘QZNHOBXZD’ as 
the ciphertext.

• y= 5x+7 mod 26, x=5-1(y-7) mod 26 
– x=21y+9 mod 26

• Note that 5*21=105=1 mod 26



Exercise 3 – Key space of Affine Ciphers

• Suppose we use an affine cipher modulo 26. 

• How many keys are possible ?

• What if we work modulo 27 ?

• What if we work modulo 29 ?



Exercise 3 - Solution

• For an affine cipher mx + n (mod 26), we must have 
gcd(26,m) = 1, and we can always take 1 ≤ n ≤ 26.
– φ(26)= φ(2*13)=(2-1)*(13-1)= 12, hence we have 

12*26=312 possible keys. 

• For an affine cipher mx + n (mod 27), we must have 
gcd(27,m) = 1, and we can always take 1 ≤ n ≤ 27. 
– φ(27)=φ(33)=33 -32 =27-9 = 18

– All 27 values of n are possible

– So we have 18 · 27 = 486 keys. 

• When we work mod 29, all values 1 ≤ m ≤ 28 are 
allowed, φ(29)=29-1=28,
– so we have 28 · 29 = 812 keys.



Exercise 4 – Shift Cipher

• Caesar wants to arrange a secret meeting with
Marc Antony, either at the Tiber (the river) or at 
the Coliseum (the arena). He sends the ciphertext
‘EVIRE’. However, Marc Antony does not know
the key, so he tries all possibilities.

• Where will he meet Caesar ?

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25



Exercise 4 - Solution

• Among the shifts of EVIRE, there are two 

words: “arena” and “river”. Therefore, Marc 

Anthony cannot determine where to meet 

Caesar !



Exercise 1 - RSA

• Let us consider an RSA Public Key Crypto System

• Alice selects 2 prime numbers:

– p=5, q=11

• Compute n, and Φ(n)

• Alice selects her public exponent e = 3

• Is this choice for “e” valid here? Is this choice 

always valid ?

• Compute d , the private exponent of Alice

In practical situations, the « invmodn » function found here can be used

http://www2.math.umd.edu/~lcw/MatlabCode/



Exercise 2 - RSA

• Now you want to send message M=4 to Alice

• Encrypt your plaintext M using Alice public 

exponent/ What is the resulting ciphertext C?

• Now Alice receives C

• Verify that Alice can obtain M from C, using 

her private decryption exponent

– Hint: use square and multiply 



Exercise 2 - Solution

• n=pq=55

• Φ(n) = (p-1)(q-1)=4x10=40

• Gcd(3,40)=1, e=3 is a valid choice (note that 3 is a prime 

number)

• Alice private exponent d: de=1 mod Φ(n), hence 3d=1 

mod 40

• d=27 since 3*27=81 = 1 mod 40

• You send: C = Me mod n = 43 mod 55 = 64 mod 55 = 9

• Alice receives C and computes Cd mod n = 927mod 55=4



Exercise 2 - Solution

• Let us compute 927 mod 55

• x=9, n=55,  c=27 = 11011 (binary form)

i c
i

z

4 1 12X 9=9

3 1 92X 9=729 mod 55 = 14

2 0 142=31

1 1 312X 9=14

0 1 142X 9=4



Exercise 3

• Alice uses the RSA Crypto System to receive messages from 
Bob. She chooses 
– p=13, q=23

– her public exponent e=35

• Alice published the product n=pq=299 and e=35.

• Check that e=35 is a valid exponent for the RSA algorithm

• Compute d , the private exponent of Alice

• Bob wants to send to Alice the (encrypted) plaintext P=15.

• What does he send to Alice ? 

• Verify she can decrypt this message



Exercise 3 - Solution

• First of all, Φ(n) = (p-1)(q-1)=264

• To be valid, gcd(e, Φ(n)) must be = 1

• Gcd(35,264)=1, indeed since 35=5*7 and 264=23*3*11

– The private exponent d = e-1 modΦ(n) = 35-1 mod264

– d=83

– d = 35Φ(264)−1 = 35 Φ(8) Φ(3) Φ(11)−1 = 35 4*2*10−1 = 35 79 mod264= 83
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i c
i

z

6 1 12X 35=35

5 0 352=169

4 0 1692=49

3 1 492X 35=83

2 1 832X 35=83

1 1 832X 35=83

0 1 832X 35=83



Exercise 3 - Solution

• So, C=Pe mod n = 1535 mod299 = 189

• And P= Cd mod n = 18983 mod299 = 15



Exercise 4 – Digital Signature with RSA

• Alice publishes the following data

– n = pq = 221 and e = 13. 

• Bob receives the message P = 65 and the 

corresponding digital signature S = 182.

• Verify the signature



Exercise 4 – Solution

• The signature is valide if

– P = Se mod n. 

• In our case:

– Se mod n = 18213 mod 221 = 65, which is valid



Attacks against RSA
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Math-Based Key Recovery Attacks

• Three possible approaches:

1. Factor n = pq

2. Determine Φ(n)

3. Find the private key d directly

• All the above are equivalent to 

factoring n
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Knowing Φ(n) Implies Factorization

• If a cryptanalyst can learn the value of Φ(n), then he can 
factor n and break the system. In other words, computing
Φ(n) is no easier than factoring n

• In fact, knowing both n and Φ(n), one knows

n = pq

Φ(n) = (p-1)(q-1) = pq – p – q + 1 = n – p – n/p + 1

pΦ(n) = np – p2 – n + p

p2 – np + Φ(n)p – p + n = 0

p2 – (n – Φ(n) + 1) p + n = 0

• There are two solutions of p in the above equation.

• Both p and q are solutions.
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Exercise 1 - Factorization

• Alice set us an RSA cryptosystem.

• Unfortunately, the cryptalyst has learned that n = 493 

and Φ(n) = 448.

• Find out the two factors of n.

• Supposing the public exponent of Alice is e=3, find her 

private exponent d.
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Exercise 1 - Solution

• Find out the two factors of n.

• p2 – (493 – 448 + 1) p + 493 = 0

• p2 – 46 p + 493 = 0

– Two roots are p=17, q=29

• Supposing the public exponent of Alice is e=3, find her private 

exponent d.

• d=3-1mod Φ(n)=3-1mod 448=299

• d can be easily computed as 3Φ(448)−1 mod 448 = 3191 mod 448 

=299 (square & multiply)
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Factoring Large Numbers

• RSA-640 bits, Factored Nov. 2 2005

• RSA-200 (663 bits) factored in May 2005

• RSA-768 has 232 decimal digits and was 

factored on December 12, 2009, latest.

• Three most effective algorithms are

– quadratic sieve

– elliptic curve factoring algorithm

– number field sieve
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Fermat Factorization: example

• Let us suppose Alice publishes the following

information (her public key):

• n=6557, e=131 

• If we assume p > q, we can always write:

� = �� − �� =
��	 �

�
-	
��	 �

�

• Fermat factorization is efficient if p ≅	q. In this 

case we have � ≅ �	
��	� ≅ 0
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An odd integer is the 

difference of 2 squares2 2



Exercise 2 - Fermat Factorization

• Let us try, in order, all integer numbers y> �, 
calculating each time: 

��� = ��-	�

• We go on until ��� is a perfect square

• In our example y> � = 80.9

• Let us try y=81. In this case we have
��� = 6561-	6557= 4

• In fact, n=6557 and 6557+22=812

– p=81+2=83, q=81-2=79

• What is the private exponent of Alice?
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Exercise 2 - solution
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• Φ(n)=(p-1)(q-1)=6396

• e=131

– The private exponent of Alice is d = e-1 

modΦ(n) = 131-1 mod 6396

– d=2783

• We can compute it also as follows (square & multiply):

• d = 131Φ(6396)−1 mod 6396 = 131 1920−1 mod 6396 = 131 1919

mod 6396= 2783



Exercise 3 - Fermat Factorization

• Try to factor, using Fermat factorization, the 

following numbers:

• n = 295927

• n = 213419

• n = 1707
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Exercise 3 - Solution

• Try to factor, using Fermat factorization, the following
numbers:

• n = 295927
– Sqrt(n)=543.99, and 5442-n=9=32

– Hence p = 544-3=541, q=544+3=547

• n = 213419
– Sqrt(n)=461.79, and 4622-n=25=52

– Hence p = 462-5=457, q=462+5=467

• n = 1707
– n=1707, 2862-1707=2832

– … hence p=286+283=569, q=286-283=3
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Exercise 4

• Let us consider an RSA Public Key 

Cryptosystem

• Alice publishes her public key, namely:

– n=221

– e (her public exponent), e=13

• Try to break Alice cryptosystem, factoring n



Exercise 4 - Solution

• Let us consider an RSA Public Key Cryptosystem

• Alice publishes her public key, namely:

– n=221

– e (her public exponent), e=13

• Try to break Alice cryptosystem, factoring n

– p=13, q=17

– Φ(n) = (p-1)(q-1) =12*16+192

– Private exponent d: de=1 mod 192. Hence 

d=invmodn(13,192)=133

In practical situations, the « invmodn » function found here can be used

http://www2.math.umd.edu/~lcw/MatlabCode/


