Exercise 1 - Perfect Secrecy

- Let us consider the following cryptosystem
- $P=\{a, b, c\} ;$
- $\operatorname{Pr}(a)=1 / 2 ; \operatorname{Pr}(b)=1 / 3 ; \operatorname{Pr}(c)=1 / 6$
- $K=\{k 1, k 2, k 3\} ;$
- $\operatorname{Pr}(\mathrm{k} 1)=\operatorname{Pr}(\mathrm{k} 2)=\operatorname{Pr}(\mathrm{k} 2)=1 / 3 ;$

Encryption Matrix

- $C=\{1,2,3,4\} ;$

	a	b	c
k1	1	2	3
k2	2	3	4
k3	3	4	1

Exercise 1 - Perfect Secrecy

- Compute the probability distribution of the ciphertext
- Compute the Conditional probability distribution on the Plaintext, given that a certain ciphertext has been observed (using Bayes)

$$
\operatorname{Pr}[x \mid y]=\frac{\operatorname{Pr}[y \mid x] \operatorname{Pr}[x]}{\operatorname{Pr}[y]}
$$

DOES THIS CRYPTOSYSTEM HAVE PERFECT SECRECY?

Exercise 1 - Solution

- $P(1)=2 / 9, P(2)=5 / 18, P(3)=1 / 3, P(4)=1 / 6$

$P(a \mid 1)=3 / 4$	$P(b \mid 1)=0$	$P(c \mid 1)=1 / 4$
$P(a \mid 2)=3 / 5$	$P(b \mid 2)=2 / 5$	$P(c \mid 2)=0$
$P(a \mid 3)=1 / 2$	$P(b \mid 3)=1 / 3$	$P(c \mid 3)=1 / 6$
$P(a \mid 4)=0$	$P(b \mid 4)=2 / 3$	$P(c \mid 4)=1 / 3$

Exercise 2 - Affine Cipher

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	$\mathbf{6}$	$\mathbf{7}$	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

- Encrypt the plaintext 'howareyou' using the affine function:
$-e(x)=5 x+7 \bmod 26$
- Find the decryption function $d(y)$
- Check that it works by decyphering what you obtained

In practical situations, the « invmodn» function found here can be used http://www2.math.umd.edu/~/cw/MatlabCode/

Exercise 2 - Solution

- Changing the plaintext to numbers yields
- 7, 14, 22, 0, 17, 4, 24, 14, 20.
- Applying $5 x+7$ to each yields
$-5 \cdot 7+7=42 \equiv 16(\bmod 26), 5 \cdot 14+7=77 \equiv 25 \ldots$
- Changing back to letters yields 'QZNHOBXZD' as the ciphertext.
- $y=5 x+7 \bmod 26, x=5^{-1}(y-7) \bmod 26$
$-x=21 y+9 \bmod 26$
- Note that 5*21=105=1 mod 26

Exercise 3 - Key space of Affine Ciphers

- Suppose we use an affine cipher modulo 26.
- How many keys are possible ?
- What if we work modulo 27 ?
- What if we work modulo 29 ?

Exercise 3 - Solution

- For an affine cipher $m x+n(\bmod 26)$, we must have $\operatorname{gcd}(26, m)=1$, and we can always take $1 \leq n \leq 26$.
$-\phi(26)=\phi\left(2^{*} 13\right)=(2-1)^{*}(13-1)=12$, hence we have 12*26=312 possible keys.
- For an affine cipher $m x+n(\bmod 27)$, we must have $\operatorname{gcd}(27, m)=1$, and we can always take $1 \leq n \leq 27$.
$-\phi(27)=\phi\left(3^{3}\right)=3^{3}-3^{2}=27-9=18$
- All 27 values of n are possible
- So we have $18 \cdot 27=486$ keys.
- When we work mod 29, all values $1 \leq \mathrm{m} \leq 28$ are allowed, $\phi(29)=29-1=28$,
- so we have $28 \cdot 29=812$ keys.

Exercise 4 - Shift Cipher

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

- Caesar wants to arrange a secret meeting with Marc Antony, either at the Tiber (the river) or at the Coliseum (the arena). He sends the ciphertext 'EVIRE'. However, Marc Antony does not know the key, so he tries all possibilities.
- Where will he meet Caesar ?

Exercise 4 - Solution

- Among the shifts of EVIRE, there are two words: "arena" and "river". Therefore, Marc Anthony cannot determine where to meet Caesar!

Exercise 1 - RSA

- Let us consider an RSA Public Key Crypto System
- Alice selects 2 prime numbers:
$-p=5, q=11$
- Compute n, and $\Phi(n)$
- Alice selects her public exponent $\mathrm{e}=3$
- Is this choice for "e" valid here? Is this choice always valid?
- Compute d, the private exponent of Alice

In practical situations, the « invmodn» function found here can be used http://www2.math.umd.edu/~Icw/MatlabCode/

Exercise 2 - RSA

- Now you want to send message $\mathrm{M}=4$ to Alice
- Encrypt your plaintext M using Alice public exponent/ What is the resulting ciphertext C?
- Now Alice receives C
- Verify that Alice can obtain M from C, using her private decryption exponent
- Hint: use square and multiply

Exercise 2 - Solution

- $\mathrm{n}=\mathrm{pq}=55$
- $\Phi(n)=(p-1)(q-1)=4 \times 10=40$
- $\operatorname{Gcd}(3,40)=1, \mathrm{e}=3$ is a valid choice (note that 3 is a prime number)
- Alice private exponent d : $d e=1 \bmod \Phi(n)$, hence $3 d=1$ $\bmod 40$
- $\mathbf{d}=\mathbf{2 7}$ since $3^{*} 27=81=1 \bmod 40$
- You send: $\mathbf{C}=M^{e} \bmod n=4^{3} \bmod 55=64 \bmod 55=9$
- Alice receives C and computes $C^{d} \bmod n=9{ }^{27} \bmod 55=4$

Exercise 2 - Solution

- Let us compute $9^{27} \bmod 55$
- $\mathrm{x}=9, \mathrm{n}=55, \mathrm{c}=27=11011$ (binary form)

i	c_{i}	z
4	1	$1^{2} \times 9=9$
3	1	$9^{2} \times 9=729 \bmod 55=14$
2	0	$14^{2}=31$
1	1	$31^{2} \times 9=14$
0	1	$14^{2} \times 9=4$

Exercise 3

- Alice uses the RSA Crypto System to receive messages from Bob. She chooses
- $\mathrm{p}=13, \mathrm{q}=23$
- her public exponent e=35
- Alice published the product $\mathrm{n}=\mathrm{pq}=299$ and $\mathrm{e}=35$.
- Check that $\mathrm{e}=35$ is a valid exponent for the RSA algorithm
- Compute d, the private exponent of Alice
- Bob wants to send to Alice the (encrypted) plaintext $\mathrm{P}=15$.
- What does he send to Alice ?
- Verify she can decrypt this message

Exercise 3 - Solution

- First of all, $\Phi(n)=(p-1)(q-1)=264$
- To be valid, $\operatorname{gcd}(\mathrm{e}, \Phi(\mathrm{n}))$ must be $=1$
- $\operatorname{Gcd}(35,264)=1$, indeed since $35=5 * 7$ and $264=2^{3 *} 3^{*} 11$
- The private exponent $d=e^{-1} \bmod \Phi(n)=35^{-1} \bmod 264$
- d=83
$-d=35^{\Phi(264)-1}=35^{\Phi(8) \Phi(3) \Phi(11)-1}=35^{4^{*} 2^{*} 10-1}=35^{79} \bmod 264=83$

\boldsymbol{i}	c_{i}	\mathbf{z}
6	1	$1^{2} \times 35=35$
5	0	$35^{2}=169$
4	0	$169^{2}=49$
3	1	$49^{2} \times 35=83$
2	1	$83^{2} \times 35=83$
1	1	$83^{2} \times 35=83$
0	1	$83^{2} \times 35=83$

Exercise 3 - Solution

- $\mathrm{So}, \mathrm{C}=\mathrm{Pe}^{\mathrm{m}} \bmod \mathrm{n}=15^{35} \bmod 299=189$
- And $\mathrm{P}=\mathrm{C}^{d} \bmod \mathrm{n}=1899^{83} \bmod 299=15$

Exercise 4 - Digital Signature with RSA

- Alice publishes the following data
$-n=p q=221$ and $e=13$.
- Bob receives the message $P=65$ and the corresponding digital signature $\mathrm{S}=182$.
- Verify the signature

Exercise 4 - Solution

- The signature is valide if
$-P=s^{e}$ mod n.
- In our case:
$-s^{e} \bmod n=182^{13} \bmod 221=65$, which is valid

Attacks against RSA

Math-Based Key Recovery Attacks

- Three possible approaches:

1. Factor $n=p q$
2. Determine $\Phi(\mathrm{n})$
3. Find the private key d directly

- All the above are equivalent to
 factoring n

Knowing $\Phi(n)$ Implies Factorization

- If a cryptanalyst can learn the value of $\Phi(n)$, then he can factor n and break the system. In other words, computing $\Phi(n)$ is no easier than factoring n
- In fact, knowing both n and $\Phi(\mathrm{n})$, one knows

$$
\begin{aligned}
& n=p q \\
& \Phi(n)=(p-1)(q-1)=p q-p-q+1=n-p-n / p+1 \\
& p \Phi(n)=n p-p^{2}-n+p \\
& p^{2}-n p+\Phi(n) p-p+n=0 \\
& p^{2}-(n-\Phi(n)+1) p+n=0
\end{aligned}
$$

- There are two solutions of p in the above equation.
- Both p and q are solutions.

Exercise 1 - Factorization

- Alice set us an RSA cryptosystem.
- Unfortunately, the cryptalyst has learned that $\mathrm{n}=493$ and $\Phi(n)=448$.
- Find out the two factors of n.
- Supposing the public exponent of Alice is e=3, find her private exponent d.

Exercise 1 - Solution

- Find out the two factors of n.
- $p^{2}-(493-448+1) p+493=0$
- $p^{2}-46 p+493=0$
- Two roots are $p=17, q=29$
- Supposing the public exponent of Alice is e=3, find her private exponent d.
- $\mathrm{d}=3^{-1} \bmod \Phi(\mathrm{n})=3^{-1} \bmod 448=299$
- d can be easily computed as $3^{\Phi(448)-1} \bmod 448=3^{191} \bmod 448$ =299 (square \& multiply)

Factoring Large Numbers

- RSA-640 bits, Factored Nov. 22005
- RSA-200 (663 bits) factored in May 2005
- RSA-768 has 232 decimal digits and was factored on December 12, 2009, latest.
- Three most effective algorithms are
- quadratic sieve
- elliptic curve factoring algorithm
- number field sieve

Fermat Factorization: example

- Let us suppose Alice publishes the following information (her public key):
- $\mathrm{n}=6557, \mathrm{e}=131$
- If we assume $p>q$, we can always write:

$$
n=y^{2}-x^{2}=\frac{(p+q)^{2}}{2^{2}}-\frac{(p-q)^{2}}{2^{2}}
$$

- Fermat factorization is efficient if $\mathrm{p} \cong \mathrm{q}$. In this case we have $y \cong \sqrt{n}$ and $x \cong 0$

Exercise 2 - Fermat Factorization

- Let us try, in order, all integer numbers $\mathrm{y}>\sqrt{n}$, calculating each time:

$$
\hat{x}^{2}=y^{2}-n
$$

- We go on until \hat{x}^{2} is a perfect square
- In our example $y>\sqrt{n}=80.9$
- Let us try $\mathrm{y}=81$. In this case we have

$$
\hat{x}^{2}=6561-6557=4
$$

- In fact, $\mathrm{n}=6557$ and $6557+2^{2}=81^{2}$
$-p=81+2=83, q=81-2=79$
- What is the private exponent of Alice?

Exercise 2 - solution

- $\Phi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)=6396$
- $e=131$
- The private exponent of Alice is $d=e^{-1}$ $\bmod \Phi(n)=131^{-1} \bmod 6396$
$-d=2783$
- We can compute it also as follows (square \& multiply):
- $d=131^{\Phi(6396)-1} \bmod 6396=131^{1920-1} \bmod 6396=1311919$ $\bmod 6396=2783$

Exercise 3 - Fermat Factorization

- Try to factor, using Fermat factorization, the following numbers:
- $\mathrm{n}=295927$
- $\mathrm{n}=213419$
- $\mathrm{n}=1707$

Exercise 3 - Solution

- Try to factor, using Fermat factorization, the following numbers:
- $\mathrm{n}=295927$
- Sqrt(n)=543.99, and $544^{2}-\mathrm{n}=9=3^{2}$
- Hence $p=544-3=541, q=544+3=547$
- $\mathrm{n}=213419$
- Sqrt(n)=461.79, and $462^{2}-\mathrm{n}=25=5^{2}$
- Hence $p=462-5=457, q=462+5=467$
- $\mathrm{n}=1707$
- n=1707, 286 ${ }^{2}$-1707=283 ${ }^{2}$
- ... hence $p=286+283=569, q=286-283=3$

Exercise 4

- Let us consider an RSA Public Key

Cryptosystem

- Alice publishes her public key, namely:
- $\mathrm{n}=221$
- e (her public exponent), $\mathrm{e}=13$
- Try to break Alice cryptosystem, factoring n

Exercise 4 - Solution

- Let us consider an RSA Public Key Cryptosystem
- Alice publishes her public key, namely:
- $\mathrm{n}=221$
- e (her public exponent), e=13
- Try to break Alice cryptosystem, factoring n
$-p=13, q=17$
$-\Phi(n)=(p-1)(q-1)=12 * 16+192$
- Private exponent d: de=1 mod 192. Hence d=invmodn(13,192)=133

In practical situations, the « invmodn» function found here can be used http://www2.math.umd.edu/~Icw/MatlabCode/

