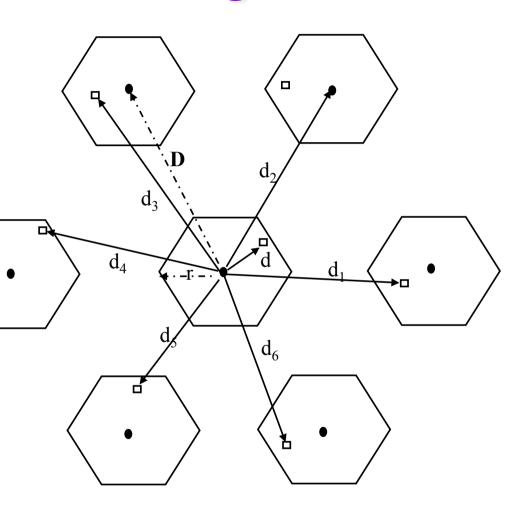
# **Cluster dimensioning**


■ Hip.: same antennas (G) and same tx power  $(P_t)$ 

$$SIR = \frac{P_t \cdot G \cdot d^{-\eta}}{\sum_{i=1}^6 P_t \cdot G \cdot d_i^{-\eta}} = \frac{d^{-\eta}}{\sum_{i=1}^6 d_i^{-\eta}}$$



**Approximation:**  $d_i = D$ 

$$SIR \cong \frac{r^{-\eta}}{6D^{-\eta}} = \frac{1}{6} \left(\frac{1}{R}\right)^{-\eta}$$



## **Cluster dimensioning**

- The SIR depends <u>exclusively</u> on the reuse ratio R=D/r (and on  $\eta$ ) but not on the absolute transmission power or on the cell dimension
- If we fix SIR<sub>min</sub> we can compute R<sub>min</sub>
- Then, if  $R_{min}$  is known, we can obtain K since we can observe that:  $\frac{R^2}{K} = \frac{R^2}{R}$

and therefore:

$$K_{\min} = \frac{\left(6SIR\right)^{2/\eta}}{3}$$

#### Exercise 1

- Calculate the minimum SIR necessary (SIR<sub>min</sub>) in order to have
  - $K_{\min} = 1$
  - $\mathbf{K}_{\min} = 3$
  - $K_{\min} = 4$
  - $\mathbf{K}_{\min} = 7$
- Consider, for all such values, both cases where
  - the path-loss exponent η is equal to 3.9 (Line of Sight, LOS)
  - the path-loss exponent η is equal to 5.9 (Non Line of Sight, NLOS)

#### **Exercise 1 - Solution**

 $\frac{Eta=3.9 \ (LOS)}{SIRmin=1.52 \ dB \ K_{min}=1}$   $SIRmin=10.83 \ dB \ K_{min}=3$   $SIRmin=13.26 \ dB \ K_{min}=4$   $SIRmin=18 \ dB \ K_{min}=7$ 

 $\frac{Eta=5.9 \ (NLOS)}{SIRmin=6.29 \ dB \ K_{min}=1}$   $SIRmin=20.36 \ dB \ K_{min}=3$   $SIRmin=24.05 \ dB \ K_{min}=4$   $SIRmin=31.22 \ dB \ K_{min}=7$ 

### Exercice 2

Un système radio cellulaire utilise un accès multiple TDMA pour 100 appels téléphoniques (100 canaux), chacun desquels transporte de la voix codifiée à 32 kbit/s. Le rayon de chaque cellule est de 300 m, le timing advance n'est <u>pas</u> utilisé, et on veut que l'efficacité totale du système soit égale à 90%.

#### Calculer donc:

- ◆ Le temps de garde (guard time) nécessaire
- ◆ La durée de la trame (en secondes)
- ◆ La longueur (en bit) du TDMA burst pour chaque canal (burst = nombre de bits transmis par chaque source/ appel téléphonique à l'interieur du slot qui lui est réservé)
- ◆ Le rythme de transmission du multiplexeur TDMA

La vitesse de propagation du signal est égale à 300000 km/s.

### **Exercice 2 - Solution**

Le temps de propagation  $\tau$  est égal à  $\tau = 1$   $\mu$ s et donc le <u>temps</u> <u>de garde</u> est de 2  $\mu$ s. Le burst de transmission doit durer au <u>moins T, avec  $T/(T+2\tau)=0,9$ , ce qui donne  $T=18\tau$ , c'est à dire :  $T=18\mu$ s.</u>

La <u>durée de la trame</u> D, <u>avec</u>  $T=18\mu s$  est donc  $D=100*(18+2)=2000 \mu s$ , et donc D=2 ms.

Puisque les bits de chaque appel/de chaque canal (le burst)sont generés durant la periode de trame, le nombre de bit B d'un burst est  $B=32000 \times 0,002=64$  bits.

Les B bits du burst doivent etre transmis à une vitesse V telle que T=18 µs soit utilisés. Donc la vitesse du multiplexeur TDMA est de V=64/18=3,555 Mb/s