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Abstract

The Network Design problem has received increasing attention in recent years. Previ-

ous works have addressed this problem considering almost exclusively networks designed

by selfish users, which can be consistently suboptimal. This paper addresses the network

design issue using cooperative game theory, which permits to study ways to enforce and

sustain cooperation among users. Both the Nash bargaining solution and the Shapley

value are widely applicable concepts for solving these games. However, the Shapley value

presents several drawbacks in this context.

For this reason, we solve the cooperative network design game using the Nash bar-

gaining solution (NBS) concept. More specifically, we extend the NBS approach to the

case of multiple players and give an explicit expression for users’ cost allocations. We fur-

ther provide a distributed algorithm for computing the Nash bargaining solution. Then,

we compare the NBS to the Shapley value and the Nash equilibrium solution in several

network scenarios, including real ISP topologies, showing its advantages and appeal-

ing properties in terms of cost allocation to users and computation time to obtain the

solution.

Numerical results demonstrate that the proposed Nash bargaining solution approach

permits to allocate costs fairly to users in a reasonable computation time, thus repre-

senting a very effective framework for the design of efficient and stable networks.

Index Terms : - Network Design, Cooperative Game Theory, Nash bargaining solution,

Shapley value.
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1. Introduction

The Network Design (ND) problem has become increasingly important

given the continued growth of computer networks such as the Internet. The

design of such networks is generally carried out by a large number of self-

interested actors (users, Internet Service Providers . . . ), all of whom seek to

optimize the quality and cost of their own operation. In general, for the ND

problem we are given a directed graph, where each edge has a nonnegative

cost, and a set of players. Each player is identified with a source-destination

pair and wants to connect his source to the destination node with the mini-

mum possible cost. Over the past years, the network design problem has been tackled

almost exclusively from a non-cooperative point of view. Recent works [1, 2, 3, 4, 5, 6]

have modeled how selfish agents can build or maintain a large network by paying for

possible edges. Nash equilibria in such games, however, can be much more expensive

than the optimal, centralized solution. This is mainly due to the lack of cooperation

among network users, which leads to the design of costly networks.

The underlying assumption in all the above works is that agents are completely non-

cooperative entities. However, this assumption could be not entirely realistic, for example

when network design involves long-term decisions (e.g., in the case of Autonomous Sys-

tems peering relations). It is more natural that agents will discuss possible strategies

and, as in other economic markets, form coalitions taking strategic actions that are ben-

eficial to all members of the group. Moreover, incentives could be introduced by some

external authority (e.g., the network administrator, government authority) in order to

increase the users’ cooperation level.

Preliminary works, like [7, 8], tried to overcome this limitation by incorporating a

socially-aware component in the users’ utility functions. This solution, though, can

be insufficient to obtain cost-efficient networks in all scenarios. In fact, it has been

demonstrated in [8] that, quite surprisingly, highly socially-aware users can form stable

networks that are much more expensive than the networks designed by purely selfish

users.

To address the above issues, in this paper we first formulate the network design

problem as a cooperative game, where groups of players (named coalitions) coordinate
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their actions and pool their winnings; consequently, one of the problems is how to divide

the cost savings among the members of the formed coalition.

Then, we propose a Nash bargaining approach1 to solve the cooperative network

design problem. The Nash bargaining solution (NBS) is a very effective tool to model

interactions among negotiators, and is unique for bargaining games satisfying Pareto

optimality, symmetry, scale independence, and independence of irrelevant alternatives

[9, 10]. More specifically, as a key contribution, we extend the Nash bargaining solution

for the cooperative network design problem to the case of multiple players with linear

constraints, and give explicit expressions for users’ cost allocations, assuming that the

disagreement point corresponds to players’ costs at Nash equilibrium (the cost for players

to connect their source-destination nodes in a purely non-cooperative game). To the best

of our knowledge, the derived explicit expressions are new. Our other major contribution,

in fact, is the demonstration that our proposed cooperative game theory approach, based

on the Nash Bargaining Solution, can be actually applied to large networks.

To complement our study, we further focus on the Shapley value concept,

which is a widely applied solution for cooperative games, since it provides a

unique and fair solution [11]. To compute the Shapley value of the cooperative

ND game, we consider in this paper three different (natural) definitions for

the characteristic function, which associates with every coalition (a subset

of players) a real value respresenting the cost for the coalition. However,

we show that the Shapley value presents several limitations in our context:

(1) it is non-trivial to define meaningful characteristic functions, (2) the cost

allocation determined by the Shapley value can be, in some cases and for

some players, even costlier than that obtained at some Nash equilibrium,

and (3) for our network design game, it cannot be determined in a reasonable

computation time, even when approximation techniques (like that proposed

in [12]) are applied.

Finally, we provide a distributed algorithm for computing the Nash bar-

gaining solution. Furthermore, we perform a thorough comparison of the proposed

1The Nash bargaining approach studies situations where two or more agents need to select one of the
many possible outcomes of a joint collaboration [9, 10]. Each party in the negotiation has the option of
leaving the table, in which case the bargaining will result in a disagreement outcome.
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Nash bargaining solution with other classic approaches like the Shapley value and the

Nash equilibrium solutions, using different, large-scale network scenarios, including real

Internet Service Provider (ISP) topologies. Both exact and approximate methods for

computing the Shapley value are considered and compared to our approach.

Numerical results demonstrate that our Nash bargaining solution can provide efficient

cost allocations in a short computing time, thus representing a very effective tool to plan

efficient and stable networks.

The main contributions of this work can therefore be summarized as fol-

lows:

• the formulation of the network design problem as a cooperative game,

where players cooperate when connecting their source-destination pairs

to reduce their costs.

• The proposition of a novel Nash bargaining solution for the n-person

cooperative network design problem, which has appealing properties

in terms of planning efficient networks and cost allocations in a short

computation time.

• The proposition of three definitions for the characteristic function and

computation of the Shapley value for the cooperative network design

game, showing that this solution requires a long computation time for

solving large-scale networks even when sampling-based approximation

techniques are used.

• The construction of a distributed algorithm for computing the Nash

bargaining solution.

• A thorough comparison of the proposed approach with classic solutions,

viz. the Shapley value and the Nash equilibrium concepts, in several

realistic and large-size network scenarios, including real ISP topologies.

The paper is organized as follows: Section 2 discusses related work. Section 3 intro-

duces the cooperative network design game, while Section 4 illustrates the proposed Nash

bargaining solution along with a distributed approach we propose for its computation.
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Application scenarios are discussed in Section 5. Section 6 presents numerical results that

demonstrate the effectiveness of the NBS approach in several realistic network scenarios,

including real ISP topologies. Finally, Section 7 concludes this paper.

2. Related Work

The network design problem has been addressed in several recent works, mainly in

the context of non-cooperative games [1, 2, 8]. The works in [3, 5, 13, 14, 15] have further

considered coordination issues among players.

The so-called Shapley network design game is proposed in [1]. In this non-cooperative

network design game, each player chooses a path from its source to its destination, and

the overall network cost is shared among the players in the following way: each player

pays for each edge a proportional share ce
xe

of the edge cost ce, where xe is the number

of players that choose such edge. In [8], the Shapley network design game is extended,

adding a socially-aware component to users’ utility functions.

The survey article in [13] presents the most notable works on network formation in

cooperative games ; furthermore, the existence of networks that are stable against changes

in link choices by any coalition is studied in [16]. In [17], Andelman et al. analyze strong

equilibria with respect to players’ scheduling as well as a different class of network creation

games in which links may be formed between any pair of agents. For these latter games,

strong Nash equilibria (i.e., equilibria where no coalition can improve the cost of each of

its members) achieve a constant Price of Anarchy, which is defined as the ratio between

the cost of the worst Nash equilibrium and the social optimum. Strong Nash equilibria

ensure stability against deviations by every conceivable coalition of agents. A similar

problem is considered in [14], where nodes can collaborate and share the cost of creating

any edge in the host graph.

The works in [3, 5] study the existence of strong Nash equilibria in network design

games under different cost sharing mechanisms. More specifically, the authors in [3] show

that there are graphs that do not admit strong Nash equilibria, and then give sufficient

conditions for the existence of approximate strong Nash equilibria.

In [18], the authors investigate a Shapley value-based approach for profit distribution

between Internet Service Providers (ISPs), in a network model with three classes of ISPs
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(Content, Transit and Eyeball), and study its implications on the stability of prevalent

bilateral settlements between ISPs and the pricing structure for differentiated services.

However, in this paper, very specific structures of network scenarios are considered: (i)

the topology between any two ISPs (content, transit or eyeball) is assumed to be a

complete bipartite graph and (ii) transit ISPs form a fully meshed topology. Hence, it is

feasible to decompose the initial network into subsystems, and then derive the Shapley

revenue distribution for each of the decomposed subnetworks.

On the other hand, we show through extensive numerical analysis that the Shapley

value approach has limited applicability in our scenario, since it is often hard to compute

and even to approximate, while our approach based on the Nash bargaining solution

exhibits low computation time.

Finally, it is worth noting that our proposed solution is complementary to the work

in [18]. In fact, once the bilateral agreements and cost/revenue sharing mechanisms are

well settled between Content, Transit and Eyeball ISPs in the substrate networks, our

solution applies directly to any virtual/overlay network built upon such CTE model, and

provides an effective tool to share costs among network users.

The idea of using the Nash bargaining solution in the context of telecommunication

networks has been considered in different networking scenarios [19, 20, 21, 22, 23, 24].

Such approach was first presented for packet-switched data networks by Mazumdar et

al. [19]. The concept of Nash bargaining solution is used by Yaiche et al. [20] to derive a

price-based resource allocation scheme. In [21] the authors propose a scheme to allocate

subcarrier, rate, and power for multiuser orthogonal frequency-division multiple-access

systems. The approach considers a fairness criterion, which is a generalized proportional

fairness based on Nash bargaining solutions and coalitions.

The work in [25] studies the application of cooperative game theory to the routing

problem in a parallel links networking context, and focuses on the NBS as solution

concept for cooperative networking games. The existence and uniqueness of a solution

to the NBS is guaranteed under mild conditions. Finally, several performance measures

(Price of Anarchy, Price of Stability, and Price of Heterogeneity (PoH)) are used to

evaluate the performance of the NBS; PoH is introduced in the case of heterogeneous

players with different objective functions.
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The reader is referred to the next section, to the book by Muthoo [9] and the paper

by Nash [10] for a general introduction to the Nash bargaining solution concept.

3. Cooperative Network Design Game: Definition and Shapley Value solution

This section illustrates the cooperative network design game considered in this work,

and provides a review of the Shapley value approach for comparison reasons.

3.1. Network Model

We are given a directed graph G = (V,E), where each edge e has a nonnegative cost

ce; each player i ∈ I = {1, 2, . . . n} is identified with a source-destination pair (si, ti),

and wants to connect his source to the destination node with the minimum possible cost.

Note that ce represents the total edge cost, which is shared among the players according

to the allocation algorithms we will describe in the following.

We consider a cooperative game in strategic form G = 〈I, A, {J i}〉, where I is the

set of players, Ai is the set of actions for player i, A = A1 × . . . × An, and J i is the

objective (cost) function, which player i wishes to optimize (minimize).

In a cooperative game, players bargain with each other before the game is played. If

an agreement is reached, players act according to such agreement, otherwise players act

in a non-cooperative or antagonistic way. Note that the agreements must be binding, so

players are not allowed to deviate from what is agreed upon.

3.2. The Shapley value solution

We now review the Shapley value solution approach, and discuss meaningful defini-

tions for the characteristic function.

The Shapley value is a widely applied concept for solving cooperative games. It is a

possible way to allocate the total costs (or “values”) among the members of a coalition,

taking into account their different importance for the coalition. The main advantage of

the Shapley value is that it provides a solution that is both unique and fair: it is unique

in the class of subadditive cooperative games (see definition below); it is fair in a sense

that it satisfies a series of axioms intuitively associated with fairness (see [11]). However,

while these are both desirable properties, the Shapley value has one major drawback:
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for many coalition games, including our network design game, it cannot be determined

in a reasonable time. We shall discuss computational aspects, along with approximation

methods used to reduce such complexity, in more detail below.

A Shapley function φ is a function that assigns to each possible characteristic func-

tion v a vector of real numbers, i.e., φ(v) = [φ1(v), . . . , φi(v), . . . , φn(v)], where φi(v)

represents the cost of player i in the game.

The characteristic function, v, is a real-valued function that associates with every

non-empty subset S of I (i.e., a coalition) a real number v(S), the cost of S; v(S) must

satisfy the following properties2:

1. v(∅) = 0.

2. (Subadditivity) if S and T are disjoint coalitions (S ∩ T = ∅), then v(S)+v(T ) ≥

v(S ∪ T ).

This latter property means that cooperation can only help but never hurt.

Note that defining the characteristic function is not straightforward for the coopera-

tive network design game considered in this work, since a “natural” definition can violate

the subadditivity property, as we will discuss in the following.

The three definitions reported hereafter “naturally” arise in our networking problem

as candidate characteristic functions:

1. Players in S and players in I −S form two separate coalitions. Each coalition tries

to minimize the total cost for its members, taking into account the selfish behavior

of the other coalition. A Nash equilibrium is reached, and v(S) is defined as the

total cost for members in S at this equilibrium3.

2. The value of the coalition S is defined as its security level, i.e. as the minimum

total cost that S can guarantee to itself when members in I −S act collectively in

order to maximize the cost for S.

3. The value of coalition S is equal to the minimum cost that its members would incur

if players in I − S would be absent.

2The second one is required to guarantee the uniqueness of the Shapley value solution.
3If multiple such equilibria exist, we consider the one reached starting from the empty network using

best response dynamics.
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We note that, in our specific game, these three definitions give increasing value to

a coalition S. In fact, when players in I − S minimize their own cost (first definition),

their path choices cannot be as bad for S as when they try to maximize the cost for S

(second definition). Still, when players in I − S are present, they are obliged to select

paths to connect their source-destination pairs, and some of these links may also be used

by players in S, so that v(S) is smaller in the second definition than in the third.

To better illustrate the differences underlying these definitions, let us consider the

hexagon network scenario of Figure 1, with 6 links and 3 players having the following

source-destination pairs: (s1, t1), (s2, t2) and (s3, t3). All link costs are equal to 1, except

for link t3 → t2, which has a cost equal to 1− ǫ, ǫ being a very small constant.

3

2

t3

t1
s1

1

1

1−ε1

1 1

s2

s

t

Figure 1: Hexagon network topology: the 3 players must connect their source-destination nodes (si, ti).
The optimal solution, which in this case coincides with both the Nash equilibrium point and the Nash
bargaining solution, is illustrated with dashed lines.

Table 1: Hexagon network scenario: characteristic function values, v(S), for definitions (1), (2) and (3).

Characteristic Function value (v(S))

Coalition (S) Definition (1) Definition (2) Definition (3)

∅ 0 0 0

1 1 1 1

2 2.5-ǫ 2.5-ǫ 3-ǫ

3 0.5 1 1

12 3 3 3

13 1.5 1.5 2

23 3-ǫ 3-ǫ 3-ǫ

123 4-ǫ 4-ǫ 4-ǫ

Table I reports, for each of the three above definitions, the corresponding candidate
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characteristic function values. It can be easily checked that definition (1) does not lead to

a characteristic function, since the subadditivity property is not satisfied (for example,

v(12) + v(3) < v(123)), and therefore it cannot be used to compute Shapley values.

Indeed, with such definition, cooperation among players can lead to costlier solutions.

On the other hand, definitions (2) and (3) lead to characteristic functions.

Theorem 1. In the Cooperative Network Design Game, the security level (definition 2)

and the minimum cost of the coalition (definition 3) satisfy the axioms of a characteristic

function.

Proof: See the Appendix.

To calculate the Shapley value, suppose we form the grand coalition (the coalition

containing all n players) by entering the players into this coalition one at a time. As

each player enters the coalition, he is charged the cost by which his entry increases the

cost of the coalition he has entered. The cost a player pays by this scheme depends on

the order in which the players enter. The Shapley value is just the average cost charged

to the players if they enter in a completely random order, i.e.,

φi =
∑

S⊂I,i∈S

(|S| − 1)!(n− |S|)!

n!
[v(S) − v(S − {i})]. (1)

It can be proved that the problem of computing the Shapley value is an NP-complete

problem. Polynomial methods, based on sampling theory, have been proposed in the

literature for approximating the Shapley value [12, 26]; these estimations, though, are

efficient only if the worth of any coalition S can be calculated in polynomial time, which

is not the case for our problem.

In fact, we will show in Section 6.4 that even using the approximation methods

proposed for example in [12], it is necessary to compute the worth of an extremely large

number of coalitions, which is computationally very cumbersome, while as we see next,

our proposed Nash bargaining solution needs only computing the worth of the grand

coalition. Furthermore, we will demonstrate that the approximate solution obtained

with the sampling technique is quite far from the optimal solution in several network

scenarios.
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4. Cooperative Network Design Game: Nash Bargaining Solution (NBS)

Since the computation time of the Shapley value can be extremely long in network

scenarios with many players, in this paper we consider another approach to cooperative

network design: Nash bargaining. We will show that the computation of the Nash

bargaining solution is very light.

Let ui denote the maximal acceptable cost that user i is willing to pay. In the present

work we suggest the three following options:

1. the cost for user i to connect its source-destination nodes in a purely non-cooperative

game (i.e., the Nash equilibrium solution);

2. the cost for user i to connect its source-destination nodes in a zero-sum game where

all the other players are trying to maximize the cost of user i;

3. the cost for user i to connect its source-destination nodes when there is no other

player.

The vector u = {u1, u2, . . . un} is also denoted as the disagreement point of the co-

operative network design game (i.e., what will happen if players cannot come to an

agreement). Clearly, the cost achieved by every player at any agreement point (every

possible outcome of the bargaining game) has to be at most equal to the cost achieved

at the disagreement point.

To determine the disagreement point u using the Nash equilibrium solution (option 1),

we can consider the non-cooperative, potential network design game in [1, 27] and apply

Best Response Dynamics, which is guaranteed to converge to a Nash Equilibrium Point.

In the worst case, such dynamics can require an exponential time to converge. Indeed, it

has been shown in [1] that the game converges to a Nash equilibrium in polynomial time

for the case of two players, but that with n players, it can run for a time exponential in n.

However, we prove hereafter that in our case the Best Response algorithm converges to

an ǫ-Nash equilibrium in at most n ·cmax|E|(ln(n)+1)/ǫ moves, where |E| is the number

of edges, cmax = maxe∈E ce, and ce is the cost of edge e.

Let us first define the ǫ-Nash equilibrium. A strategy profile S corresponds to the

ǫ-Nash equilibrium, if

J i(S′
i, S−i) ≤ J i(Si, S−i)− ǫ. (2)
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For our game, the potential function is given by ([1, 27]):

Φ(S) =
∑

e∈E

xe
∑

x=1

ce
x
, (3)

where xe and ce represent, respectively, the number of players’ paths that go through

edge e, and the cost of this latter.

At each improvement we decrease the potential function by at least ǫ. If no player

can make a move decreasing the potential by at least ǫ, we stop and the reached profile

corresponds to the ǫ-Nash equilibrium. Let us denote by S(0) the initial profile. Then,

it will take no more than n · Φ(S(0))/ǫ steps to achieve the ǫ-Nash equilibrium, where n

is the number of players. We can suggest a bound for Φ(S(0)):

Φ(S(0)) ≤
∑

e∈E

ce(ln(xe) + 1) ≤ cmax|E|(ln(n) + 1),

with cmax = maxe∈E ce.

Therefore, we achieve the ǫ-Nash equilibrium in at most n·cmax|E|(ln(n)+1)/ǫmoves.

Furthermore, in our simulation campaign, we verified in practice that in all considered

scenarios, Best Response Dynamics always converges to an equilibrium point in less than

10 iterations. Indeed, in the large majority of our considered topologies, only 5 iterations

were necessary, in the worst case, to converge to a NEP starting from the empty network.

We now derive a Nash bargaining solution for allocating the total network cost to

users. To this aim, we extend the well-known two-player NBS concept to the n-player net-

work design game, considering transferable network costs, providing explicit expressions.

This assumption means that the players or the system administrator can redistribute the

total cost among the players.

Let usoc denote the total network cost resulting from social optimization. This

can be computed, for example, formulating the Generalized Steiner Tree (GST) prob-

lem [28] with an Integer Linear Program, using a mathematical programming model (like

AMPL [29]), and solving it with a commercial solver (like CPLEX [30]). Furthermore,

very efficient, polynomial-time approximation algorithms have been proposed [31, 32] to

solve the GST problem in a reasonable computation time, even in a distributed, online
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fashion [33]. Solving such problem provides the least-cost network topology that connects

all source-destination pairs.

Then, the Nash bargaining solution can be given in explicit form.

Theorem 2. The Nash bargaining solution for player i, αi is given by the following

expression:

αi = ui −

∑

k uk − usoc

m
, (4)

where m coincides with the number of players n (i.e., m ≡ n) if we allow for negative

costs (i.e., some αi values are negative, which means that some players are actually

paid to ensure their participation). Otherwise, if only non-negative costs are allowed (or

equivalently, if no positive transfers are permitted), m is defined as the largest integer for

which the following inequality is satisfied:

1

m− 1
(

m−1
∑

i=1

ui − usoc) < um (5)

having assumed, without loss of generality, that players are ordered such that u1 ≥ u2 ≥

. . . ≥ un.

Proof: See the Appendix.

We would like to emphasize that in the first case α values can be positive or negative,

while in the second case α values are non-negative. In particular, m gives the number

of non-zero α values, i.e., α1, α2, . . . αm are positive and given by expression (4), while

αm+1, . . . αn are equal to zero.

4.1. Distributed algorithm for computing the NBS

We now outline a distributed algorithm for computing the Nash bargaining

solution, which is detailed in Algorithm 1.

First of all, we would like to stress that, indeed, a possible architecture is the one

that assumes a centralized implementation, where a single entity in the coalition collects

all necessary information, performs the cost allocation and finally broadcasts it to all

coalition members. In this section, however, we propose a fully distributed solution for

the NBS approach, in order to obtain a more robust architecture without a single point of
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Algorithm 1: Distributed Algorithm executed by each player i

Input : I, G = (V,E), {ce, ∀e ∈ E}
Output: αi

1 Compute ui as in Section 4;
2 Broadcast ui to all players j ∈ I, j 6= i;
3 usoc = compute total network cost(I, G, {ce}) according to [28];
4 if negative costs are allowed then

m = |I|;
else

m = largest integer such that: 1
m−1 (

∑m−1
i=1 ui − usoc) < um;

end

5 αi = ui −
∑

k
uk−usoc

m
;

6 Return αi;

failure, and at the same time, reduce the memory size requirements and communication

load/overhead.

The minimal requirements ui, ∀i ∈ I, defined in the previous section, can be easily

computed. In the first two cases, it can be observed that the computation of the Nash

equilibrium solution for a non-cooperative network design game can be performed in a

distributed way, since the best-response dynamics is guaranteed to converge to a pure

Nash equilibrium. If |E| is the number of edges in the network, each player i, after

choosing the best response path, must send to all other players a link utilization vector of

size |E| bits. This vector simply indicates, for each edge e ∈ E, if it belongs or not to the

path chosen by player i to connect its source-destination pair. As for the third definition,

the problem is simply to compute the least-cost path between all source-destination pairs,

for which there exist several distributed algorithms, with known complexity [34].

In order to compute the Nash bargaining solution given by expression (4), it is nec-

essary to find the cost of the socially optimal network (usoc). To this aim, the technique

proposed in [28] can be used. This is one of the first distributed algorithms proposed

for the Generalized Steiner tree problem; it is a probabilistic algorithm with O(log n)

expected approximation, based on a probabilistic tree embedding due to Fakcharoenphol

et al. [35]. It has been demonstrated that the number of messages exchanged using such

technique is upper-bounded by O(|V |
3

2 log(|V |)), being V the set of nodes.

Then, each player i to calculate the NBS solution αi needs only to know
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the disagreement point u of the cooperative game; this can be simply achieved

by each player broadcasting its minimal requirement ui to all other players.

If we consider the ǫ-Nash equilibrium concept discussed before, it is not hard

to see that the overall signaling overhead is upper-bounded by |V ||V − 1|n ·

cmax|E|(ln(n) + 1)/ǫ+O(|V |
√

|V |log(|V |)), where n is the number of players, |V |

and |E| are the number of nodes and edges, respectively, and cmax = maxe∈E ce

is the maximum cost among edge costs (ce).

5. Application Scenarios

This section illustrates some notable application scenarios that can be envisaged for

our proposed game. First of all, we underline that the application scenario we envisage

more naturally for our proposed solution is that of long term contracts between net-

work users and virtual network/service providers, since money transfers and long-term

relationships between these two actors are involved. However, note that even if the un-

derlying network dynamics is changing rapidly (due for example to topology changes, link

failures, traffic changes and users’ arrivals/departures, among others) the low complexity

of our approach allows us to recompute on-the-fly the compensation for each player, and

thus to adapt to such dynamics.

Our model directly applies to Virtual Networks/Service Overlay Networks [27, 36],

as illustrated in Figure 2, which are application-layer networks built on top of the tradi-

Figure 2: Application scenario: a Virtual Network (or Service Overlay Network), built on top of multiple
Autonomous Systems (ASs) owned by different Internet Service Providers (ISPs), serves two players
wishing to connect two terminals (s1 − t1, s2 − t2).
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tional IP-layer network. In general, these networks are operated by a third-party Virtual

Network operator, that owns a set of overlay nodes residing in the underlying ISPs’

domains. The virtual operator must establish overlay links, purchasing them from the

underlying ISPs. In these networks, virtual operators provide a service to users through

the creation of an overlay.

A specific application, which will be detailed in the following, is selling connectivity

with some specific guarantees. In such scenario the virtual (overlay) operator would buy

bandwidth from the underlying ISPs and sell it to the users (e.g., companies) to connect

their sites (for example, creating Virtual Private Networks). In another application

scenario, users/players could further represent research institutes wishing to cooperate

in sharing network resources in order to build a federation network to enable efficient

distribution of large scientific data sets (e.g., in grid or cloud computing contexts). In

all these cases, the users that make up such networks are basically cooperative (at an

extreme case, they belong to the same administrative authority).

Then, the costs considered in our network model (ce) are mainly the costs required

for reserving some bandwidth from the underlying ISPs (plus the operating/management

costs), increased by a given percentage to provide the overlay operator some revenues. We

can expect that negotiating with the underlying ISPs would have some serious constraints

in terms of (i) granularity of the purchased bandwidth [36] and (ii) the possibility to re-

negotiate the contract on short time scales. Therefore, the overlay operator has interest

to let the users group together, and share as much as possible the same overlay links in

order to (i) reduce the number of contracts it has to manage with the underlying ISPs,

and hence the management costs, and (ii) take advantage of the multiplexing gain. At the

same time, inspired by the emerging group-buying services on the Internet, e.g., Groupon

[37], network users have an incentive to voluntarily group together (in a cooperative way)

to acquire and share the bandwidth/connectivity sold by virtual operators. In our work,

we show that the advantage can indeed be consistent in all considered network scenarios.

Hence, users could interact with each other in order to reduce their costs:

• One possibility is to let each user pay for each overlay link a share inversely propor-

tional to the total number of users that pass through such link, or make users more

altruistic and socially aware in order to improve the system’s performance; each
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user pays for his connectivity service plus a given percentage of the total network

cost. However, we showed in [27] that this solution can be insufficient to obtain

cost-efficient networks in all scenarios.

• Another more effective possibility, proposed in this work, is to let users cooperate

among themselves, using Bargaining-based cost sharing (or Shapley value) meth-

ods, thus further reducing their costs as well as the management complexity for

the virtual operator.

Finally, another example of application scenario is represented by a physical infras-

tructure owned by a physical operator, and such infrastructure is shared by a set of

virtual operators who aim at building their networks upon the physical infrastructure,

minimizing their costs [38, 39]. These virtual operators can cooperate in order to reduce

their costs, using our proposed NBS-based game. The same idea applies in a Cloud

environment, where IaaS (Infrastructure as a Service) users’ requests are mapped to the

physical cloud infrastructure.

6. Numerical Results

This section reports the numerical results obtained applying our proposed Nash bar-

gaining solution to cooperative network design games played in various network scenarios,

including simple network instances and more general network topologies. To this end,

we consider both randomly generated network instances and real ISP topologies mapped

by the Rocketfuel tool [40].

The NBS, computed as suggested in the previous section, is compared both to the cost

allocation provided by the Shapley value, as well as to a Nash equilibrium solution. This

latter is determined in the non-cooperative network design framework proposed in [1],

revised in Section 2, starting from the empty network and using a best response algorithm

where each user greedily minimizes its path cost until an equilibrium is reached. Since

it has been demonstrated in [1, 27] that such non-cooperative game is a potential game,

Best Response Dynamics is guaranteed to converge to a Nash Equilibrium Point.

We assume that positive transfers are allowed. To compute the Shapley value, unless

stated otherwise, we assume that the worth of a coalition S is the minimum cost that
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its members would incur if players in I − S would be absent (definition 3). This allows

us to consider the “worst case”, i.e. the costlier definition for a coalition, as discussed

before. We emphasize that definition 1 of the candidate characteristic function in Sec-

tion 3.2 does not lead to a well-defined characteristic function which satisfies the axiom

of subadditivity, and therefore cannot be used.

With the Nash Bargaining solution, on the contrary, any of the three definitions of the

disagreement point in Section 4 can be used. We argue that the first definition, where the

maximal acceptable cost is defined as a cost at the Nash equilibrium solution, is the most

natural choice in the network design game setting. In fact, it is hard to imagine that in a

large network with many players, all players will be able to agree to play against a single

player or even to withdraw from the network, risking to lose altogether their revenues.

Not following the recommendations and playing on their own appears to be a more likely

outcome if the recommendations do not result in benefits for the players. Furthermore, as

will be consistently demonstrated by all our examples, the Shapley value solution exhibits

instability with respect to the Nash equilibrium solution. In all our examples there are

players which have higher costs under the Shapley value solution than under the NBS

with the disagreement point selected according to definition 1. This is the first reason

why we suggest to use the NBS solution rather than the Shapley value. The second

reason against the use of the Shapley value is the impracticality of its computation. We

demonstrate that in the network design game the Shapley value can be computed in

feasible time only for very small network sizes. In contrast, the NBS solution scales very

well with network size and can be computed in a distributed fashion.

6.1. Simple Network Scenario

Let us first consider the simple network scenario already illustrated in Figure 1, with

6 links and 3 players. Table I already reported the characteristic function values v(S),

for all possible coalitions S. The optimal network cost is here usoc = 4− ǫ, and coincides

with the cost of the network formed at the Nash Equilibrium Point (NEP). The Nash

equilibrium and the Shapley value solutions for this scenario are reported in Table II,

together with the Nash bargaining solution, which was computed using all the three

proposed definitions for the disagreement point ui.
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Table 2: Hexagon network scenario with 3 players. The table reports the cost paid by each player at the
Nash Equilibrium Point, the Shapley value and the Nash bargaining solution. The NBS is computed
using all the three proposed definitions for the disagreement point ui. The total network cost is equal
to 4− ǫ for all allocation algorithms.

Algorithm (s1, t1) (s2, t2) (s3, t3)
NEP 1 2.5 - ǫ 0.5

Shapley value 5+ǫ
6 ≈ 0.83 14−5ǫ

6 ≈ 2.33 5−2ǫ
6 ≈ 0.83

NBS (def. 1) 1 2.5 - ǫ 0.5

NBS (def. 2) 5
6

14
6 − ǫ ≈ 2.33 5

6

NBS (def. 3) 2
3

8
3 − ǫ ≈ 2.67 2

3

We see that the solution given by the Shapley value for player 3 (5−2ǫ
6 ≈ 0.83) is

costlier than that of the Nash equilibrium, 0.5. We further observe that even defining

the value of a coalition as its security level (definition 2, Section 3.2) leads to the same

Shapley values reported in Table II. As a consequence, the Shapley value solution is

somehow unstable for all the considered definitions of the characteristic function, since

some players (i.e., player 3 in this scenario) can deviate to reduce their cost. This is

surprising, because the Shapley value satisfies the individual rationality property, so that

the Shapley value allocation is always preferable for each player than playing alone. The

apparent paradox originates from the fact that the value of the single player coalition

has been defined either as the cost incurred if all other players are absent (definition 3),

or as its security value, considering that all the other players are trying to maximize its

cost (definition 2). In reality, at the Nash equilibrium, the cost of player i is smaller

than such values and, as we have shown, it can be even smaller than the Shapley value

imputation.

At the same time, the NBS computed using as disagreement point both definition

3 (the cost for user i to connect its source-destination when there is no other player)

and definition 2 (the cost for user i to connect its source-destination in a zero-sum game

where all the other players try to maximize the cost for such user) exhibit the same

instability discussed before, since in both cases at least one player has a costlier solution

that at the Nash equilibrium, and can therefore deviate and reduce its cost.

On the other hand, if we assume that the disagreement point is the cost for user i

to connect its source-destination nodes in a purely non-cooperative game (i.e., the Nash

equilibrium solution), then the NBS coincides in this case with both the NEP and the
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optimal solution. Indeed, definition 1 appears to be the most natural in the context of

network design games, since a selfish non-cooperation is a much more natural reaction for

players than forming a coalition against a single player or withdrawing from the game.

6.2. Random Topologies

To study the Nash Bargaining solution behavior in more general topologies, we con-

sider random network scenarios generated as follows: we randomly extract the position

of N nodes, uniformly distributed on a square area with edge equal to 1000. As for the

network links, which can be bought by players to connect their endpoints, we consider

random geometric graphs, where links exist between any two nodes located within a

range R. The link cost is set to its length.

Tables III, IV and V illustrate the results obtained in a random geometric graph

scenario with 50 nodes, range R = 500 (which means approximately more than 1200

links) and, respectively, 5, 10 and 15 source-destination pairs (players). The tables

report the costs for the players reached at the Nash equilibrium, the Shapley value as

well as our proposed Nash bargaining solution. The total network cost is reported in

the last column; note that such value corresponds, for the Shapley value and the Nash

bargaining allocation algorithms, to the socially optimal solution (usoc parameter), which

can be obtained as explained in Section 3.

Table 3: Random geometric network scenario with n = 5 players. The table reports the cost paid by
each player at the Nash Equilibrium Point, the Shapley value and the Nash bargaining solution. The
total network cost is also reported.

Algorithm P1 P2 P3 P4 P5 Total cost

NEP 299.1 149.4 400.0 824.4 580.3 2253.1

Shapley value 298.9 167.5 380.4 817.3 589.0 2253.1

NBS 299.1 149.4 400.0 824.4 580.3 2253.1

It can be observed that, in all scenarios, at least 2 players (marked in bold in the

tables) have a Shapley value that is higher than the Nash equilibrium cost. However, the

cost saving between the NEP and the optimal cost (which is approximately 700 and 1250

for the n = 10 and n = 15 scenarios, respectively) could be re-distributed, which is what

the Nash bargaining solution does, increasing the appeal of the cost sharing solution.
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Table 4: Random geometric network scenario with n = 10 players. The table reports the cost paid by
each player at the Nash Equilibrium Point, the Shapley value and the Nash bargaining solution. The
total network cost is also reported.

Algorithm P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Total cost

NEP 283.0 149.4 235.3 824.4 714.8 450.5 674.0 195.6 186.0 266.9 3979.9

Shapley value 260.5 170.6 253.9 717.1 472.8 387.5 508.0 142.5 183.8 175.6 3272.2

NBS 212.3 78.6 164.6 753.6 644.0 379.7 603.2 124.8 115.3 196.2 3272.2

Table 5: Random geometric network scenario with n = 15 players. The table reports the cost paid by
each player at the Nash Equilibrium Point, the Shapley value and the Nash bargaining solution. The
total network cost is also reported.

Algorithm P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Total cost
NEP 283.0 149.4 235.3 824.3 626.6 417.7 566.6 195.6 186.0 133.5 554.8 140.2 94.6 191.5 476.8 5076.0

Shapley value 247.8 160.2 198.5 620.1 403.3 319.9 362.2 131.8 173.0 123.9 359.1 160.5 100.2 188.3 271.8 3820.7
NBS 199.3 65.7 151.6 740.7 542.9 334.0 482.9 111.9 102.3 49.8 471.1 56.5 10.9 107.9 393.2 3820.7

Obviously, since both the Shapley value and the NBS distribute the social cost (usoc)

among the players, there will be players whose allocation is costlier under the NBS

than with the Shapley value allocation. This happens, in the numerical examples we

considered, for players that have a large cost at the Nash equilibrium. However, every

player is always better off under the NBS allocation than at the Nash equilibrium, since

cost savings are redistributed.

Furthermore, we observe that computing the Shapley value for n = 15 players took

several weeks of computation on the workstation used to obtain the numerical results

reported in this paper, i.e., an Intel Pentium 4 (TM) processor with CPUs operating at 3

GHz and with 1024 Mbyte of RAM. Therefore, computing the Shapley value for a larger

number of players is practically infeasible in such network scenario. On the other hand,

our proposed n-person Nash bargaining solution is very simple to calculate, and could

be computed within a few minutes in all considered network scenarios, thus representing

a practical and efficient solution to the network design problem.

6.3. Real ISP topologies

We further consider three real ISP topologies mapped using Rocketfuel [40], listed in

Table VI, with an increasing number of nodes and links. The link costs are those provided
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by Rocketfuel, which are equal to the delay experienced on each link. For each topology

we performed a random selection of n source-destination pairs, with n ∈ {10, 15}.

In our scenario, and according to the real world applications we outlined in Section

5, this cost can be considered as the bandwidth plus management cost faced by players

to create a virtual/overlay network between the desired endpoints. In this regard, the

cost parameter ce can be considered as a cost per time unit (hence it could be expressed,

for example, as USD per month).

Tables VII and VIII show the results obtained in such topologies with 10 and 15

players, that is, the costs for the players reached at the Nash equilibrium, the Shapley

value as well as our proposed Nash bargaining solution. The total network cost is also

reported in the last column. Note that it was impossible to compute the Shapley value

for the Abovenet topology (for n = 15 players), due to the large number of nodes and

links.

It can be observed that in the case of Sprintlink and Abovenet topologies, respectively,

Table 6: Rocketfuel-inferred ISP topologies: number of network nodes and links.

Network Location Nodes Links

Telstra AU 108 306

Sprintlink US 141 748

Abovenet US 315 1944

Table 7: Rocketfuel-inferred ISP topologies with n = 10 players. The table reports the cost paid by each
player at the Nash Equilibrium Point, the Shapley value and the Nash bargaining solution. The total
network cost is also reported.

Algorithm P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Total cost

Telstra

NEP 7.4 3.5 30.4 8.2 13.4 8.0 8.9 11.4 17.2 6.4 115

Shapley value 7.4 3.5 30.4 6.9 13.4 7.4 8.9 10.8 16.9 6.4 112

NBS 7.1 3.2 30.1 7.9 13.1 7.7 8.6 11.1 16.9 6.1 112

Sprintlink

NEP 13.4 24.3 21.3 31.0 3.5 11.2 56.0 4.0 46.5 37.8 249

Shapley value 14.3 22.0 20.3 27.4 3.4 10.1 52.9 4.0 46.0 35.6 236

NBS 12.1 23.0 10.0 29.7 2.2 9.9 54.7 2.7 45.2 36.5 236

Abovenet

NEP 8.0 16.5 52.5 10.0 38.0 16.5 74.0 65.5 4.0 10.0 295

Shapley value 7.3 13.8 50.6 8.3 37.5 14.4 70.5 66.1 3.6 7.0 279

NBS 6.4 14.9 50.9 8.4 36.4 14.9 72.4 63.9 2.4 8.4 279
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Table 8: Rocketfuel-inferred ISP topologies with n = 15 players. The table reports the cost paid by each
player at the Nash Equilibrium Point, the Shapley value and the Nash bargaining solution. The total
network cost is also reported.

Algorithm P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Total cost
Telstra

NEP 6.2 2.2 30.0 8.2 13.0 6.5 6.8 9.7 10.8 5.2 22.0 16.7 9.5 11.0 10.2 168
Shapley value 6.2 2.2 30.1 6.3 13.1 6.3 6.8 8.6 10.7 5.2 22.0 16.4 9.5 11.0 8.7 163

NBS 5.8 1.8 29.7 7.9 12.7 6.2 6.5 9.3 10.5 4.8 21.7 16.4 9.2 10.7 9.8 163
Sprintlink

NEP 9.8 15.2 16.4 30.7 3.0 9.1 28.0 4.0 24.4 34.0 18.4 14.2 31.5 17.1 24.0 280
Shapley value 10.7 13.9 15.5 25.4 2.7 7.9 26.6 3.9 24.4 30.8 15.5 12.8 29.7 8.5 24.5 253

NBS 8.0 13.4 14.6 28.9 1.2 7.3 26.2 2.2 22.6 32.2 16.6 12.4 29.7 15.3 22.2 253
Abovenet

NEP 8.0 8.8 50.8 9.3 23.0 12.8 69.3 65.5 4.0 10.0 23.0 59.5 10.8 4.0 39.0 398
Shapley value - - - - - - - - - - - - - - - -

NBS 5.9 6.7 48.7 7.2 20.9 10.7 67.2 63.4 1.9 7.9 20.9 57.4 8.7 1.9 36.9 366

two players have a Shapley value that is higher than the Nash equilibrium cost. On the

other hand, in all three topologies, the NBS redistributes fairly the gap between the total

cost under the Nash solution and the social optimum among the players.

As argued previously, the NBS can be computed very rapidly with respect to the

Shapley value, which may take several weeks of computation to determine such values.

This is due to the time necessary to determine the worth of each coalition, which con-

siderably increases with the network size.

6.4. Polynomial approximation of the Shapley Value

In order to reduce the computation time for determining the Shapley value, several

techniques have been proposed in the literature. To test and compare such techniques in

our context, we further implemented the polynomial method proposed in [12], based on

sampling theory, to estimate the Shapley value in the same network scenarios considered

before. This method consists in the following steps:

1. considering the set of all possible orders of n players,

2. randomly and uniformly extracting a subset of q orders (called sampling unit),

3. computing the marginal contribution of each player observed in each sampling unit,

4. calculating the mean of such marginal contribution over the subset in step (2).

More specifically, we considered an increasing number of samples q, from 20 to 200,

and for each q value we performed 100 random extractions. Table IX illustrates the
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corresponding results for the random network topology with n = 15 players, in terms

of the average and maximum error with respect to the exact Shapley value (which was

already illustrated in Table V). Table X further reports the same performance figures for

all three ISP topologies, where n = 10 players are involved.

It can be observed that when a small number of samples is used (q = 20), the

approximation is not satisfying, and significant errors can be observed with respect to

exact Shapley values (i.e., approximately 14.4% for random topologies and 22% for ISP

networks, in average, up to 61.8% in the worst case). The average and maximum errors

decrease for increasing q values, but they are still quite high (up to 20% and 45%, in

the worst case, for random and ISP topologies, respectively), and even increasing the

number of samples does not permit to improve the precision of the estimation procedure.

Furthermore, we observe that such method (as several sampling methods) assumes

that the worth of any coalition can be calculated in polynomial time, which is not the

case for our game, since this involves finding the minimum cost Generalized Steiner tree

that connects all source-destination pairs [28]. In a cooperative network design context,

Table 9: Sampling-based approximation of the Shapley value. Random geometric network scenario with
n = 15 players: average and maximum error (percentage) with respect to the exact Shapley values
illustrated in Table V, for different numbers of samples q.

q Average Error (%) Maximum Error (%)

20 14.40 45.53

50 9.41 28.32

100 8.08 23.66

150 6.95 20.63

200 6.84 20.22

Table 10: Sampling-based approximation of the Shapley value. Rocketfuel-inferred ISP topologies with
n = 10 players: average and maximum error (percentage) with respect to the exact Shapley values
illustrated in Table VII, for different numbers of samples q.

Telstra Sprintlink Abovenet

q Avg. Error (%) Max. Error (%) Avg. Error (%) Max. Error (%) Avg. Error (%) Max. Error (%)

20 13.62 36.06 21.62 61.76 6.04 19.19

50 10.71 26.28 18.39 51.54 4.61 14.25

100 9.69 22.70 17.48 47.57 3.93 12.50

150 8.80 20.43 16.93 45.87 3.63 11.45

200 8.61 20.22 16.53 45.23 3.42 10.94
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even for relative small q values it is necessary to compute the worth of hundreds of

coalitions, which means solving each time several NP-hard problems. As stated before,

solving each of these problems, to determine just the worth of a single coalition, may

require several days of computing time if networks formed by a large number of players

are considered. For even larger topologies, the computing time grows exponentially, while

our proposed NBS requires much less computation and can be obtained in any realistic

network scenario within a small time.

In summary, the approximation methods based on sampling, like that in [12], are of

limited interest in our problem since (1) for small q values they exhibit low precision

in the approximation and (2) they are inapplicable for larger topologies and number of

players, since they do not permit to reduce the computing time necessary to find an

approximate solution.

7. Conclusion

In this paper we proposed a novel and efficient Nash bargaining solution for the

cooperative network design problem with n players. Our solution has very appealing

properties in terms of planning efficient networks and determining cost allocations in a

very short computation time, even when compared to approximation techniques for Shap-

ley value estimation, which obtain suboptimal solutions and still require an exponential

time to be computed.

In all scenarios, our proposed solution permits to re-distribute cost savings

in an efficient, fair and distributed way, increasing the appeal of the cost

sharing solution. On the other hand, several players exhibit a Shapley value

that is higher than the Nash equilibrium cost.

We compared our proposed solution to classic approaches, like the Shapley value and

the Nash equilibrium concepts, in simple and large-size network topologies (including

random and real ISP networks), with an increasing number of players. In particular, it

appears that the Shapley value solution can be unstable and very difficult to compute.

In fact, we found that our proposed solution can be computed in few

minutes (at most) in all considered, real-life scenarios. At the same time, we

showed that the approximation methods for computing the Shapley value,

25



based on sampling techniques, are of limited interest in our problem since

(1) when a small number of samples is used, they exhibit low precision in the

approximation and (2) they are inapplicable for larger topologies and number

of players, since they do not permit to sufficiently reduce the computing time

necessary to find an approximate solution. For example, when 20 samples

are used, the approximation is not satisfying, and significant errors can be

observed with respect to exact Shapley values (i.e., approximately 14.4% for

random topologies and 22% for ISP networks, in average, up to 61.8% in the

worst case).

To summarize, numerical results demonstrate that our approach permits to achieve

very effective cost allocations in a short computing time, thus representing an efficient

and promising framework for the planning of stable networks.
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Appendix

This appendix provides detailed proofs for Theorems 1 and 2.

7.1. Proof of Theorem 1

Theorem 1 : In the Cooperative Network Design Game, the security level (definition

2) and the minimum cost of the coalition (definition 3) satisfy the axioms of characteristic

function.

Proof : We need to prove that definitions (2) and (3) lead to subadditive characteristic

functions.

Let us first consider the characteristic function defined as in (2). We prove the result

directly for pure strategy games, i.e. when players cannot use more paths according to

a probability distribution.

Let µS be a strategy available to players in S, i.e. µS ∈ Πi∈S Ai. Observe that,

given a coalition S ∪ T with a strategy µS∪T , this latter can be expressed as product of

a strategy of coalition S and a strategy of coalition T . We denote by CS the total cost

paid by users in S for a given outcome of the game (i.e., for a given set of strategies of

the players). Then, we can express definition (2) as follows:

v(S) = min
µS

max
µI−S

CS(µS , µI−S).

Let us denote by V the set I − (S ∪ T ). The value of the coalition S ∪ T can

therefore be expressed as reported in equation (4) at the top of next page, showing that

v(S ∪ T ) ≤ v(S) + v(T ).

If we consider also mixed strategies, then the result follows immediately from the

following theorem in [38].

Theorem in [38]: Denote by CS(µS , νI−S) the cost of the coalition S in the zero-sum

game between coalition S and I −S, where µS is the strategy of coalition S and νI−S is
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v(S ∪ T ) = min
µS∪T

max
µV

CS∪T (µS∪T , µV) = min
µS ,µT

max
µV

(CS(µS , µT , µV) + CT (µS , µT , µV )) ≤

≤ min
µS ,µT

(

max
µV ,µ̃T

CS(µS , µ̃T , µV) + max
µV ,µ̃S

CT (µ̃S , µT , µV)

)

=

= min
µS

max
µV ,µ̃T

CS(µS , µ̃T , µV) + min
µT

max
µV ,µ̃S

CT (µ̃S , µT , µV) =

= min
µS

max
µI−S

CS(µS , µI−S) + min
µT

max
µI−T

CT (µT , µI−T ) = v(S) + v(T ) (4)

the strategy of coalition I − S. Then the function v(S) = infµS
supνI−S

CS(µS , νI−S)

is subadditive.

The fact that the function defined by (2) is subadditive in the case of mixed strategies

follows immediately from the above theorem.

In order to prove that the function defined by (3) is also subadditive, we modify the

network so that the characteristic function according to (3) in the original game coincides

with the characteristic function defined as in (2) in the modified network. In particular,

we introduce auxiliary links with infinite cost connecting source and destination nodes

of each player. Now, the best strategy for the coalition I −S in the setting (2) is just to

choose these auxiliary links, which is equivalent to remove the players in I −S from the

game (as required by definition (3)). Thus, subadditivity of the characteristic function

(3) follows from the above results for function (2).

7.2. Proof of Theorem 2

Theorem 2 : The Nash bargaining solution for player i, αi is given by the following

expression:

αi = ui −

∑

k uk − usoc

m
, (5)

where m coincides with the number of players n (i.e., m ≡ n) if we allow for negative

costs (i.e., some αi values are negative, which means that some players are actually

paid to ensure their participation). Otherwise, if only non-negative costs are allowed (or

equivalently, if no positive transfers are permitted), m is defined as the largest integer
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for which the following inequality is satisfied:

1

m− 1
(
m−1
∑

i=1

ui − usoc) < um (6)

having assumed, without loss of generality, that players are ordered such that u1 ≥ u2 ≥

. . . ≥ un.

Proof : We consider a Nash bargaining solution for the n-players cooperative game

with transferable cost. The assumption about the transferable cost means that the

players, or the system administrator, can redistribute the total cost among the players.

Then, the Nash bargaining solution is given by the following optimization problem:

max
αi

n
∏

i=1

(ui − αi), (7)

subject to
n
∑

i=1

αi = usoc. (8)

Below we consider two cases: (a) individual costs αi can be negative (this can be inter-

preted as the coalition pays some members to ensure their participation) and (b) costs

cannot be negative, i.e., no positive transfers are allowed; this precludes paying players

to participate to the network.

Both scenarios make practical sense.

7.2.1. The case without the requirement on the positivity of costs

If there are no positivity constraints on αi, the Lagrangian is given by

LNP =

n
∏

i=1

(ui − αi) + µ(

n
∑

i=1

αi − usoc),

and the Karush-Kuhn-Tucker condition takes the form:

∂LNP

∂αi

= −
∏

j 6=i

(uj − αj) + µ = 0, (9)
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plus constraint (8). Multiplying (9) by (ui − αi) and dividing by µ, we obtain

ui − αi =
1

µ

n
∏

j=1

(uj − αj).

Hence, the difference ui−αi for the optimal solution does not depend on the index i and

we can denote its value by δ. Thus, we have

αi = ui − δ, (10)

where the value of δ can be found from condition (8):

δ =
1

n
(

n
∑

i=1

ui − usoc).

It is interesting to observe that in this case every player gains an equal share of the

difference between the total cost of the Nash equilibrium and the total socially optimal

cost. Some players might actually be reimbursed.

7.2.2. The case with the requirement on the positivity of costs

In this case, in addition to the equality constraint (8), we have n inequality constraints

αi ≥ 0, i = 1, ..., n. (11)

This formulation corresponds to the following Lagrangian

LP =

n
∏

i=1

(ui − αi) +

n
∑

i=1

λiαi + µ(

n
∑

i=1

αi − usoc).

The Karush-Kuhn-Tucker condition takes the form:

∂LP

∂αi

= −
∏

j 6=i

(uj − αj) + λi + µ = 0, (12)

λi ≥ 0, λiαi = 0, i = 1, ..., n, (13)

plus conditions (8) and (11).
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Without loss of generality, we have ordered the players such that u1 ≥ u2 ≥ ... ≥ un.

It follows that α1 ≥ α2 ≥ ... ≥ αn. In fact, let us assume that ui > uj (then i < j) and

αj > αi: the vector of costs (α1, · · · , αi−1, αi, · · · , αj−1, αj , · · · , αn) cannot be a solution

of the problem (7), since the vector (α1, · · · , αi−1, αj , · · ·αj−1, αi, · · · , αn) corresponds

to a higher value of the optimization function, being that (ui − αj)(uj − αi) > (ui −

αi)(uj − αj).

Let us denote by m the number of non-zero α’s. In particular, it may happen that

m = n. We shall now illustrate how to determine m.

If α1, ..., αm > 0, by the complementarity slackness condition λiαi = 0, we have

λi = 0 for i = 1, ...,m. Similarly to the first case, multiplying (12) by (ui − αi) and

dividing by µ, we conclude that

ui − αi = δ̂, i = 1, ...,m.

In addition, from (12) we have:

µ = (u1 − α1)(u2 − α2)...(um − αm)um+1...un = δ̂m−1um+1...un.

Then, for k such that m+ 1 ≤ k ≤ n, the equation (12) gives

∂LP

∂αk

= −
∏

j 6=k

(uj − αj) + λk + µ = 0,

−(u1 − α1)...(um − αm)um+1...uk−1uk+1...un + λk + µ = 0,

λk = δ̂mum+1...uk−1uk+1...un − δ̂m−1um+1...un,

λk = [δ̂ − uk]δ̂
m−1um+1...uk−1uk+1...un.

Since according to the Karush-Kuhn-Tucker condition λi must be non-negative, we obtain

the following condition

δ̂ ≥ uk, k = m+ 1, ..., n.

This condition allows us to determine m. Before proceeding towards this goal, we deter-
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mine δ̂ from condition (8), which gives us

δ̂ =
1

m
(

m
∑

i=1

ui − usoc).

Then, we have the following algorithm to determine m: first, check if

1

n− 1
(

n−1
∑

i=1

ui − usoc) < un. (14)

If it is the case, then all αi are positive. We note that 1
n
(
∑n

i=1 ui − usoc) < un is an

equivalent condition. If condition (14) is not satisfied, find the largest m for which the

following condition holds

1

m− 1
(

m−1
∑

i=1

ui − usoc) < um. (15)

This m gives the number of non-zero α’s.
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