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Abstract

We consider in this paper a dynamic resource allocation scheme between several Mobile Virtual Network Operators (MVNOs),
sharing common radio resources at a Cloud-based Radio Access Network (C-RAN) run by a central operator. We specifically
propose a two-level coupled auction so as to enhance resource utilization and maximize the revenues both for the central operator
and the MVNOs: at the lower level, end users belonging to a given MVNO bid for resources and, at the higher-level, MVNOs
compete for resources at the central operator based on the output of the lower-level auction. We show fundamental economic
properties of our proposal: truthfulness and individual rationality, and propose a greedy algorithm to enhance its computational
e�ciency. We prove the existence of Nash equilibrium for the global auction and its uniqueness in a typical duopoly scenario.
Further numerical results illustrate the performance of our proposal in various network settings.

Keywords: Index terms—Resource Allocation, C-RAN, MVNO, Auction, Nash Equilibrium.

1. Introduction

Next generation (5G) mobile networks are targeting twenty
five-fold data rates provided by the current generation of mo-
bile networks, with higher e�ciency, enhanced mobility sup-
port and seamless management of connected devices. In or-
der to provide such features, at reduced Capital Expenditure
(CAPEX) and Operational Expenditure (OPEX) [1], the Cloud-
RAN, also termed Virtual-RAN (V-RAN), paradigm has been
recently proposed [2],[3].

The C-RAN architecture is based on two key features: (1)
Centralization, wherein computational resources of base sta-
tions, namely Base Band Units (BBUs), are pooled together in
a central Cloud, and (2) Virtualization, with the possibility that
several Mobile Virtual Network Operators (MVNOs) share the
radio resources and the BBUs in order to reduce physical re-
sources’ costs and maintenance [4][5]. This evolution poses
however multiple challenges, especially in terms of dynamic
resource allocation between the users as well as between the
MVNOs.

In this paper, we consider a multi-tenant C-RAN, where
MVNOs compete dynamically for the shared resources with
the aim of serving their customers demands while maximizing
their revenues. To this end, we propose a two-level auction,
coupled in a hierarchical way: a higher-level auction between
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the MVNOs and the central C-RAN operator, and a lower-level
one between end users of a single MVNO.

Our motivation for using auction-based resource allocation
is both technical and economical: technically, auctions enable
to increase the e�ciency of resource utilization and econom-
ically, they are well adapted to maximize the revenues of the
sellers (or auctioneers) [6].

At the higher-level, we make use of weighted proportional
fairness [7] in the sharing of resources between the competing
MVNOs. Each MVNO receives a share of resources propor-
tional to its bid versus the bids of the other MVNOs, where the
bid consists of the price the MVNO is willing to pay in order to
purchase a given quantity of resources.

At the lower level, the individual users submit their bids
consisting of the required resources and the price the user is
willing to pay. The e↵ective price (what the user should ef-
fectively pay) is determined according to the Vickrey-Clarke-
Groves (VCG) auction [8] based on the virtual valuation con-
cept introduced by Myerson in [9], which is a second price
sealed bid auction known to enforce truthfulness of the bidding.
The rationale behind VCG auction is that each bidder will have
an incentive to declare its true valuation for the commodity it
desires so as to maximize its individual payo↵ [10]. This prop-
erty guarantees, in turn, a high revenue for the MVNO.

We formulate the revenue maximization problem of each
MVNO using Integer Linear Programming (ILP), and we de-
termine the optimal set of users who win the bidding process
as well as the price each one has to pay to obtain the requested
resources.

Preprint submitted to Elsevier February 1, 2018
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Figure 1: System model with di↵erent base stations, owned by a single physical
operator, m mobile virtual network operators (MVNOs) and N end users

In summary, our main contributions in this paper are the
following:

• We propose a coupled, two-level auction especially tai-
lored for the multi-tenant C-RAN setting;

• For the lower-level auction, as VCG alone does not guar-
antee revenue maximization for the MVNO [11], we make
use of the virtual valuation concept introduced by Myer-
son in [9] so as to obtain an optimal VCG auction enforc-
ing truthfulness and maximizing revenues. This solution
can be applied in Bayesian settings, where the MVNOs
know (or can estimate) the probability distribution of their
users’ valuations, which is a reasonable assumption com-
monly used in the literature.

• We propose a sub-optimal greedy algorithm so as to solve
the ILP-based winner and price determination problems
in polynomial time, contrary to the optimal solution which
is known to be NP-hard and is hence solved in an expo-
nential time.

• We study the Nash equilibrium for the global auction,
consisting of the two levels, and show its existence and
uniqueness under some conditions.

• We perform an extensive numerical analysis, implement-
ing our proposed approach in several, typical mobile net-
work scenarios, and illustrate the e↵ectiveness of our scheme
in terms of e�cient resource allocation as well as revenue
maximization.

To our knowledge, our work is the first that tackles in a sys-
tematic manner, by means of a hierarchical two-coupled auc-
tion, the resource allocation problem in the context of C-RAN.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of related works. In Section 3, we
describe the system model, formulate our proposed two-level
auction, derive the optimal solution and show its main proper-
ties. In Section 4, we prove the existence and uniqueness of the
Nash equilibrium of the global auction. In Section 5, we eval-
uate numerically the performance of our proposed algorithms
and compare them to other allocation strategies. Finally, Sec-
tion 6 concludes the paper.

2. Related works

Dynamic resource allocation is especially tailored for Cloud
computing and shared data centers, where virtual technologies
are adopted to optimize resource usage [12, 13, 14, 15]. Dy-
namic spectrum sharing is a key problem in cognitive radio
networks, especially due to the time-varying nature of shared
resources, in particular the spectrum [16, 17, 18]. The work
in [5] shows the importance of dynamic resource allocation in
increasing the multiplexing gain brought by the new C-RAN
architecture. Furthermore, the application of Software Defined
Networking (SDN) and virtualization concepts to the C-RAN
paradigm is proposed in [3, 19] to converge towards the fu-
ture mobile generation network with the capability of handling
heterogeneous types of applications and technologies. In par-
ticular, [19] addresses the issue of competitive spectrum shar-
ing among the tenant operators and the possibility of adopting
auction-based approaches.

Auction theory has been extensively applied to address the
problem of dynamic resource allocation in Cloud computing [15],
communication systems [20, 21] and cognitive radio networks
[22, 23], in order to optimize resource utilization and social
welfare. In [24], the authors introduce a low-complexity peri-
odic auction on radio resources between the spectrum provider
(government) and operators, in order to improve e�ciency in
terms of spectrum usage.

Recent works considered the use of auctions in the context
of C-RAN, but only few tackled the case of a two-level hier-
archical one, as is the case of our setting. The work in [25]
proposes di↵erent auction approaches that can be applied to
radio resource allocation, such as spectrum and power alloca-
tion. The authors in [26] introduce an auction design between
an MVNO and a radio service provider with the aim of max-
imizing the social welfare through an e�cient and fair allo-
cation. This work also suggests a greedy algorithm to reduce
the time complexity of the proposed solution. In [27], a two-
level hierarchical combinatorial auction has been considered for
5G networks between the infrastructure provider, MVNO and
user equipment, and two models have been proposed: a sin-
gle seller/multiple buyer model and a multiple buyer/multiple
seller one. A backward induction method has been proposed
to solve the winner and price determination problems. Myer-
son’s virtual valuation concept was adopted in [28] to design a
truthful dynamic spectrum access allocation between compet-
ing base stations with approximate expected revenue or social
welfare. The authors in [17] propose an online auction to al-
locate spectrum between primary and secondary users. Myer-
son’s scheme was used to design a strategy-proof revenue max-
imization mechanism. We observe that the Nash equilibrium
concept was not tackled by [17, 26, 27, 28].

In a di↵erent context, the authors in [29] investigate an auction-
based allocation scheme for network resources between multi-
tenant software defined networks, and they show the existence
and uniqueness of the Nash equilibrium. They also introduce a
learning algorithm to facilitate convergence to the unique Nash
equilibrium.
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Figure 2: Hierarchical/two-level auction game

With respect to the previous discussed related works, and
to the best of our knowledge, our work is the first to adopt a
two-level allocation scheme that guarantees fairness and rev-
enue maximization at the same time. Furthermore, we are the
first to consider the allocation mechanism, in the context of C-
RAN, as a non cooperative game and to prove the existence and
uniqueness of the Nash equilibrium.

3. System model and two-level auction

3.1. System model
We consider a system with multiple base stations, equipped

with Remote Radio Heads (RRHs), and a centralized pool of
Base Band Units (BBUs), owned by a single central operator.
We assume that this C-RAN consists of a certain number of
resource blocks, denoted by Q, which the central operator dy-
namically allocates to m MVNOs (indexed from 1 to m), with
MVNOj serving N users, as shown in Figure 1.

3.2. The two-level auction proposal
We propose a two-level auction-based resource allocation

scheme, as shown in Figure 2: the higher-level auction runs
between the C-RAN operator and the MVNOs; the lower-level
auction between each MVNO and the end users it serves. Recall
that the C-RAN operator owns the physical resources, notably
the base stations which are to be shared by the MVNOs. The
latter have to serve their end users, as illustrated in Figure 2.

Our two-level auction mechanism is executed periodically
so as to tailor to system dynamics. The allocation is thus fixed
for the entire duration between two executions of the auction.
However, the time range depends on the system setting and pa-
rameters, and can be gradually adapted and adjusted during the
execution. Typical time range varies from 30 minutes to several
hours or half day.

Specifically, the agents of the auction are:

• The C-RAN operator: It is the auctioneer at the higher-
level auction; it initiates the auction over Q resource blocks.

Table 1: Higher-level auction glossary

Notation Interpretation
Auctioneer C-RAN C-RAN operator spectrum owner
Bidders MVNO Set of m {MVNOj} ; 1 jm
Commodity RB Q resource blocks
Bids S j MVNOj’s bid vector S j = Pj
Bid price Pj The price MVNOj pays to get Rj
Allocation Rj MVNOj allocation in terms of re-

source blocks
Reserved bid S 0 Bid set by the C-RAN

• MVNOs: Each MVNOj (1  j  m) has two roles: a
bidder in the higher-level auction and an auctioneer in
the lower-level auction.

• End users: End users are bidders in the lower-level auc-
tion. They bid for resource blocks to satisfy their service
needs. Users served by MVNOj participate in the lower-
level auction of this MVNO.

The commodities of the auctions are the resource blocks.
The bids are signals that inform the auctioneer about the bidders
demands in terms of resource blocks and the o↵ered price they
are willing to pay in order to purchase the commodities.

Our two-level auction proceeds as follows (please refer to
Tables 1 and 2 for notations):

1. In the first step, each user associated to MVNOj, denoted
as UEi, j, submits a bid vector bi, j = (di, j,wi, j) to MVNOj,
where di, j is an integer indicating the number of resource
blocks required by UEi, j and wi, j is the price that user
UEi, j is willing to pay to purchase di, j. wi, j is always
less than or equal to vi, j, the true valuation of UEi, j for
receiving di, j. vi, j is a private information, only known by
the user itself.

We define b j =
D
b1, j, ...bN, j

E
as MVNOj users bids set.

2. In the second step, each MVNOj submits a bid vector S j
based on the bids received in the lower-level auction, i.e.,
b j. We define the m-dimension bid vector S = hS 1, ...S mi.
Based on S, the C-RAN operator allocates to MVNOj Rj
resource blocks and charges it Pj = S j. We denote by
R = hR1, ...Rmi the allocation set to the m MVNOs.

3. In the third step, each MVNOj determines the winner
vector x j =

D
x1, j, .xi, j..xN, j

E
according to Rj, where

xi, j =

8>>><
>>>:

1 if UEi, j wins the auction

0 otherwise

The satisfaction of the agents participating in the auction
can be expressed in terms of their utilities as follows:

3
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Table 2: Lower-level auction glossary

Notation Interpretation
Auctioneer MVNOj j-th MVNO
Bidders UEi, j Set of MVNOj’s users {UEi, j}

1iN
Commodity RB Rj Resource blocks
Bids bi, j UEi, j’s bid vector bi, j = (di, j,wi, j)
Demands di, j Number of resource blocks requested

by UEi, j
Bid price wi, j UEi, j’s declared valuation for di, j re-

source blocks
Valuation vi, j UEi, j’s true valuation for di, j re-

source blocks
Decision
vector

x j x j = {xi, j}, 1iN; xi, j = 1 if UEi, j
wins and 0 otherwise

Price pj pj = {pi, j}, 1iN; pi, j = pVCG
i, j if

vector UEi, j wins and 0 otherwise

• UEi, j’s utility depends on the true valuation vi, j of the
user for receiving the requested resource blocks and the
price pi, j it is going to pay:

ui, j =

8>>><
>>>:

vi, j � pi, j if UEi, j wins the auction

0 otherwise
(1)

• MVNOj’s utility depends on the profit it is going to make
from reselling the Rj resource blocks and the price Pj it
is going to pay:

U j =

NX

i=1

pi, j � Pj (2)

We next illustrate how resources are allocated in both levels
of the auction, as well as the winners’ determination and the
corresponding price each player has to pay.

3.3. Resource allocation at the higher-level auction
In the higher-level auction, the C-RAN operator allocates

Rj resource blocks to MVNOj as follows:

Rj =
S jQPm

i=1 S i + S 0
, (3)

where S 0 is a reserved bid set by the C-RAN operator to avoid
selling the spectrum at a low price.

The rationale of (3) stems from the weighted proportional
fairness which gives to each MVNO a share of resources pro-
portional to its bid as well as to the bids of its competitors.
The weighted proportional fair allocation has many advantages
other than guaranteeing fairness: authors in [7] show that this
mechanism is e�cient in terms of signaling complexity.

The utility of MVNOj is:

U j =

NX

i=1

pi, j � S j. (4)

Each MVNOj calculates the optimal S ⇤j maximizing its profit
U j.

3.4. Solving the lower-level auction
In the lower-level auction, we first derive the optimal VCG

solution for each MVNO which consists of implementing an
Integer Linear Program (ILP) to solve the winner and price de-
termination problem by maximizing the revenue of the MVNO,
as shown hereafter.

3.4.1. VCG auction
The VCG auction is an auction where the bidder either wins

all it asked for (di, j), or nothing, and then pays the harm it
causes to the other players (pVCG

i, j ) [30]. The winners are deter-
mined based on a social welfare maximization problem where
the number of winners is limited to the number of resource
blocks owned by MVNOj from the higher-level auction (Rj),
given that a resource block cannot be assigned to more than
one user.

The following optimization model is to solve the winners
and price determination problem for the given MVNOj:

max
NX

i=1

wi, j xi, j (5)

s.t.
K j=bRjcX

k=1

rk
i, j = di, j xi, j,8i 2 {1, . . . ,N} (6)

NX

i=1

rk
i, j  1 (7)

where

xi, j =

8>>><
>>>:

1 if UEi, j wins the auction

0 otherwise

pi, j =

8>>><
>>>:

pVCG
i, j if UEi, j wins the auction

0 otherwise

We denote by rk
i, j the k-th resource block MVNOj owns and

allocates to UEi, j, such that 1  k  Kj, where we consider
Kj = bRjc.

The objective function in (5) aims at maximizing the so-
cial welfare of MVNOj. Constraint (6) ensures that UEi, j wins
di, j or nothing and constraint (7) ensures that the k-th resource
block cannot be allocated to more than one user.

We denote by pVCG
i, j the VCG price that UEi, j pays; pVCG

i, j is
calculated as follows:

pVCG
i, j = max

b�i, j

NX

k 6=i

wk, j xk, j �max
b j

NX

k 6=i

wk, j xk, j (8)
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where b j denotes the set of all MVNOj’s users bid vectors,
while b�i, j indicates the set of all MVNOj’s users bid vectors
except for UEi, j’s bid: b j = (bi, j, b�i, j).

3.4.2. Truthful solution maximizing revenue
Given that the VCG auction may fail to ensure high rev-

enue [11], we use Myerson virtual valuation concept [9] which
ensures truthfulness and guarantees maximum revenues.

The virtual valuation concept was introduced by Myerson
in [9]. It states that the true revelation of the user valuation
is the best strategy for him to maximize its own profit, which
means truthfulness. Moreover, according to the revenue equiv-
alence theorem in [9], the expected revenue PE of any truthful
mechanism under the Bayesian setting is equal to its expected
virtual surplus,

P
i, j xi�(wi, j) where xi is equal to 1 when user

i wins the bid and 0 otherwise and �i, j is the virtual valuation.
�i, j is expressed in terms of the probability distribution Fi, j(wi, j)
of the user valuation wi, j and the probability density fi, j(wi, j) as
follows:

�i, j(wi, j) = wi, j �
1 � Fi, j(wi, j)

fi, j(wi, j)
(9)

where
fi, j =

@Fi, j(z)
@z

(10)

Hence, MVNOj can maximize its expected revenue:

max PE = max
NX

i=1

�i, j(wi, j)x
0
i, j

instead of maximizing expression (5).
According to the conventional Bayesian approach, we con-

sider that the valuation wi, j of the buyers follows a distribution
Fi, j known to the seller. We assume Fi, j to be monotone in-
creasing and fi, j

1�Fi, j
to be monotone non-decreasing, therefore

the virtual valuation becomes monotone non-decreasing [31].
To determine the winners, MVNOj solves the following op-

timization problem:

max
NX

i=1

�i, j(wi, j)x
0
i, j (11)

s.t.
K j=bRjcX

k=1

rk
i, j = di, j x0i, j,8i 2 {1, . . . ,N} (12)

NX

i=1

rk
i, j  1 (13)

where
x
0
i, j =

(
1 if UEi, j wins the auction
0 otherwise

We define the virtual price p0i, j as follows:

p0i, j = max
b�i, j

NX

k 6=i

�k, j(wk, j)xk, j �max
b j

NX

k 6=i

�k, j(wk, j)xk, j (14)

The final allocation xi, j is set to x0i, j and the final price pi, j is
set to

pi, j = �
�1
i, j (p

0
i, j) (15)

Algorithm 1 Winner determination
1: Input Rj, b j.
2: Output x j, the winner vector
3: set R  Rj, set the number of resource blocks owned by

MVNOj to its allocation from the higher-level auction Rj
4: For i = 0 to N
5: li, j  �i, j(wi, j)

di, j

6: end
7: [I, B]=sort L/ li, j, where I is the sorted list and B is the list

of the weights’ indexes in I
8: For n = 1 to N
9: k = I(n)

10: if �k j(wk j) > 0 & dk jR
11: xk j  1
12: R R � Rj
13: else
14: xk j  0
15: end
16: end

3.4.3. Truthful sub-optimal solution
Given the complexity of the integer linear optimization in

the winner and price determination problem, we propose here-
after a greedy algorithm executed by each MVNO to determine
the winners and the corresponding prices to be paid.

The greedy algorithm proceeds in two phases as follows.

• Winner determination (Algorithm 1): we sort, in decreas-
ing order, a list L of N weights li, j, where li, j =

�i, j(wi, j)
di, j

.
We start by allocating resources to the users according to
the order of the corresponding li, j value in the sorted list
L. In other words, with respect to the order, UEi, j is a
winner if di, j  Rj, i.e., xi, j is set to 1 and Rj is updated.
Otherwise, xi, j is set to 0.

• Price setting: UEi, j pays pi, j = lk, jdi, j such that lk, j is
the critical weight as described in [31]; if li, j � lk, j UEi, j
wins, otherwise loses. According to the sub-optimal method
in [1] we compute the critical price ck, j(i) (Algorithm 2)
such that if bidder UEi, j bids li, j � lk, j(ck, j(i)) he wins,
and loses if li, j<lk, j(ck, j(i)).

The algorithm we propose has polynomial complexity, thus in-
ducing only limited delay between collecting users requests in
the lower level auction and the resource allocation phase.

3.5. Analysis of the VCG auction properties
It is widely known that it is desirable for auctions to meet

the following economic properties: truthfulness, rationality and
computational e�ciency [10, 26].

1. Individual rationality: Individual rationality ensures that
none of the bidders utilities should be negative, i.e., any
of the users should pay more than its declared valuation:
pVCG

i, j  wi, j.
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Algorithm 2 Critical price determination
Input Rj, b j, x j, L, I.

2: Output p j, the price vector
set R Rj

4: For n = 1 to N
k = I(n)

6: if xk j = 1
for l=1:N & l 6=k

8: R R � dl j
if dk j�R

10: ck j = �l j(wl j)
end

12: end
else

14: ck j = 0
end

16: end

2. Truthfulness: Truthfulness is a very desirable property
in auction theory which guarantees that the users don’t
lie about their true valuations. A truthful auction is an
auction where the bidders cannot do better by bidding
other than their true valuation.

3. Computational e�ciency: Computational e�ciency can
be satisfied when the computation time for the winner
and price determination is polynomial.

While it is proven that the VCG auction is individually rational
(theorem 3 in [26]) and truthful (theorem 1 in [18] and theo-
rem 2 in [26]), VCG can possibly generate low revenues [10].
We addressed this issue in Section 3.4.2, and suggested an ap-
proach that guarantees both truthfulness and a high revenue.
Moreover, a major concern of the VCG auction is the exponen-
tial time complexity due to the ILP optimization formulation.
We addressed this limitation by proposing a greedy algorithm
in Section 3.4.3 that reduces the time complexity to a polyno-
mial. Hence, all desired properties are satisfied in our auction
algorithm.

4. Nash equilibrium analysis of the global auction

We now analyze the existence and uniqueness of the Nash
Equilibrium (NE) of the global auction consisting of the two
levels: high and low.

Since the utility function in (2), U j =
PN

i=1 pi, j � Pj, is not
explicit in terms of the agents’ strategies, i.e., MVNOs bids S j
(1 jm), we start by approximating it to an explicit form in
terms of these latter terms. We consider the case where the
distribution of the valuation Fi, j(vi, j) is uniform in [0, 1] 8i,
i.e., Fi, j(vi, j) = vi, j and we conduct the analysis per unit of re-
source block1. The methodology we employed can be extended
straightforwardly to the general case with generic distribution

1We assume that users are homogeneous and bid for 1 resource block from
MVNO j in the lower-level auction.

F(vi, j), (please refer to the details in Appendix A.1). It follows
from our analysis in the previous section that users bid their
true valuations; this is enforced by the lower-level auction. We
consider the asymptotic case with a large number of users par-
ticipating in the lower-level auction.

4.1. Utility function approximation
Given that Fi, j(vi, j) = vi, j, Equation (9) becomes:

�i, j(vi, j) = �(vi, j) = vi, j �
1 � vi, j

1
= 2vi, j � 1. (16)

Lemma 4.1. The utility function of MVNOj, given in (2), per
unit of resource block can be written as:

U j(S j, S � j)=̂
NX

i=1

⇣
[Fi, j]N � [Fi, j]

N� S j Q
S j+S� j+S 0 [1 � Fi, j]

S jQ
S j+S� j+S 0

⌘
� S j

(17)

Proof 4.1. Under the above assumptions, it is easy to see that
in total we have n = Rj winners. More precisely, the first
n = bRjc users with the highest valuation will win the auction.
Recall that bRjc is the total number of resource blocks allocated
to MVNOj by the Cloud-RAN operator in the higher-level auc-
tion.

Hence, the problem is assimilated to sorting a list in a de-
creasing order in terms of valuation and assigning the n = bRjc
resources to the first n users in the sorted list. Knowing that the
distributions of valuations are known, we can derive the proba-
bility of user UEi, j being a winner as follows:

p(xi, j = 1) =
(N�1)Y

(k 6=i)

p(vk, j  vi, j)+

(N�2)Y

(k 6=i)

p(vk, j  vi, j)(1 � p(vk, j  vi, j)) + ...+

(N�Rj)Y

(k 6=i)

p(vk j  vi, j)
Rj�1Y

k 6=i

(1 � p(vk, j  vi, j)).

(18)

The first term on the right hand side of Equation (18) equals
the probability that UEi, j has the highest valuation,vi, j, among
the N users participating in the auction. The last term equals
the probability that vi, j is the N � Rj + 1 highest valuation, i.e.,
there are Rj � 1 valuations larger than UEi, j’s valuation vi, j.

Knowing that p(vk j  (vi, j)) = Fk j(vi, j) and that Fk, j(vi, j) =
F(vi, j),8k 2 {1, . . . ,N}, the probability that UEi, j wins in the
lower-level auction becomes:

p(xi, j = 1) =[F(vi, j)]N�1 + [F(vi, j)]N�2(1 � F(vi, j))

+ ... + [F(vi, j)]N�R j (1 � F(vi, j))Rj�1

=
[F(vi, j)]N � F(vi, j)N�Rj (1 � F(vi, j))R j

2F(vi, j) � 1
.

(19)

Replacing Equations (16) and (19) in Equation (2) gives
Equation (17) (complete proof in Appendix A).
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4.2. Nash equilibrium: existence
In this section, we prove the existence of a NE point accord-

ing to the following theorem.

Theorem 4.2. An equilibrium point exists for every concave n-
person game [32].

In other words, a NE point S ⇤j exists if the utility function
U j(S j, S � j) is continuous in S j and its second derivative with
respect to S j is negative.

Lemma 4.3. Our m-person game has at least one Nash equi-
librium when Fi, j > 0.5,8i 2 {1, . . . ,N}.

Proof 4.3. U j(S j, S � j) is continuous in S j. Its second deriva-
tive is @

2U j(S )
@2S j

= C j
2PN

i=1 �Ai, jBi, jEi, j, which is less than or
equal to zero due to the positivity of expressions Ai, j, Bi, j, C j
and Ei, j under the condition that Fi, j > 0.5,8i 2 {1, . . . ,N}
(please refer to the proof in Appendix B).

4.3. Nash equilibrium: uniqueness
In this subsection, we prove the uniqueness of the NE in

the duopoly case with 2 MVNOs participating in the auction:
MVNO1 and MVNO2 having S 1 and S 2 as bid strategies. We
base our proof of NE point uniqueness on the following theo-
rems 4, 5 and 6 in [32].

Let us first introduce some definitions:

• g(S , r): the pseudo-gradient of the weighted sum�(S , r) =Pm
j=1 r j�(U j), where r = {r j} with r j�0 8 j. g(S , r) is

such as:

g(S , r) =

0
BBBBBBBBBBBBBBBBB@

r1�(U1)
r2�(U2)
.
.

rm�(Um)

1
CCCCCCCCCCCCCCCCCA

• G(S , r): the Jacobian of g(S , r), with respect to r, is an
m ⇤m matrix where the element akl of G(S , r) is such that
akl =

@2Uk(S k ,S �k)
@S k@S l

, {k, l} 2 {1, 2}

• Gt(S , r): the transpose matrix of G(S , r)

Theorem 4.4. (theorem 4 [32]) If �(S , r) satisfies the diagonal
strict concavity property, the Nash equilibrium is unique when
it exists.

�(S , r) is diagonally strictly concave if for a given r > 0 and
for every S 1, S 2 we have [33]:

(S 1 � S 0)(g(S 1, r) � g(S 0, r)) < 0

Theorem 4.5. (theorem 6 [32]) �(S , r) is diagonally strictly
concave if for a given r > 0 the matrix [G(S , r) + G(S , r)t] is
definite negative, i.e., if the eigenvalues of [G(S , r) + G(S , r)t]
are negative.

Table 3: Expressions table

Notation Interpretation

Ai, j= F
S jQ

S j+S� j
i j

Bi, j= (1 � Fi j)
S jQ

S j+S� j

Ci, j=
S � j

(S j+S � j)2

Ei, j= (log( Fi j

1�Fi j
))2 + 2

Q (1 + S j

S j+S � j
) log( Fi j

1�Fi j
)

Kj= �Q2PN
i=1 Ai, jBi, jEi, j

L j= Q2PN
i=1 Ai, jBi, jHi, j = �Kj

� j=
(S j+S 0)2

(S j+S � j+S 0)4

�=
S j(S � j+S 0)
(S j+S � j)4

Lemma 4.6. For the duopoly scenario, [G(S , r) + G(S , r)t] is
definite negative and, therefore, the Nash equilibrium S j

⇤ for
the two-level auction is unique under the condition Fi, j > 0.5,8i 2
{1, . . . ,N}, j 2 {1, 2}.

Proof 4.6. The Jacobian matrix with 2 MVNOs is the follow-
ing:

G(S , r) =

0
BBBBBBBBBBBB@

r1�2K1 �r1�K1

�r2�K2 r2�1K2

1
CCCCCCCCCCCCA

(The detailed expressions of the matrix elements are given
in Table 3.)

and

[G(S , r) +G(S , r)t] =
0
BBBBBBBB@

2r1�2K1 ��(K1 + K2)(r1 � r2)

��(K2 + K1)(r2 � r1) 2r2�1K2

1
CCCCCCCCA

(20)

In Appendix C we prove that when Fi, j = 0.5,8i 2 {1, . . . ,N}, j 2
{1, 2}, the eigenvalues of the matrix [G(S , r)+G(S , r)t] are neg-
ative, and it then follows that [G(S , r)+G(S , r)t] is definite neg-
ative and that the Nash equilibrium is unique.

5. Numerical results

In this section, we evaluate numerically the two-level auc-
tion approach we propose in this paper. We first simulate the
lower-level auction and then the global one consisting of the
two coupled auctions. We implemented our proposed optimiza-
tion models in MATLAB on a server equipped with an Intel
CPU at 2.60 GHz and 64 GByte of RAM. All numerical results
are obtained by averaging 50 random extractions to achieve
very narrow 95% confidence intervals (not shown in the figures
for the sake of clarity).
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Table 4: Lower-level auction scenarios

Scenario Number of
users

Number of re-
source blocks
(R1)

Requested num-
ber of resource
blocks (di1)

1(a) N 2 [0, 200] R1 = 50 di1 = 1
1(b) N 2 [0, 200] R1 = 50 di1 2 [1, 5]
1(c) N = 100 R1 2 [0, 120] di1 = 1
1(d) N = 100 R1 2 [0, 400] di1 2 [1, 5]

5.1. Lower-level auction
We simulate the lower-level auction run by MVNO1, with

N users. We assume that the auction is run over R1 (resource
blocks). Each user UEi1 submits a bid vector bi1 = [di1,wi1].
After collecting the bids from its users, MVNO1 determines the
winners x1 =< xi1, ..., xN1 > and the corresponding price vector
p1 =< pi1, ..., pN1 >, and calculates the revenue Rrev1 =

PN
i=1 pi1,

where pi1 is the price that user i should pay to MVNO1.
The winner and price vectors x1 =< xi1, . . . , xN1 > and p1 =<

pi1, . . . , pN1 > are determined using the following algorithms,
which are compared to each other:

1. VCG-Integer Linear Program (V-ILP): The winner deter-
mination is realized by solving the ILP verifying Equa-
tions (5), (6) and (7), described in Section 3.4.1. The
price vector is constituted by VCG prices determined by
Equation (8).

2. Optimal ILP (O-ILP): This algorithm is based on Myer-
son’s concept of virtual valuation (�i1(vi1) = vi1� 1�Fi1(vi1)

fi1(vi1) ).
The winners are determined by the ILP that aims at max-
imizing the expected revenue, as in Equations (11), (12)
and (13). The virtual prices vector is determined by Equa-
tions (14) and (15).

3. Greedy algorithm (GA): The winner and price determi-
nation are given by the greedy algorithms (Algorithm 1
and Algorithm 2) described in Section 3.4.3.

4. Random allocation scheme (RAS): For comparison rea-
sons, we further implement a baseline allocation approach
where the winning users are selected randomly from those
whose valuations are higher than the price set by the MVNO,
p0 (vi, j > p0). Each user will pay a fixed price p0 per re-
source block; the price here is the average of users’ valu-
ations.

We evaluate and compare the above algorithms in the sce-
narios described in Table 4. These scenarios are repeated for the
two cases where the users true valuations vi,1 are drawn from
a uniform distribution as well as an exponential distribution;
we consider in all scenarios that the users bid truthfully, i.e.,
wi,1 = vi,1.

Table 5: Global auction scenarios

Scenario Number
of
MVNOs

Number of users Number of
resource
blocks

Req. number
of resource
blocks

2(a) m = 2 N = {50, 100, 150} R1 = 100 di1 = 1
2(b) m = 2 N = {50, 100, 150} R1 = 100 di1 2 [1, 5]
2(c) m = 4 N = {50, 100, 150} R1 = 100 di1 = 1
2(d) m = 4 N = {50, 100, 150} R1 = 100 di1 2 [1, 5]
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Figure 3: Running time for scenario 1(a)

5.1.1. Discussion
We observe, in Figure 4 and for all scenarios, that the Greedy

Algorithm (GA) is very similar to Optimal ILP (O-ILP) in terms
of revenue when varying the number of users as well as the
number of resource blocks, at the remarkable advantage of re-
ducing the running time: as shown in Figure (3), for scenario
1(a), the Greedy Algorithm (GA) takes less than 1% of the com-
puting time of the Optimal ILP-based one (O-ILP).

A known problem of VCG is that it can generate very low
revenues when the number of users is small or when the num-
ber of commodities is redundant [11]. This is the explanation
of the low revenue generated by the VCG auction (used in V-
ILP) in Figures 4a, 4b, 5a and 5b, when the number of users is
small, and in Figures 4c, 4d, 5c and 5d, when the number of re-
source blocks is redundant. However, the mechanism based on
the concept of Myerson’s virtual valuation (O-ILP) performs
better than the VCG auction, and as well as the random allo-
cation, in terms of revenue. Consequently, we observe from
Figures 4 and 5 the importance of Myerson’s virtual valuation
concept in guaranteeing a positive payo↵ due to the reserva-
tion e↵ect, while V-ILP can lead to a zero-payo↵ when users’
demands are higher than, or equal to, the number of resource
blocks R1 owned by MVNO1. The advantage of Myerson’s
concept, which discriminates against negative/low valuations,
is to set an incentive on the users to give their true valuation, and
by that guarantee an optimal revenue. This can be assimilated
to a market where the price of a commodity increases when the
demands increase, and decreases otherwise. The number of de-
mands has the same e↵ect as the market on the VCG auction;
however by adopting Myerson’s concept, MVNO1 is able to
maintain a high revenue.
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As of the auction approach versus the RAS scheme, it can
be observed from the di↵erent scenarios that when the number
of users increases, the auction-based approaches outperform the
Random Allocation Scheme (RAS) in terms of revenue, espe-
cially for a medium-to-high number of users competing in the
lower-level auction. In fact, in our proposed approach, the re-
source blocks are allocated to the users that value the resource
blocks the most and, by that, the revenue of the MVNO is max-
imized.

Finally, the case where users valuations are extracted ac-
cording to an exponential distribution yields similar results with
respect to the uniform one, as shown in Figure 5. This behavior
emphasizes the independence of the allocation scheme from the
distribution type.

5.2. Global auction
We now evaluate the global auction (i.e., the two-level auc-

tion approach). To this end, we consider in total m MVNOs,
with the same settings, participating in this global auction with
a central C-RAN operator. The latter runs the higher-level auc-
tion over Q = 100 resource blocks. Each MVNOj, which plays
the role of a seller in the lower-level auction and bidder in the
higher-level one, submits S j as its bid, obtains Rj =

S jQ
S j+S � j+S 0

and pays S j. Regarding the lower-level auction, we consider
the same settings described in subsection 5.1.

5.2.1. Discussion
In scenarios (2a) and (2b), we set m = 2 and evaluate the

payo↵ of a given MVNO (MVNO1 in this case) by varying
MVNO1’s bid S 1 and MVNO2’s bid S 2 in the range [0, 20], and
by considering the settings described in Table 5. The results are
shown in Figures 6 and 7 for scenario (2a) and scenario (2b),
respectively. We notice that the payo↵ U1 increases with S 1,
reaches its maximum and then decreases when S 1 continues to
increase. More specifically, this maximum increases with the
number of users N and is substantially lower than this latter
since max

P
i xi1 pi1 = N. Moreover, U1 also depends on S 2

and, as expected, decreases when S 2 increases. It is worth not-
ing that, since we consider the same settings for both MVNOs,
the results are the same for MVNO2 when varying MVNO1’s
bid S 1 and MVNO2’s bid S 2 in the same range [0, 20].

In scenarios (2c) and (2d), we set m = 4 and evaluate the
payo↵ of MVNO1 by varying MVNO1’s bid S 1 and the sum
of all the other MVNOs’ bids S �1 =

P
j=2:4 S j, in the range

[0, 60], and by considering the parameters setting described in
Table 5. The results are shown in Figures 8 and 9 for scenar-
ios (2c) and (2d), respectively. We notice that when the number
of MVNOs participating in the higher level auction increases,
i.e., when the competition increases, and for a fixed value of S 1,
the maximum values that MVNO1’s payo↵ can take are lower
compared with the one obtained with m = 2.

We observe from the concavity of the curves, in Figures 6,
7, 8 and 9, that the global auction is a n-concave game, which
guarantees that the Nash equilibrium indeed exists, even for the
general case where m > 2.

We underline that in both scenarios 2(b) and 2(d) we eval-
uate the performance of our proposed architecture with an in-
creasing number of resource blocks demanded (i.e., from 1 up
to 5). Figures 7, and 9 show that when users bid for up to 5 re-
source blocks, the revenue generated by MVNO1 is higher than
the one generated in scenarios 2(a) and 2(c), where the users
can bid for only one resource block. However, the concavity of
the payo↵ function is very similar to the one obtained in scenar-
ios 2(a) and 2(c), and so the existence of the Nash equilibrium
is guaranteed for the general case where users can bid for more
than 1 resource block.

Please note that our proposed auction scheme achieves the
maximum revenue for the operators among all simulated schemes,
which does not imply its optimality. In fact, it is widely known
that achieving truthfulness and maximizing revenue simultane-
ously is impossible [34]. In this regard, the main contribution
with our auction scheme is to ensure truthfulness, a fundamen-
tal and challenging economic property of any auction scheme,
and we achieve this without sacrificing drastically the revenue
for the MVNO, as illustrated above. As for the end-users, our
auction scheme naturally ensures that those users with high val-
uation are served before those with low valuation, which is a
reasonable property.

6. Conclusion

We considered in this paper a multi-tenant C-RAN where
several MVNOs, each having its own end users, compete for
shared resources. We proposed a two-level auction to enable
both the C-RAN operator and the MVNOs allocating the ra-
dio resource to the end users e�ciently and truthfully. Tech-
nically, we adopted Myerson’s virtual valuation concept in or-
der to guarantee revenue maximization, and showed that our
proposal is truthful and individually rational. We further im-
plemented a greedy algorithm to ensure the computational e�-
ciency of our auction framework. We showed the existence of
Nash equilibrium for the global auction and its uniqueness in
a typical duopoly scenario. Finally, we evaluated numerically
our proposal in typical network scenarios, and demonstrated the
e�ciency of our proposal in terms of revenue maximization for
the MVNOs.

The focus of the present paper was on maximizing the C-
RAN operator profit, and so we maximized its resource utiliza-
tion. Energy is yet another important parameter to consider in
this setting as well; its minimization could constitute an inter-
esting future perspective. One way to do so would be by in-
corporating it as a second term in the global utility function,
in addition to the resource utilization term. In this case, each
end user will not only be represented by a request for resources
but also by a certain energy consumption figure which depends
on the required resources, its radio conditions, modulation and
coding scheme, etc.

Another perspective would be to test our proposal on a plat-
form implementing multi-tenant C-RAN and compare our scheme
with existing ones.
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Figure 4: MVNO1 revenue using V-ILP, OILP, GA and RAS algorithms in the lower-level auction - Uniform distribution
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Figure 5: MVNO1 revenue using V-ILP, OILP, GA and RAS algorithms in the lower-level auction - Exponential distribution
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(c) Global Auction : N=150

Figure 6: MVNO1’s payo↵ from the global auction - Scenario 2(a)
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Figure 7: MVNO1’s payo↵ from the global auction - Scenario 2(b)
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Figure 8: MVNO1’s payo↵ from the global auction - Scenario 2(c)

20
15

MVNO
1
's bid

10
5

0
60

48

36

Sum of the other bids

24

12

35

15

-5

5

0

10

30

25

20

0

M
V

N
O

1
's

 P
a

y
o

ff

(a) N=50

20
15

MVNO
1
's bid

10
5

060

48

36

Sum of the other bids

24

12

40

0

50

10

-10

20

30

60

0

M
V

N
O

1
's

 P
a

y
o

ff

(b) N=100

20
15

MVNO1's bid

10
5

060

48Sum of the other bids
36

24

12

20

30

10

70

-10

40

0

50

60

0

M
VN

O
1's

 P
ay

of
f

(c) N=150

Figure 9: MVNO1’s payo↵ from the global auction - Scenario 2(d)
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Appendix A.

Lemma Appendix A.1. The utility function of a given MVNO
can be expressed as:

U j(S j, S � j,N)=̂
NX

i=1

⇣
[Fi, j]N � [Fi, j]

N� S jQ
S j+S� j+S 0 [1 � Fi, j]

S jQ
S j+S� j+S 0

⌘
� S j

(A.1)

Proof Appendix A.1. Given that di, j = 1 8 the users and given
that the distribution Fi, j(vi, j) = vi, j is uniform for all users, we
have:

�i, j(vi, j) = �(vi, j) = vi, j �
1 � vi, j

1
= 2vi, j � 1 (A.2)

p(xi, j = 1) =
(N�1)Y

(k 6=i)

p(vk, j  vi, j)+

(N�2)Y

(k 6=i)

p(vk, j  vi, j)(1 � p(vk, j  vi, j)) + ...+

(N�Rj)Y

(k 6=i)

p(vk, j  vi, j)
R j�1Y

k 6=i

(1 � p(vk, j  vi, j))

(A.3)

Knowing that p(vk, j  (vi, j)) = Fk, j(vi, j) Equation (A.3) be-
comes:

p(xi, j = 1) =
(N�1)Y

(k 6=i)

Fk j(vi, j) +
(N�2)Y

(k 6=i)

Fk, j(vi, j)(1 � Fk, j(vi, j))

+ ... +

(N�Rj)Y

(k 6=i)

Fk j(vi, j)
(Rj�1)Y

(k 6=i)

(1 � Fk j(vi, j))

And so, knowing that Fk, j(vi, j) = F(vi, j) 8 k 2 {1,N}:

p(xi, j = 1) =[F(vi, j)]N�1 + [F(vi, j)]N�2(1 � F(vi, j))

+ ... + [F(vi, j)]N�R j (1 � F(vi, j))Rj�1

p(xi, j = 1) =[(1 � F(vi, j))]Rj�1F(vi, j)N�Rj

[
F(vi, j)R j�1

(1 � F(vi, j))R j�1 +
F(vi, j)R j�2

(1 � F(vi, j))R j�2

+ ...
F(vi, j)

1 � F(vi, j)
+ 1]

(A.4)

The terms between the brackets in Equation (A.4) follow a
geometric series that can be written as:

qRj � 1
q � 1

(A.5)

where q = F(vi, j)
1�F(vi, j)

By replacing Equation (A.5) in Equation (A.4), we obtain

p(xi, j = 1) = [1 � F(vi, j)]Rj�1F(vi, j)N�Rj
⇣qRj � 1

q � 1

⌘

p(xi, j = 1) =
[F(vi, j)]N � F(vi, j)N�Rj (1 � F(vi, j))R j

2F(vi, j) � 1
(A.6)

By replacing xi, j by p(xi, j = 1) and Equations (A.2) and
(A.6) in

PN
i=1 pi, j =

PN
i=1 �i, j(wi, j) ⇤ p(xi, j = 1), we obtain:

NX

i=1

pi, j=̂

NX

i=1

(2vi, j � 1)
[F(vi, j)]N � F(vi, j)N�Rj (1 � F(vi, j))Rj

2F(vi, j) � 1
(A.7)

Since F(vi, j) = Fi, j (for a simpler notation)

NX

i=1

pi, j=̂

NX

i=1

[Fi, j]N � FN�Rj
i, j (1 � Fi, j)Rj (A.8)

By replacing in Equation (A.1) we obtain :

U j(S j, S � j,N)=̂
NX

i=1

⇣
[Fi, j]N � [Fi, j]

N� S j Q
S j+S� j+S 0 [1 � Fi, j]

S jQ
S j+S� j+S 0

⌘
� S j

(A.9)
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Appendix A.1.
Given any distribution F other that the uniform, we can ap-

ply the same method as presented in this paper, although the
particular results may di↵er, depending on the specific proper-
ties of Fi j. More concretely, the method consists of:

1. Establishing (eventually approximately) the utility func-
tion by injecting F into equations (A.2) as well as (A.6)
by following a procedure similar to the one described in
Section Appendix A. In particular, Equation A.9 will have
the general form:

U j(S j, S � j,N)=̂

NX

i=1

�i j(vi j)
⇣ [Fi, j]N � [Fi, j]

N� S j Q
S j+S� j+S 0 [1 � Fi, j]

S j Q
S j+S� j+S 0

2Fi j � 1

⌘
� S j

2. Studying the existence of Nash equilibrium by investigat-
ing the concavity of the utility function derived in step 1,
as in Section 4.2;

3. Studying the uniqueness of the Nash equilibrium by check-
ing the diagonal strict concavity property of �(S , r), as in
Section 4.3.

Appendix B.

Lemma Appendix B.1. The second derivative of a given MVNO
utility, @

2U j(S j,S � j)
@S 2

j
is negative.

Proof Appendix B.1. First derivative of Equation (A.1) gives:

@U j(S j, S � j)
@S j

= C j

NX

i=1

⇣
Ai, jBi, j log(

Fi, j

1 � Fi, j
)
⌘
� 1 (B.1)

Second derivative of (A.1) gives :

@2U j(S j, S � j)
@S 2

j
= C j

2
NX

i=1

�Ai, jBi, jEi, j (B.2)

We study the sign of @
2U j(S )
@2S j

= C j
2PN

i=1 �Ai, jBi, jEi, j. Since
Ai, j, Bi, j and C j are positive, we study the sign of Ei, j(Fi, j) =
Ii, j(Fi, j) + Ji, j(Fi, j). To achieve this, we consider the function
f (x) = I(x) + J(x) = (log( x

1�x ))2 + ↵ log( x
1�x ) where x = Fi, j

and ↵ = 2
Q (1 + S j

S � j+S 0
). We start by calculating the derivative

with respect to x. We have: f (x) > 0 for x > 0.5 leading to
@2U j(S )
@2S j

= C j
2PN

i=1 �Ai, jBi, jEi, j < 0 for Fi, j > 0.5 {1,N}.

Appendix C.

Lemma Appendix C.1. The symmetric matrix [G(S , r)+G(S , r)t]
is negative definite due to the negativity of it eigenvalues.

Proof Appendix C.1. We start by calculating the Jacobian G(S,r)
elements:

a11 = � (S 2+S 0)2Q2

(S 1+S 2+S 0))4

PN
i=1 Ai1Bi1Ei1

a12 =
S 1(S 2+S 0)Q2

(S 1+S 2+S 0)4

PN
i=1 Ai1Bi1Hi1

a21 =
(S 1+S 0)S 2Q2

(S 1+S 2+S 0)4

PN
i=1 Ai2Bi2Hi2

a22 = � (S 1+S 0)2Q2

(S 1+S 2+S 0)4

PN
i=1 Ai2Bi1Ei2

Furthermore, we denote by

Kj = �Q2PN
i=1 Ai, jBi, jEi, j

L j = Q2PN
i=1 Ai, jBi, jHi, j = �Kj

� j =
(S j+S 0)2

(S j+S � j+S 0)4

� =
S j(S � j+S 0)
(S j+S � j)4

We suppose that for Fi, j > 0 8 i2 {1,N}, Ii, j >> Ji, j
and so Ei, j = Ii, j leading to Hi, j = Ei, j

G(S,r) becomes
0
BBBBBBBBBBBB@

r1�2K1 �r1�K1

�r2�K2 r2�1K2

1
CCCCCCCCCCCCA

(C.1)

Now we calculate [G(S , r) +G(S , r)t]:

[G(S , r) +G(S , r)t] =
0
BBBBBBBB@

2r1�2K1 ��(K1 + K2)(r1 � r2)

��(K2 + K1)(r2 � r1) 2r2�1K2

1
CCCCCCCCA

(C.2)

We have to prove that the matrix above is negative definite.
This is the case if all the eigenvalues are negative:

[G(S , r) +G(S , r)t] =
0
BBBBBBBB@

2r1�2K1 � � ��(K1 + K2)(r1 � r2)

��(K2 + K1)(r2 � r1) 2r2�1K2 � �

1
CCCCCCCCA

(C.3)

For r1 = r2, we have �0 = r1↵2K1 < 0 and �1 = r2�1K2 < 0
since we have

• r1 and r2 > 0 (positive weights)

• �1 and �2 > 0

• K1 and K2 < 0 (K j = �Q2PN
i=1 Ai, jBi, jEi, j < 0)
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which justify the uniqueness of the Nash equilibrium. Now for
r1 6=r2, we have the following quadratic equation in terms of �

�2 � 2(r1�2K1 + r2�1K2)�+

�2[(K1 + K2)2(r1 � r2)2] + 4K1K2r1r2�1�2
(C.4)

Knowing that the solutions of a quadratic equation satisfy
x2 � S x + P = 0, where S is the sum of the solution and P is
their product. Comparing with Equation (C.4) we have

S = 2(r1�2K1 + r2�1K2) < 0

P = �2[(K1 + K2)2(r1 � r2)2] + 4K1K2r1r2�1�2 > 0

leading to negative eigenvalues.

Appendix D.

Table D.6: Expression table

Notation Interpretation
C �
RAN

C-RAN operator spectrum owner

MVNOj j-th MVNO; 1 jm
UEi, j i-th user of MVNOj; 1iN
S j MVNOj’s bid vector S j = Pj
Pj The price MVNOj pays to get Rj
Rj MVNOj allocation in terms of resource

blocks
S 0 Bid set by the C-RAN
bi, j UEi, j’s bid vector bi, j = (di, j,wi, j)
di, j Number of resource blocks requested by

UEi, j
wi, j UEi, j’s declared valuation for di, j resource

blocks
vi, j UEi, j’s true valuation for di, j resource

blocks
x j Decision vector x j = {xi, j}, 1iN; xi, j =

1 if UEi, j wins, 0 otherwise
pj Price vector pj = {pi, j}, 1iN; pi, j =

pVCG
i, j if UEi, j wins, 0 otherwise

Ai, j= F
S j Q

S j+S� j
i j

Bi, j= (1 � Fi j)
S jQ

S j+S� j

Ci, j=
S � j

(S j+S � j)2

Ei, j= (log( Fi j

1�Fi j
))2 + 2

Q (1 + S j

S j+S � j
) log( Fi j

1�Fi j
)

Kj= �Q2PN
i=1 Ai, jBi, jEi, j

L j= Q2PN
i=1 Ai, jBi, jHi, j = �Kj

� j=
(S j+S 0)2

(S j+S � j+S 0)4

�=
S j(S � j+S 0)
(S j+S � j)4
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