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Abstract

The Internet is currently mostly exploited as a means to perform massive

digital content distribution. Such a usage profile was not specifically taken into

account while initially designing the architecture of the network: as a matter

of fact, the Internet was instead conceived around the concept of host-to-host

communications between two remote machines.

To solve this problem, Content-Delivery Networks (CDNs) are currently used

as a well-established technology to serve content-driven demands through an

infrastructure that is not tailored for that purpose. On the other hand, the

novel paradigm of Content-Centric Networking (CCN) aims at filling the gap of

this misalignment by changing the network-layer protocols, solving the content-

distribution problem at its root.

In this paper, we formulate novel optimization models to analyze the perfor-

mance gains that CDN and CCN can achieve, by reducing the total amount of

traffic exchanged through the network. We tackle this problem by adopting a

time-varying content popularity evolution model that accurately represents the

dynamic behavior of users.

We discover that, in most of the cases, CDN reduces the overall traffic ex-
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changed between network nodes, leading to better performance, whereas CCN

should instead be preferred in those scenarios where CDN cannot quickly react

to popularity evolution. On top of that, we show that very limited benefits can

be obtained by changing the cache replacement algorithms. Finally, all our key

findings are confirmed by simulation campaigns that further complement this

work.

Keywords: Content-Centric Networks, Content-Delivery Networks,

Performance Analysis, Optimization.

1. Introduction

Nowadays, the way people exploit the services provided by the Internet is

radically changed with respect to the years when the Network was initially

designed. As a matter of fact, the evolution of online services, as well as the

success of digital multimedia diffusion, both demand for new technologies to5

turn the Internet into an efficient content distribution infrastructure [1, 2, 3].

However, this fundamental change clashes with the original design principles

that guided the engineering process of the worldwide network. In particular, it is

in conflict with the well known end-to-end principle, according to which interme-

diate network nodes should be specialized to accommodate basic functionalities10

such as packet forwarding, whereas application-specific needs should instead

be implemented only in the end hosts [4]. Among the direct consequences of

this choice, IP routers can nowadays reach the impressive (and still improving)

capacity of 921 Tbps [5]; however, this same choice has limited the content-

distribution capabilities of Internet, since implementing content-caching func-15

tionalities at the network layer is quite demanding [6].

To overcome this limitation, by moving content replicas nearer to the actual

consumers location, Content-Delivery Networks (CDNs), such as Akamai [7],

are currently used to efficiently serve the content requests of worldwide Internet

users, in today’s TCP/IP Internet. CDNs are also used to effectively support20

sudden popularity changes, known as flash crowds, which can mine the reliability
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of the system by overwhelming the servers with a huge number of requests.

Rather than working at the application layer, keeping IP as network proto-

col, a different approach is instead supported by innovative designs known under

the name of “Content-Centric Networks” (CCNs), which are recently gaining25

momentum in the research community [8, 3]. These designs propose to unleash

the content-distribution potentials of the Internet by using novel network pro-

tocols. In particular, one of the advantages obtained switching to these designs

is that they can be used to easily provide distributed in-network caching at the

network level: any router can store (and serve) local copies of given data, thus30

making the content be replicated closer to the locations where most of the users

are actually requesting it, without requiring application-layer solutions.

Moved by the desire (and necessity) to understand whether the migration

towards CCN can provide significant benefits to network providers, in this pa-

per we present both theoretical and simulated results that analyze and compare35

the performance of the CCN and CDN architectures. In particular, we focus on

their performance bounds, in order to find out whether CCN or CDN benefit of

a “natural” performance gain accountable to the intrinsic characteristics of the

specific distribution architecture. We consider a scenario where time-varying

content popularity demands are generated by the consumers, in such a way40

that we can assess the network capability to react to the dynamic content pop-

ularity evolution. In order to do so, we formulate novel optimization models to

characterize the performance bounds of the CCN and CDN architectures.

Our key findings suggest that in most of the topologies we considered, when

the content popularity evolves very quickly, CCN minimizes the overall network45

traffic, while CDN should instead be preferred whenever the content popularity

dynamics evolves at a slower pace. Another take-home message of our work, in

line with the results presented in other papers (i.e., [9]), is that it is better to

deploy caching storage on a limited number of nodes rather than distributing

it uniformly throughout the network. All the results that we obtained are50

confirmed by a simulation campaign that we performed on different network

topologies.
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Our main contributions can be summarized as follows:

1. We formulate a novel optimization model to study the performance bounds

of a Content-Centric Network, solving the joint object placement and rout-55

ing problem, under a realistic, time-varying object popularity evolution

scheme and with the most notable cache replacement policies [10].

2. We formulate an optimization model to represent a similar scenario in a

Content-Delivery Network (CDN), where replica servers are distributed

according to the k-median model [11]. We build the CDN model in a way60

such that we can control the speed of reaction of the network to content

popularity changes.

3. We extend the ndnSIM simulator [12] to represent the time-varying object

popularity. We then compare the simulated results and those obtained

with the optimization models under the same parameterization, and for65

different cache replacement policies.

4. We discuss the obtained results, and show that in most of the topologies

considered, CCN should be preferred when the content popularity evolves

more quickly; in the Netrail topology, for instance, CCN reduces the traffic

more consistently than CDN only if this latter is at least 15 times slower70

to react to popularity changes. We also find out, in some topologies like

Géant, that CDN is always to be preferred since it reaches up to 14%

better performance than CCN.

Our model formulations capture the dynamics of the parameters that we

deemed most important for the overall system performance of both a CCN and75

CDN system, in order to make a head-to-head comparison between the two

architectures.

This paper is structured as follows: Sec. 2 describes the CCN and CDN

paradigms and motivates the choices we made to evaluate the content distri-

bution performance of the network. Sec. 3 describes the content popularity80
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evolution model. Sec. 4 illustrates the proposed optimization models used to

study the performance bounds. Numerical results obtained solving these mod-

els are presented and discussed in Sec. 5. In Sec. 6 we discuss related works.

Finally, concluding remarks are presented in Sec. 7.

2. Evaluating Content Distribution Performance85

In this section, we describe relevant characteristics of Content-Centric (Sec. 2.1)

and Content-Delivery Networks (Sec. 2.2) to evaluate and compare their con-

tent distribution performance. Finally, in Sec. 2.3 we illustrate and motivate

the methodology we used to perform such comparison.

2.1. Content-Centric Networks90

We first introduce the features provided by Content-Centric Networks (CCN)

that are relevant for our study. A comprehensive description of CCN can be

found in [8].

In the literature, several network designs such as [13, 14, 15] are presented

as “Information-Centric Networks” (ICNs); however, in this paper we focus our95

attention on the proposal known under the name of “Content-Centric Network-

ing” (CCN) [8], since it is, to the best of our knowledge, the architecture that

has so far received most of the attention from the community.

The communication model proposed by CCN replaces IP host addresses with

content names: rather than stating the location where the data can be found,100

in CCN nodes declare what information they would like to retrieve. CCN has

two distinguished packet types: (1) Interest and (2) Data packets. The former

does not contain the actual data, but it only declares that a node is willing to

access a given object whose name is known.

The structure of a CCN router is characterized by three tables: (1) the105

Pending Interests Table (PIT); (2) the Content Store (CS) and (3) the For-

warding Information Base (FIB).

5



Interest: 

/prefix/obj1

Consumer

1

Producer

1

Face 0

Face 1 Face 2

Face 3

Interest: 

/prefix/obj2

Data: 

/prefix/obj3

CS

Name Prefix Data

/prefix/obj1 1000 bytes

FIB

Name Prefix Faces

/prefix/obj1 3

/prefix/obj2

/prefix/obj3

3

2

PIT

Name Prefix Faces

/prefix/obj3 0

State 1

Producer

2

Consumer

2

Data: 

/prefix/obj1

Consumer

1

Producer

1

Face 0

Face 1 Face 2

Face 3

Data: 

/prefix/obj3

State 2

Producer

2
Consumer

2

Interest: 

/prefix/obj2

Figure 1: Example illustrating the behavior of a CCN router. Two Interests and one Data

packet are received by the router in State 1. Given the information contained in the Pending

Interests Table (PIT), the Content Store (CS) and the Forwarding Information Base (FIB),

in State 2 the router forwards two Data packets and one Interest.

The PIT is responsible for memorizing the list of Interests previously for-

warded, but not yet answered. Interests might arrive from physical hard-

ware interfaces as well as logical applications running on the node itself and110

called “faces”. The PIT stores the faces from which Interests were originally

received, in order to implement reverse path forwarding : as soon as a router

receives a Data packet, it checks the PIT and forwards the packet on the same

faces from which Interests for that object arrived. The CS is the data structure

used to implement universal in-network caching. When an Interest arrives, the115

router initially queries the CS and, in case of a cache hit, it can directly serve

the data. The FIB comes into play when a cache miss happens: it contains the
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Figure 2: Multipath Forwarding and Off-Path Caching. The Figure shows a network where

the content consumer retrieves the object directly from the content producer, or from a cache.

When retrieving the object from the original producer, the flow is routed on the shortest path.

Multipath forwarding functionalities may be used to reduce the link congestion. On the other

hand, off-path caching involves the possibility to forward a packet on a path that is not the

shortest towards the content producer, but is such that an intermediate cache is storing a

copy of the requested content.

next-hop information for prefix names.

An example showing the behavior of a CCN router is depicted in Fig. 1.

In State 1, the router receives two Interests and one Data packet. As shown120

in State 2, the Interest for object /prefix/obj1 is served by the router since

it is available in its CS. The Interest for /prefix/obj2 will be forwarded to

Face 3 since it is the destination available in the FIB. Lastly, the Data packet

for /prefix/obj3 will be forwarded to Face 0, as written in the PIT.

A CCN node may cache only the subset of contents that traversed the node125

at some point in time, moreover it is reasonable to support the idea that CCN

nodes belonging to different autonomous systems will be run by different owners,

a feature that makes in-network caching be fully decentralized.

Native support for multipath packet routing is provided by CCN, according

to which flows may be split over multiple paths, as shown in the example of Fig.130

2. This feature helps mitigating the negative effects of network congestion. On

top of that, we also take into account off-path caching, as illustrated in Fig. 2:

7



on-path caching forces flows to be always forwarded on the shortest path to the

closest producer publishing the requested content; whereas, off-path caching lets

network nodes divert traffic requests on a path where a copy of the content can135

be retrieved from a cache, thus saving the cost to contact the original producer.

2.2. Content-Delivery Networks

A Content-Delivery Network (CDN) is a communication infrastructure com-

posed by a set of machines, known as surrogate (or replica) servers, geographi-

cally distributed in many Points-of-Presence (PoPs), to efficiently serve copies140

of given contents to nearby users [7, 16, 17].

Despite the fact that the CDN infrastructure is massively distributed on a

global scale, all the machines belong to a single owner that runs the network

with the precise aim to sell the distribution services it offers. Therefore, since

the CDN owner controls the whole infrastructure, he is capable to push any145

content he wants to any node, as well as choose which replica server should

satisfy a given content request.

However, at the same time, pushing a content to a given location in the CDN

infrastructure involves a computational and transmission overhead that instead

has no counterpart in the CCN network. Therefore, while it is theoretically150

possible to frequently update the content cached on a CCN node, to perform a

fair comparison, we must take into accurate account the fact that a surrogate

server in a CDN will refresh its content catalog at a much slower rate, as in [18].

We further assume that the CDN owner has already deployed replica servers by

centrally optimizing their placement with standard optimization techniques.155

2.3. Methodology to Evaluate the Content Distribution Capabilities of CCN and

CDN Architectures

In order to compare the performance of these two types of networks, we

have chosen to leverage offline optimization techniques and to further confirm

the results by performing simulation campaigns.160
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The rationale for using optimization techniques is that we want to study the

performance bounds that these architectures can achieve given their intrinsic

architectural features, abstracting out all the implementation-specific details.

This is done in order to find out whether CCN or CDN can have a “natural”

performance gain over the other, accountable to the architectural characteristic165

of the specific content distribution infrastructure. As extensively discussed in

the numerical results section, one of the key findings of our work is that each of

these parameters has indeed an impact on the observed system performance.

The main focus of our study is to evaluate the performance of CCN and

CDN. We assume that the most realistic case is the one where the object pop-170

ularity evolves in time, making the traffic demand profile be expressed as an

input parameter that is time-variant. In our models, time is a discrete quantity

expressed as a finite set of time-slots, denoted with T and such that each t ∈ T

has a fixed duration. Moreover, we performed such evaluation under different

conditions of content popularity evolution (slow/medium/fast evolution speed)175

to represent the burstiness of object traffic demands.

The performance metric that we take into account is the total traffic ex-

changed in the network, which should be minimized. The models then perform

optimal object placement and routing choices for both the CCN and CDN ar-

chitectures.180

We do not take into account cooperative caching [19, 20] for both our models

of a CCN and CDN. As a matter of fact, cache cooperation often introduces

significant communication overhead to let the nodes exchange data regarding

the set of objects they cache. In other words, in our model for the CCN we

assume that each cache behaves autonomously, meaning that they will cache185

only objects that they were caching, or forwarded in the immediate past. On

the other hand, in the CDN model we assume that the network is operated by a

single owner capable to optimally place a content at a given node, without the

need to make caches explicitly cooperate with each other.

We differentiate our model for a CCN with the one for a CDN by making190

three assumptions discussed hereafter and summarized in Table 1, where we
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Table 1: Modeling Assumptions for the CCN and the CDN.

Assumption CCN CDN Ref.

A1: Storage Size

and Placement
Small storage on each router

Large storage on few caches

placed with k-median model

[8, 9]

[21, 20]

A2: Cache

Update Speed
Fast updates are possible

Objects can be updated

only after a delay |Tr | ∈ Z
+

[8, 18]

[20, 22]

A3: Object

Pushing

Pull model: a node can cache

objects it forwarded or stored

in the immediate past

Pull/Push model: any object

can be cached at a node

[8, 20]

[23]

also provide references to other research works where similar assumptions have

been made.

A1: Storage Size and Placement. A given amount of caching storage,

denoted with S, is uniformly distributed on all the caching routers r ∈ R in195

the CCN model. On the other hand, in the CDN model, only CDN nodes have

caching capabilities. We denote with D the set of CDN nodes, whose cardinality

is restricted to be N = |D|, where N ≤ |R|. The same total caching storage is

distributed in the two networks, but, due to their lower cardinality, each CDN

node will usually store more objects than those persisted in a CCN node. CDN200

nodes are pre-allocated optimally using a well-known replica server placement

model. This assumption realistically models a CDN, since its owner will choose

to deploy the machines only in the locations where they are mostly useful.

A2: Cache Update Speed. Another clear design requirement that our

models meet is that there must be a tunable parameter that lets us change the205

speed at which the CDN can adapt to sudden popularity changes. We call this

parameter “Relocation Time” (Tr). In our CDN model, the relocation time is

a subset of consecutive time-slots Tr ⊆ T , and it is used to represent a time

window under which CDN nodes cannot change the objects they persist in their

storage. By setting |Tr| = 1, we are forcing object relocation in CDN to have210

the same dynamics of the popularity evolution model. Since we can say that

CCN can always promptly react to popularity changes, with |Tr| = 1 CDN is

“as reactive as” CCN; instead, when we set |Tr| = 10, for instance, it means
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that CDN is 10 times slower than CCN.

A3: Object Pushing. A relevant feature that our models take into account215

is the fact that a CDN is run by a single owner in a centralized manner: at a

given point in time the owner can choose to send a replica of a given object to

any network node, by pushing it towards that destination, for instance because

it performed popularity forecasting and chose to pre-fetch an object on a given

server.1 The same condition does not apply to the CCN model, where instead220

we restrict the objects that a given router can cache to the subset of those it

forwarded in the past. In the numerical results we explicitly study the cost to

move the objects to the CDN surrogates, and we show that it has negligible

impact on the considered performance metric.

Due to their inner differences, we strongly support the idea that CCN225

and CDN should complement each other rather than being perceived as two

antagonist models. In particular, our numerical results give evidence that CCN

should be preferred whenever the content popularity dynamics evolves very

quickly, while in the other cases CDN leads to the lower overall traffic exchanged

in the network. The relative performance gain depends on the characteristics230

of the specific instance that was taken into account, and is clearly a function of

the set of parameters considered to characterize the network scenario. Finally,

we recognize that the simplicity of CCN should reduce the management costs

with respect to CDN, but such type of analysis is out of the scope of our work.

3. Content Popularity Evolution Model235

This section discusses the content popularity evolution model we used to

generate synthetic traffic demand traces. Many research papers (e.g., [24, 25,

26]) agree in supporting the idea that the content popularity dynamics is highly

non-stationary, and characterized by a bursty and oscillatory behavior, mostly

1CDNs can operate both in Push or Pull mode. Our model formulation considers the best

performance bound for the CDN: we let the model select the best between the Push and Pull

model, and we do not force the network to behave according to one of these operation modes.
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Algorithm 1: Popularity Evolution, Rank-shift Model

Input : rto,O, ρ

Output: rt+1
o

1 for o ∈ O do

2 if UniformRandom(0, 1) ≤ ρ then

3 r′ ⇐ UniformDiscreteRandom(1, rto);

4 for o′ ∈ O do

if r′ ≤ rt
o′

≤ rto then

rt+1
o′

⇐ rt
o′

+ 1;

end

end

rt+1
o ⇐ r′;

end

end

governed by exogenous events. In this subsection we will accurately describe the240

synthetic traffic model, based on the proposal of Ratkiewicz et al. [26], that we

use to generate the input traffic demand mimicking non-linear popularity shifts

for a fixed-size object catalog denoted with O. Despite the fact that content

churn2 may increase the realism, it is a common assumption made in the CDN

and CCN literature to consider a fixed-size content catalog [27, 28].245

Time is discretized into a finite set of time-slots, denoted with T . Each

object o ∈ O has a time-dependent rank parameter rto which describes how likely

that object will be requested during t ∈ T . The lower the rank of an object, the

higher the likelihood that such content will receive requests in that time-slot.

We assume all the time slots t ∈ T last for the same (and constant) amount of250

time and such that the popularity rank of every object in t does not change.

Given the object rank rto, the Zipf discrete distribution is often used in the

literature to represent the popularity of Internet contents, since it was shown

that it is an adequate model for it [9, 28, 29]. The Zipf distribution is charac-

2The churn is a measure of the number of individuals moving in or out a given collective

over a specific period of time.
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Figure 3: The Rank-Shift Model. In this example, at time slot t + 1, the popularity of the

k-th ranked file is updated to the value of q (randomly chosen), thus all the files from q to

k − 1 are shifted of one rank.

terized by the popularity exponent α: the higher the α, the more skewed the255

requests are.

The time-dependent popularity dynamics is governed by the rank evolution

parameter ρ in the 0 to 1 range. At each time slot, the ranking of a given object

might evolve to become more popular in the immediate future. We control the

speed at which this change happens through the usage of ρ: the higher the ρ260

value, the faster the popularity evolves. In the extreme cases, by setting ρ = 0

we neglect popularity evolution, whereas ρ = 1 removes temporal correlation

of the requests. When the rank rto of an object is updated, it makes the other

objects’ rank be shifted to a new (less popular) value.

Algorithm 1 illustrates the pseudocode used to compute the future object265

rank, given its current value. For each object (Step 1), with probability ρ

(Step 2), the algorithm randomly selects a lower popularity class r′ (Step 3),

making the object suddenly become more popular. In Step. 4, the rank of the

other objects is instead shifted to a reduced popularity level, in order to make

sure that the popularity rank will be unique among all the objects. An example270

of object popularity evolution is shown in Fig. 3, where at time slot t + 1, the

popularity of the k-th ranked file is updated to the new value of q, randomly
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(c) ρ = 0.1, α = 0.8

Figure 4: Time-Dependent Object Request Evolution. The figures plot the time-dependent

object request evolution as a function of the Zipf α exponent and the rank evolution proba-

bility ρ, considering 100 time slots and 10 objects. The figures show the evolution of requests

for the objects that in the first time slot have rank 1, 5 and 10, being 1 and 10 the most and

least popular ranks, respectively.

chosen.

As illustrated in Figures 4a-4c, by changing the ρ and α parameters, we can

easily mimic very different behaviors: a range of different content requests can275

be generated with such model, thus allowing us to well represent almost any type

of request generation process. In particular, by decreasing the α value, content

requests are less polarized towards the most popular objects, while higher ρ

values make the content popularity dynamics evolve faster.

4. Network Models for Content Distribution280

This section discusses the proposed optimization models that we use to study

the performance of the CCN and CDN paradigms. Sec. 4.1 presents the Object

Routing model (OR) with time-varying demands. In Sec. 4.2 and Sec. 4.3, we
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Table 2: Summary of the Network Optimization Models we propose in this paper.

Model Name
Caching

Strategy

Time

Horizon

Network

Type
Section

Object Routing (OR) -
Many

Slots
TCP/IP 4.1

Object Allocation and

Routing (OAR)
Optimal

Many

Slots
CCN 4.2

OAR - Single Time Slot

Heuristic (OAR-TS)

Optimal

LFU

Random

Single

Slot
CCN 4.2

OAR - Single Relocation

Time CDN Heuristic

(OAR-TR-CDN)

Optimal
Single

Slot
CDN 4.3

tailor the OR model to better represent relevant characteristics of CCN and

CDN, respectively.285

4.1. Object Routing Model with Time-Varying Demands

In this subsection we describe our proposed Object Routing model (OR) with

time-varying demands. Such model well describes a TCP/IP network that does

not have any caching functionality. In the following subsections we will further

extend the OR model, taking into account the features that characterize CCN290

and CDN architectures. As summarized in Table 2, three extensions of the OR

model will be presented:

1. Object Allocation and Routing (OAR), a model tailored for CCN, that

finds the optimal solution on the overall time horizon;

2. OAR - Single Time Slot Heuristic (OAR-TS), tailored for CCN, which295

chooses the optimal solution for single time slots;

3. OAR - Single Relocation Time CDN Heuristic (OAR-TR-CDN), which is

the equivalent for CDN of OAR-TS.

15



We model the network as an directed graph G(V,A), where V is the set

of nodes and A the set of arcs. The set of nodes V is partitioned into three300

disjoint sub-sets: consumers (denoted by C), producers (denoted by P) and

routers (denoted by R), such that V = C ∪ P ∪R. Furthermore, we denote

with T the set of time slots, whereas O represents the set of objects that can

be retrieved from the network, also known as the catalog. It is important to

mention that, as frequently assumed in the network planning literature, both305

the consumer and producer nodes must be interpreted as test points at which

an aggregate of traffic demands can either be requested or served.

Forward and backward arcs of node i ∈ V are denoted with FS(i) and BS(i),

respectively. We denote with dtoc the demand of consumer c ∈ C for object o ∈ O

at time t ∈ T . The demand is expressed in data size units (e.g., Mbytes); more-310

over, as in the literature [18], we assume that traffic requests are inelastic, mean-

ing that they cannot be postponed to subsequent time slots, but they must be

served within the end of the current time slot. In order to satisfy the demands,

producers can serve the subset of objects they own. For each producer p ∈ P

and object o ∈ O, we denote with aop the producer-object allocation, where:315

a
o
p =











1, if object o is available at producer p

0, otherwise.

(1)

All the routers in the network perform routing and forwarding. We denote

the link capacity of arc e ∈ A with be, while ytoe denotes the time-dependent

flow variable which represents the amount of data that arc e ∈ A is delivering

for object o ∈ O in time slot t ∈ T . For the sake of clarity, Table 3 summarizes

the notation we will use in our optimization models.320

We begin by describing the Object Routing model we use to compute the

optimal packet routing to minimize the overall network traffic. By solving this

model, we determine the performance bound of a network that does not sup-

port any type of caching functionality. In the following sections (viz., Sec. 4.2

and 4.3) we will extend the OR model in order to describe the behavior of a CCN325

and a CDN architecture, respectively. Given the above definitions and assump-
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Table 3: Summary of the notation used in our optimization models

Parameters

G = (V,A) Directed graph G, composed by nodes V and arcs A.

C Set of Consumers test points

P Set of Producers test points

R Set of Routers

O Set of Objects

T Set of Time Slots

D Set of CDN Nodes test points

dtoc
Traffic demand generated by consumer c for object o

in time slot t

be Link capacity of arc e ∈ A

FS(i) Set of forward arcs of node i ∈ V

BS(i) Set of backward arcs of node i ∈ V

ao
p 0-1 parameter to indicate if producer p is publishing object o

S Maximum number of objects that each router can cache

Q A large number

N Maximum number of CDN nodes that can be deployed

m Maximum memory that a CDN node can use for caching

M Total memory shared by all CDN nodes for caching

Decision Variables

xto
r 0-1 variable indicating if router r is caching object o at time t

yto
e Data flow of object o on arc e ∈ A, during time slot t
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tions, we formulate the optimal Object Routing model (OR) with time-varying

demands as follows:

minimize
∑

∀o∈O
∀t∈T
∀e∈A

y
to
e (2)

subject to:

∑

∀e∈FS(r)

y
to
e =

∑

∀e∈BS(r)

y
to
e ∀(r, o, t) ∈ R×O × T (3)

∑

∀o∈O

y
to
e ≤ be ∀e ∈ A× T (4)

∑

∀e∈BS(c)

y
to
e = d

to
c ∀(c, o, t) ∈ C × O × T (5)

y
to
e ≤ be · a

o
p ∀(p, o, t) ∈ P ×O × T , e ∈ FS(p) (6)

y
to
e ≥ 0 ∀(e, o, t) ∈ A×O × T . (7)

The objective function (2) minimizes the total traffic transferred across all

network links.330

The set of constraints (3) imposes the flow balance condition at each router.

Constraints (4), bound the total link capacity that can be used on each arc. The

set of constraints (5) makes sure that the network satisfies, in each time slot,

all consumers’ demand. Producers can only serve the subset of objects they

possess, and this condition is expressed by the set of constraints (6). Lastly,335

constraints (7) impose that router-router, producer-router and router-consumer

flows are non-negative.

As represented in the OR model, the behavior of the network in each time

slot is such that it does not depend on the solution obtained in other time slots.

Therefore, it is possible to speed-up the model resolution by solving the routing340

problem independently in each time slot, and then aggregating the solution to

compute the final objective function value.

4.2. Model for Content-Centric Network

In this section, we present the Object Allocation and Routing (OAR) model,

an extension of the OR model tailored for a CCN.345
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The OAR model extends the OR model adding caching capabilities to the

routers. Given router r ∈ R, object o ∈ O and time slot t ∈ T , the router cache

state is denoted by the binary variable xto
r , which is such that:

x
to
r =











1, if object o is cached at router r at time slot t

0, otherwise.

(8)

In particular, we model a network where the cache is uniformly spread among

all the nodes. Our model solves the joint optimal Object Allocation and Rout-350

ing (OAR) problem, where the consumers express a time-varying demand. We

can therefore formulate the mixed integer linear programming (MILP) model

for OAR as follows:

minimize
∑

∀o∈O
∀t∈T
∀e∈A

y
to
e (9)

subject to constraints (4)-(7), and:

∑

e∈FS(r)

y
to
e ≤ Q · xto

r +
∑

e∈BS(r)

y
to
e ∀(r, o, t) ∈ R×O × T (10)

x
t,o
r ≤ x

t−1,o
r +

∑

∀e∈BS(r)

y
t−1,o
e ∀(r, o, t) ∈ R×O × (T \ {0}) (11)

∑

∀o∈O

x
to
r ≤ S ∀(r, t) ∈ R× T (12)

x
0,o
r = 0 ∀(r, o) ∈ R×O (13)

x
to
r ∈ {0, 1} ∀(r, o, t) ∈ R×O × T . (14)

The objective function (9) is the same as the one proposed for the OR

model. The set of constraints (10) imposes flow-balance at each router, by also355

taking into account its caching capabilities. In particular, Q is a large number

such that, when router r1 is caching object o at time t (that is, xt,o
r1

= 1), r1

can directly serve all the incoming requests for that object3. Link capacity

3We set Q = max
∀o∈O,t∈T

∑

∀c∈C

dtoc , even if it is also possible to use larger values for which the

same final results will be obtained.
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constraints imposed by (4) are still valid in OAR, even when the router behaves

as a cache.360

In CCN, each node acts independently from all the others by choosing which

content it should store according to the local information available. This means

that each node can choose to store a content in its local cache if and only if in

the previous time slot it has forwarded such object, or if it was already caching

such data. This constraint is imposed by (11) on all the caching routers in the365

network.

In (12), we make sure that each caching router stores at most S objects in its

local cache. In (13), we make sure that the caches are empty at the initial time

slot (in a sort of initialization step); finally, the set of constraints (14) forces

the variable xto
r to be binary. It is important to note that the OAR model370

supports multipath packet routing, a native feature provided by CCN, and it

also supports off-path caching. In fact, each router chooses the face on which

packets should be forwarded knowing also the availability of content replicas in

the caching storage of all the other nodes. Supporting off-path caching is in line

with our goal of computing the performance bound of the CCN network.375

Due to the fact that CCN routers can cache only the subset of objects they

have seen in the immediate past, current network behavior strongly influences

possible future choices, making every time slot be linked to all the others, as

modeled by constraints (11). However, finding the optimal solution over the

complete set of time slots is computationally very expensive, since the model380

has to consider all the demands on a global scale. Moreover, this optimization

strategy assumes that the model can perform the optimal choice by knowing

also “future” demands.

As shown by numerical results presented in Sec. 5.1, knowing the future

(as OAR does) seems to provide only negligible improvements to the objective385

function, when compared to the alternative case where the solver knows the

current demands and the previous state of the system. We call this latter model

OAR Single Time Slot Heuristic (OAR-TS). OAR-TS lets us find a close to

optimal solution to OAR, saving significant amount of time for the computation.
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The OAR-TS model is illustrated hereafter:390

minimize
∑

∀o∈O
∀e∈A

y
o
e (15)

subject to:

∑

e∈FS(r)

y
o
e ≤ Q · xo

r +
∑

e∈BS(r)

y
o
e ∀(r1, o) ∈ R×O (16)

∑

∀o∈O

y
o
e ≤ be ∀e ∈ A (17)

∑

∀e∈BS(c)

y
o
e = dc ∀(c, o) ∈ C × O (18)

y
o
e ≤ be · a

o
p ∀(p, o) ∈ P ×O, e ∈ FS(p) (19)

∑

∀o∈O

x
o
r ≤ S ∀r ∈ R (20)

x
o
r ≤ K

o
r ∀(o, r) ∈ O ×R (21)

y
o
e ≥ 0 ∀(e, o) ∈ A×O (22)

x
o
r ∈ {0, 1} ∀(r, o) ∈ R×O. (23)

The objective function (15) as well as constraints (16)-(20) and (22)-(23) can

easily be derived from the corresponding constraints of the OAR formulation,

by removing the time-slot index.

We model time-slots relations in constraints (21), where in each time slot t ∈ T

we use the binary parameter Ko
r to impose restrictions on the subset of objects395

that a given router r ∈ R can cache. In particular, we emulate the original

behavior studied in the OAR formulation by setting Ko
r = 0 for the initial

slot t = 1, whereas for the other time slots t > 1, we set Ko
r = 1 if, in t− 1,

xo
r = 1 ∨

∑

∀e∈BS(r)

yoe > 1, otherwise we setKo
r = 0. Such condition checks whether

in the previous time slot the router was already caching object o, or it forwarded400

at least one traffic unit for it.

By using other strategies to set the Ko
r parameter we can find tighter perfor-

mance bounds for real caching policies ; in particular we can emulate the “Least

Frequently Used” (LFU) policy, forcing caches to store the objects that are re-
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quested more frequently, as well as the “Random” caching policy, making caches405

store the objects randomly [30].

More in depth, we emulate the LFU policy by computing Ωro
t , the cumula-

tive traffic that router r ∈ R has forwarded for a given object o ∈ O up to time

slot t ∈ T , which is defined as: Ωro
t = Ωro

t−1 +
∑

e∈FS(r)

yoe . For each router, we

sort the Ωro
t values in decreasing order; we then remove all those values referred410

to objects o ∈ O that the router has not seen in the previous time slot t− 1, i.e.

all those objects such that the condition xo
r = 1 ∨

∑

∀e∈BS(r)

yoe > 1 does not hold.

Let Ωr
St be the S-th element of such sorted list. We set Ko

r = 1 if Ωro
t ≥ Ωr

St,

otherwise it is set to zero. As a result, in t+ 1 the S most frequently requested

objects are stored in the cache of the r-th router, according to its local cumu-415

lative traffic data.

The random cache policy can be implemented using even an easier algorithm:

we randomly sample S objects such that for each of them, o ∈ O, the following

condition holds: xo
r = 1 ∨

∑

∀e∈BS(r)

yoe > 1.

Computing instead a better optimization model for the LRU policy is quite420

involving: since we aggregate all the traffic in the entire time slot we lose in-

formation on the sequence of requests received by the routers, and for such

motivation we do not attempt to model this caching policy, which is instead

studied in our simulation analysis.

4.3. Model for Content-Delivery Network425

In this section, we illustrate the model used to find the performance bound of

a CDN architecture. Since we are mostly interested in studying the performance

of the network after the physical deployment of the nodes, we assume that the

replica server placement problem has already been solved a-priori. As discussed

in the related work section (6.1), many proposals to solve the placement problem430

have already been formulated in the literature, and among all of them we use

the k-median model [11] since it is a simple strategy that only depends on the

nodes distribution in the network.
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Routers

Consumers

Producers

CDN Nodes

Legend

Figure 5: K-median model. Example illustrating the placement of 5 CDN replica servers

according to the solution of the k-median model, in the Géant network topology, with uniform

distribution of 50 consumers and 5 producers.

An example showing how the k-median model distributes the CDN nodes

in the Géant network topology [31] is shown in Fig. 5. In such example, 50435

consumers and 5 producers are spread uniformly in the network that is composed

of 40 routers, while the k-median solution distributes 5 CDN nodes placing them

in positions close to the consumers’ locations.

Once that we have found the optimal CDN replica server allocation, we can

then solve the joint object placement and request routing problem, as we did in440

the previous section with the OAR and the OAR-TS model. Two important

features that our optimization model takes into account are:

(1) Each CDN node can cache whatever content available. In fact, the CDN

owner can optimize such allocation pushing any content on any replica

server.445

(2) Since this content migration is quite costly, the objects stored in a CDN

node evolve with slower frequency than the one that we can get for CCN.

It is straightforward to address requirement (1), since we can simply relax a
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constraint in the OAR-TS model formulation. On the other hand, in order to

enforce requirement (2), we introduce another concept that we call “Relocation450

Time”, Tr. The relocation time is a subset of consecutive time-slots Tr ⊆ T

during which the content cached in each CDN node is “frozen” and cannot be

changed.

The set of CDN nodes is denoted with D. We then formulate the Optimal Al-

location and Routing, Single Relocation Time Heuristic model for CDN (OAR-TR-CDN)455

as follows:

minimize
∑

∀o∈O
∀e∈A

y
o
e (24)

subject to:

∑

∀e∈FS(r)

y
o
e =

∑

∀e∈BS(r)

y
o
e ∀(r, o) ∈ R×O (25)

∑

∀o∈O

y
o
e ≤ be · |Tr| ∀e ∈ A (26)

∑

∀e∈BS(c)

y
o
e =

∑

∀t∈Tr

d
to
c ∀(c, o) ∈ C × O (27)

y
o
e ≤ a

o
p · be · |Tr| ∀(p, o) ∈ P ×O, e ∈ FS(p) (28)

∑

∀o∈O

x
o
d ≤ S

′ ∀d ∈ D (29)

y
o
e ≤ be · |Tr| · x

o
d ∀(d, o) ∈ D ×O, e ∈ FS(d) (30)

y
o
e ≥ 0 ∀(e, o) ∈ A×O (31)

x
o
r ∈ {0, 1} ∀(r, o) ∈ R×O. (32)

The OAR-TR-CDN objective function (24) is similar to the one proposed

for the other models, since we want to minimize the overall network traffic.

In (25) we set the flow balance constraints, while in (26) we set the capacity

constraints. The overall consumer demand should be satisfied, as enforced by460

constraints (27), where we aggregate consumers’ demands on all the time-slots

in the relocation time t ∈ Tr. In (28) we force producers to offer the subset of

objects they own.
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The set of constraints (29) limits the available caching space at each CDN

router, while in (30) we limit the subset of objects that a CDN node can serve465

to those that it is caching. Finally, non-negativity constraints for flow variables

are imposed in (31), while in (32), we make sure that the xo
r variable is binary.

The relocation time is a subset of consecutive time slots, and is used in

the OAR-TR-CDN model to aggregate the entire demand in one virtual slot.

For this reason in constraints (26), (28) and (30) we multiply the capacity by |Tr|,470

a non-dimensional quantity that is the number of time-slots considered in the

given relocation time. Such choice permits to reduce the computational time

required to solve the optimization problem.

Comments

The OAR-TS and OAR-TR-CDN models capture relevant characteristics of475

the CCN and CDN architectures, respectively. In particular, while in OAR-TS

all the routers are equipped with caching storage, in OAR-TR-CDN only the

subset of CDN nodes implement caching functionalities. Moreover, OAR-TS

sets a constraint on the objects that each router can cache, restricting such

subset to all the data that the router has forwarded in the previous time slot.480

On the other hand, CDN nodes can cache whatever content they want, and

we use the relocation time to control the speed at which the CDN reacts to

popularity evolution. Furthermore, our analysis focuses on the performance

bounds of CCN and CDN: in particular, we are not considering management

cost savings that the CCN architecture can obtain with respect to CDN.485

Our proposed OAR-TR-CDN model can further be extended to explicitly

take into account the cost for object migration. For the sake of simplicity, we

focus on the scenario where CDN nodes retrieve the objects from the closest

producer publishing them, even though this condition can easily be relaxed.

Hereafter we report the extended version of such optimization model, while490

in the numerical results section we show that the cost impact of this object

movement is negligible.

Let zod,e be an input parameter that represents the amount of data that
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should be sent through network links if CDN node d retrieves object o from the

closest producer publishing such object. Let xt−1,o
d be a 0-1 input parameter that

represents the state of the cache for the CDN nodes in the previous relocation

time t− 1, and let δod be a variable that is set to 1 if object o should be moved

to the cache of CDN node d in the current time slot. To take into account

object movement costs in the CDN model formulation, we replace the objective

function (24) with the one provided below:

minimize
∑

∀o∈O
e∈A

y
o
e +

∑

∀o∈O
∀d∈D
∀e∈A

δ
o
dz

o
d,e. (33)

We add the following set of constraints:

δ
o
d ≥ x

o
d − x

t−1,o
d ∀(d, o) ∈ D ×O (34)

δ
o
d ∈ R

+ ∀(d, o) ∈ D ×O. (35)

We replace constraints (26) with those provided below:

∑

∀o∈O

(

y
o
e +

∑

∀d∈D

δ
o
d z

o
d,e

)

≤ be · |Tr| ∀e ∈ A. (36)

In particular, with these modifications our formulation optimizes the CDN ob-

ject placement taking into account the cost to move the object to the given

CDN node.495

5. Numerical Results

This section presents the results obtained formulating the proposed opti-

mization models in OPL and solving them using the CPLEX solver (version

12.6.1) [32], and running on an Intel i7-3770 CPU @ 3.40GHz with 16 GB of

RAM.500

In Sec. 5.1 we compare the objective function obtained using OAR with

the heuristic OAR-TS solution. Sec. 5.2 extensively presents and discusses the

numerical results we recorded while comparing the performance bounds of CCN

and CDN. The results concerning the computation time spent to find the optimal

solution in the different formulations are illustrated in Sec. 5.3. In Sec. 5.4 we505
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study the effect of the approximations we adopted, whereas in Sec. 5.5 we present

the results concerning the impact of each of the characterizing assumptions we

made to differentiate CCN with respect to CDN. Finally, the results obtained

in the simulations are discussed in Sec. 5.6.

5.1. Comparison of OAR and OAR-TS510

In this subsection we compare the results obtained using OAR and OAR-TS

and show that, in the considered scenarios, the bounds of the two models are

very close to each other, even though OAR is computationally more demanding

than OAR-TS. Unless stated otherwise, Table 4 summarizes the parameters

used to perform the analysis.515

The topology we consider for this analysis is the Netrail topology with 107

objects partitioned into 100 popularity classes (as in [33]). We compute the

optimal solution considering 100 time slots, while we attach consumers and

producers to 10 and 5 test points, respectively. We run the OAR model limiting

the overall running time to 10 hours and observing a final MIP gap always below520

2% of the optimum solution. Traffic demands are generated setting α = 0.8, ρ =

0.2. For the same scenario, CPLEX can always find the optimal solution of the

OAR-TS model in less than ten minutes for the whole time horizon.

As portrayed in Fig. 6, the OAR and OAR-TS curves are practically overlap-

ping, in fact the gap between the two is always below 1%. This behavior clearly525

shows that knowing future demands (as OAR does) can lead only to negligible

improvements in the objective function, and therefore it legitimates the use of

our proposed OAR-TS heuristic to derive a close to optimal solution.

Due to the very high memory usage required by CPLEX to solve OAR,

unfortunately we could not take into account larger topologies to compare it530

with OAR-TS. Thanks to its modest size, Netrail is the only topology on which

we can perform one such analysis. However, the very narrow approximation

introduced by OAR-TS with respect to OAR is a promising result that confirms

that knowing future traffic requests may only slightly improve the final solution,

and is therefore negligible.535
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Table 4: Parameters of the Numerical Results

Numerical Results: Common Parameters

Topologies

Netrail (7 nodes), Abilene (11 nodes)

Sprint (11 nodes), Claranet (15 nodes)

Airtel (16 nodes), Géant (40 nodes)

Number of Consumers 10 000, connected at 10 test-points

Number of Producers 5 000, connected at 5 test-points

Zipf α Exponent {0.8, 1.2}

Content Popularity Evolution ρ In the range from 10−4 to 0.99

Link Rate 50 000 objects per time slot

Consumer Demand 10 objects per time slot, per consumer

Cache Size per Router In the range 1-5% of the total catalog

Catalog Size 107 objects - 100 popularity classes

Numerical Results: Optimization Models

Number of Time Slots 100

CDN Relocation Time In the range 1-15, default value: 3

Number of CDN nodes In the range 1-10, default value: 3

Numerical Results: Simulations

Cache Replacement Policies
Random (RND), Least frequently used

(LFU), Least recently used (LRU)

Time Slot Size 1 second

Trace Length 1 hour
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Figure 6: Comparison of OAR and OAR-TS. We solve the Netrail topology with a catalog of

100 object classes and 100 time slots, with α = 0.8, ρ = 0.2. The gap between the solution of

OAR and OAR-TS is negligible (less than 1%).

5.2. Performance Comparison of CCN and CDN Using Optimization Models

In this section we present the results obtained performing an evaluation

of the optimization models we designed. As shown in Table 4, we considered

6 different network topologies whose size is in line with [10, 30, 34, 35]. We

provide the full set of plots and the code used to generate the numerical results540

at [36], while, for the sake of brevity, hereafter we present the results obtained

with Netrail and Géant, since the trends observed for the other topologies are

in between the values observed for them.

As shown in Table 4, in all the scenarios we consider 10 000 consumers and

5 000 producers connected respectively to 10 and 5 test points spread uniformly545

in the network, in line with [35] where the authors consider 5 test points for

the producers. The content catalog we take into account is composed of 107

objects partitioned into 100 popularity classes, where the average object size is

1 Mbyte, as done in [27, 37, 33]. Each consumer requests 10 objects in each time

slot, in agreement with [38]. Object requests are distributed according to the550

rank-shift model discussed in Sec. 3, and we consider the ρ exponent in the 10−4

to 0.99 range, while the alpha exponent of the Zipf distribution can either be

α = 0.8 or α = 1.2, as done in [39] and in line with [9, 10]. We consider different
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(a) Netrail Cache Size, α = 0.8, ρ = 0.01
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(b) Netrail Cache Size, α = 1.2, ρ = 0.01
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(c) Netrail Cache Size, α = 1.2, ρ = 10−4

No−Cache

CCN−Random

CCN−LFU

CCN−Optimal

CDN−Optimal

(d) Legend

Figure 7: Netrail Topology, Effect of the Cache Size. Figures 7a-7c show the effect of the

cache size in the Netrail topology, for different values of the Zipf α exponent, as well as the

popularity evolution probability ρ. The legend of Fig. 7d is common to all the plots in Fig. 7-9.

cache sizes, such that they can store from 1 to 5% of the total number of objects

available, as considered in other studies (e.g., [9, 27]). The number of test points555

for the CDN nodes we deploy is up to 10, whereas we consider a relocation time

between 1 and 15, meaning that in our analysis the CDN might be “as fast as” a

CCN or up to 15 times slower than that. If not stated otherwise, 3 CDN nodes

will be deployed and they will have a relocation time equal to 3. We believe

that these values can be used to perform a fair comparison of CCN and CDN:560

by deploying such a small number of CDN nodes we do not bias the analysis

in favor of this latter architecture. The performance metric we consider is the

total network traffic, since it is the objective function we take into account for

the optimization models.

The behavior of the Netrail topology as a function of the cache size is shown565

in Fig. 7a (for α = 0.8, ρ = 0.01), Fig. 7b (for α = 1.2, ρ = 0.01) and Fig. 7c (for

α = 1.2, ρ = 10−4). Considering the No-Cache curves for different combinations
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(a) Géant Cache Size, α = 0.8, ρ = 0.01
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(b) Géant Cache Size, α = 1.2, ρ = 0.01
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(c) Géant Cache Size, α = 1.2, ρ = 10−4
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(d) Géant CDN Nodes, α = 1.2, ρ = 0.01

Figure 8: Géant Topology, Effect of the Cache Size. Figures 8a-8c show the effect of the

cache size in the Géant topology, for different values of the Zipf α exponent, as well as the

popularity evolution probability ρ. Figure 8d shows the effect of the number of CDN nodes

in Géant.

of α and ρ values (as in Fig. 7a-7c), we observe that a network that does not

have caching functionalities leads to the same overall traffic (about 3.34 Tbytes

for Netrail), even for different popularity evolution parameters. By introducing570

caching functionalities, the total network traffic can be reduced significantly: in

the Netrail topology, caching reduces traffic up to 46% (Fig. 7c, CDN-Optimal

caching policy, 5% cache size), while in the Géant topology, traffic savings can

reach 66% (Fig. 8c, CDN-Optimal caching policy, 5% cache size).

An interesting observation on the random caching policy is that it leads to a575

total traffic that is rather independent with respect to the popularity evolution

parameters α and ρ: the total traffic for CCN-Random is on average 8% lower

than for No-Cache. On the contrary, the LFU caching policy is very sensitive to

the value of ρ: the lower the speed at which the popularity evolves, the better

the objective function is, as shown in Fig. 7b and 7c. In particular, while in580
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(b) Netrail Evolution Probability, α = 1.2
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(c) Géant Relocation Time, α = 1.2, ρ = 0.01
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(d) Géant Evolution Probability, α = 1.2

Figure 9: Effect of the Relocation Time, Effect of the Evolution Probability. Figures 9a and

9c show the effect of the relocation time in Netrail and Géant topologies, respectively. The

effect of the evolution probability on the overall traffic is instead shown in Figures 9b and 9d

in Netrail and Géant, respectively.

Fig. 7b LFU scores on average 25% traffic reduction compared to No-Cache,

in Fig. 7c the same performance gain raises to 35%.

The topology size has a strong impact on the results, in particular, caching is

more beneficial in larger topologies. In fact, if we compare the No-Cache curves

of Fig. 7a and 8a, we observe 38% more traffic in Géant than Netrail. However,585

if we assume that caching functionalities are deployed in the network, as in the

CDN-Optimal case, Géant requires on average only 5% more traffic than Netrail

when α = 0.8, and less than 8% more, when α = 1.2 as in Fig. 7a,8a and 7b,8b.

Another remarkable result regards the efficiency of the different distribution

architectures for different topologies. As a matter of fact, while in the small Ne-590

trail topology CCN and CDN almost exhibit the same performance, in Géant

there is a large gap between the two solutions: on average, CDN reduces the

total network traffic 14% more than what CCN does, leading to an overall 51%
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performance gain (on average), with respect to the total traffic transmitted in

the No-Cache scenario, when α = 0.8. This behavior is caused by the fact that595

the optimal solution of the CCN network tends to scatter many copies of the

same popular objects in all the caching nodes, whereas cache duplication is sig-

nificantly reduced by aggregating the storage on few CDN surrogates occupying

central locations in the network topology (k-median positioning). This key find-

ing is even more evident in Fig. 8d, where we observe that few CDN nodes in600

the Géant topology (only 3 in the considered scenario) are sufficient to make

CDN reach better performance values than those obtained with CCN.

The sensitivity of the objective function to the relocation time |Tr| is depicted

in Fig. 9a and 9c, for the Netrail and Géant topology, respectively. In both cases

we deploy 3 CDN nodes. In the Netrail topology (Fig. 9a), even if we assume605

that CDN nodes are 10 times slower to react to popularity changes than the

CCN counterpart, CDN still shows better performance. On the other hand, for

the Géant topology (Fig. 9c), CDN always leads to better performance from

|Tr| = 1, up to |Tr| = 15.

Also the ρ parameter that drives the speed of the content popularity evolu-610

tion affects the objective function, as depicted in Fig. 9b for Netrail and Fig. 9d

for Géant. The LFU policy is the one that is subject to the largest variation:

by increasing the ρ value we reduce the locality of reference of the requests, and

this, in turn, penalizes the LFU strategy. It is very interesting to note that in

the Netrail topology, when ρ < 0.01 CDN is to be preferred, whereas for larger615

ρ values, CCN leads to the best performance value.

As portrayed in the many plots and discussed throughout this section, we

can not claim that either one of the CCN and CDN architectures should al-

ways be preferred over the other for its intrinsic superior performance. On the

other hand, the value of the objective function strongly depends on the set of620

parameters used to characterize the specific network scenario.
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Table 5: Summary of the Average Execution Time.

Topology CCN Nocache CCN OPT CDN

Abilene 18 256± 180 ms. 418 153± 21 441 ms. 57 739± 3 416 ms.

Airtel 50 122± 1 034 ms. 306 532± 15 301 ms. 49 291± 2 874 ms.

Claranet 21 528± 652 ms. 282 151± 13 743 ms. 58 129± 3 427 ms.

Géant 85 475± 24 ms. 2 477 916± 179 243 ms. 296 054± 22 670 ms.

Netrail 11 226± 189 ms. 86 394± 8 119 ms. 26 217± 1 626 ms.

Sprint 15 098± 42 ms. 228 975± 9 762 ms. 48 433± 2 847 ms.

5.3. Computation Time Results

Previous works such as [40, 30] have shown that the optimal content place-

ment problem is NP-Hard.

In Table 5 we summarize the average execution time (in milliseconds) we625

observed while finding the solutions of the numerical results. In particular

we observe that content caching dramatically increases the model’s complexity

(i.e.: the time necessary to solve CCN Nocache is significantly lower than the

one required for CCN OPT and CDN). Moreover, the CDN formulation requires

less time than CCN because the presence of the relocation time lets us aggregate630

the number of time slots, reducing the overall number of iterations required to

find the optimal solution compared to CCN.

Finally, we would like to point out that this work focuses on the analysis of

the network performance, rather than finding efficient algorithms to solve this

problem. As a matter of fact, we do not have any special time constraint that635

prevented us to perform one such analysis using offline optimization techniques.

5.4. Impact of Approximations

In the previous sections we solved our proposed optimization models assum-

ing that the content catalog was composed of 107 different objects partitioned

into 100 popularity classes; moreover, while considering the CDN, we did not640

take into account the extra-cost to move the objects to the CDN surrogates. In

this section we evaluate the effect of both these approximations.
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Table 6: Impact of Approximations

Effect of Object Quantization - Géant |D| = 1, α = 0.8

Number of Objects Number of Object Classes Average Error

105 100 2.6%

106 100 4.0%

107 100 4.3%

Effect of CDN Object Movement

Scenario Traffic to Move Objects to the CDN

Netrail ρ = 0.99, α = 0.8 < 0.001%

Géant ρ = 10−4, α = 0.8 < 0.001%

Géant ρ = 0.99, α = 0.8 < 0.02%

Despite the fact that in other notable works rather small content catalogs

have been considered even in simulations (e.g.: [21, 41] consider 1000 objects,

whereas [18] 2 orders of magnitude less contents), in this work we attempt to645

keep the number of objects we consider to a reasonable value. By considering

object classes rather than single objects, we can make our optimization models

scale to real-size content catalogs, as done in other works such as [33], even

though this introduces a quantization error since the optimal object placement

is performed with respect to the entire class, rather than the single objects650

themselves. To numerically quantify the impact of this quantization error, we

solved a relaxed version of our proposed OAR-TR-CDN model. Assuming that

links have an unbounded capacity we can find the optimal solution for a non-

quantized catalog comprising up to 107 objects, and we compare such solution

aggregating the contents into 100 popularity classes. On the other hand, to655

evaluate the impact of pushing the cached content to the CDN surrogates, we

evaluate ex-post the cost to perform such migration. Table 6 provides a brief

summary of the obtained results. The average error introduced for object quan-

tization is always below 5%, whereas the effect of moving objects to the CDN

nodes is negligible and always below 0.02%. For the scope of this paper, we660
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can easily ignore both these effects since they do not compromise the results we

discussed in the previous sections.

5.5. Effect of Model Assumptions

In order to get a deeper understanding of the effect of the model assumptions

we made in Sec. 2.3 to differentiate CCN with respect to CDN, in this section665

we study their impact on each of the considered topologies.

To perform such analysis, we consider three “hybrid” formulations (omitted

here for the sake of brevity) based on our OAR-TS model for the CCN. Each of

these hybrid formulations permits to study the effect of one of the characterizing

assumptions, as detailed hereafter:670

• A1: Storage Size and Placement Assumption. In this analysis we

keep all the assumptions made for the CCN, but we restrict the number

of caching nodes to 3, and we place them using the k-median model (as

done for the CDN). We keep the same amount of overall storage, but we

distribute it on fewer nodes.675

• A2: Delay Assumption. We consider the CCN network and let each

node change the set of cached objects once every 3 time slots, as if we

were considering a relocation time of |Tr| = 3.

• A3: Content Push Assumption. We consider the CCN network and

relax constraint (21), which forces each node to cache the subset of objects680

it was caching or that it forwarded in the previous time slot.

In Table 7 we show the average impact of the model assumptions comparing

the base CCN model with respect to these hybrid formulations.

First of all, we observe that by using localized caches with larger storage (as

in A1: Storage Size and Placement Assumption) we obtain in every topology a685

performance gain, compared to the base CCN model. In particular, the Géant

topology is the one that benefits more from this assumption. As expected, by

introducing a delay (as in A2: Delay Assumption), the value of the objective
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Table 7: Effects of the Model Assumptions.

Topology
A1: Storage Size and

Placement Assumption

A2: Delay

Assumption

A3: Content Push

Assumption

Abilene 1.05% Avg. Gain 8.62% Avg. Loss 0.81% Avg. Gain

Airtel 4.00% Avg. Gain 8.76% Avg. Loss 4.78% Avg. Gain

Claranet 6.41% Avg. Gain 8.43% Avg. Loss 3.48% Avg. Gain

Géant 15.41% Avg. Gain 4.44% Avg. Loss 6.01% Avg. Gain

Netrail 3.94% Avg. Gain 6.76% Avg. Loss 0.82% Avg. Gain

Sprint 3.86% Avg. Gain 7.38% Avg. Loss 1.41% Avg. Gain

function is penalized since caches cannot quickly react to content popularity

changes. Finally, in A3: Content Push Assumption we observe that only minor690

benefits are experienced when letting nodes cache any content in the catalog,

rather than forcing them to store the contents they processed in the immediate

past.

5.6. Simulations Numerical Results

In this section, we present the methodology and the numerical results we695

obtained performing simulation campaigns to further complement our analysis.

To this purpose, we extended the ndnSIM simulator [12] in order to accu-

rately capture the behavior of a CCN architecture under the rank-shift model

discussed in Sec. 3. Compared to the analysis carried out using optimization

models, simulations let us study real traffic performance values, rather than700

their theoretical bounds. In addition to that, through the usage of simulations

we can assess the performance of the Least Recently Used (LRU) cache pol-

icy that otherwise would be neglected in our analysis. To ensure consistency

between the results generated for the optimization models, and those obtained

through simulations, we forced the consumers to generate a constant rate traffic705

of 10 Mbytes/s, in line with what we did in Sec. 5.2.

Table 4 summarizes the simulation parameters used to perform our analy-

sis. In particular, whenever possible, we used the same values adopted in the
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(a) Netrail, α = 0.8
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(b) Netrail, α = 1.2
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(c) Géant, α = 0.8
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(d) Géant, α = 1.2
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(e) Legend

Figure 10: Simulation Results. Simulated average traffic, in a 5 minute interval, as a function

of the popularity evolution parameter, under different topologies and α values. The legend

10e is common for all the plots.

optimization models, so that we can compare the results obtained with both

methodologies.710

We generate traffic traces of 1 hour. In order to eliminate any transient

behavior, we remove the first 10 minutes from the traces, then we aggregate the

traffic in intervals of 5 minutes each, and plot the average traffic value for all of

them.

Figures 10a and 10b refer to the Netrail topology, whereas corresponding715

results for the Géant topology are depicted in Fig. 10c and 10d, respectively.

First of all, the simulations confirm the same trends for the caching policies

presented in the previous section. The total traffic for Géant reaches higher
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values than that obtained for Netrail. This behavior is due to the fact that

the Géant network has a larger network diameter than Netrail, which raises the720

value of the traffic metric.

Simulations further confirm that the popularity evolution parameter (ρ) does

not have any impact on a network that is not implementing caching functional-

ities, as shown by the No-Cache curves. We also observe that by using higher

Zipf α exponents, caching can further lower the total traffic exchanged in the725

network, since content requests will be mostly concentrated on a small subset

of the available objects that will likely be replicated in the distributed caches.

An interesting finding (in line with the results presented in [34]), is that

different cache replacement policies do not lead to significantly distant perfor-

mance results, especially with smaller values for the α exponent, (as shown in730

Fig. 10a and 10b). In addition to that, we also observe that the Least Fre-

quently Used (LFU) policy performs usually better than the others, saving up

to 5 · 107 Mbit/s more than the Random caching policy, when α = 1.2.

6. Related Work

This section provides a survey on Content-Centric and Content-Delivery735

Networks (Sec. 6.1), as well as on content popularity evolution models (Sec. 6.2).

6.1. Performance Analysis of Content-Centric and Content-Delivery Networks

Hereafter we review the most notable research works on CCN and CDN ar-

chitectures, specifically focusing on the performance analysis of these networks.

Fayazbakhsh et al. study in [9] the performance of a Content-Centric Net-740

work specifically comparing the improvements achievable with an edge-based

caching with respect to a full-fledged CCN. In particular, they show that most

of the performance benefits can be gained by deploying caching storage only on

the edge nodes, whereas by distributing the memory also on the other nodes they

can achieve a limited 4% performance gain. A similar question is investigated745

in [21], where pervasive caching and opportunistic edge caching are compared
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under a traffic model that considers both the temporal and spatial locality of

requests.

Thorough simulation campaigns are presented in [34], where Rossini and Rossi

study the performance of CCN focusing on forwarding strategies and caching750

policies. They show that limited benefits can be achieved by adopting complex

caching policies: randomized caching decisions can perform as well as more com-

plex ones, while significantly reducing the computational overhead that they in-

troduce. Moreover, they also show that multi-path forwarding capabilities may

play against the network efficiency.755

Significant effort has been devoted to the performance analysis of different

caching schemes. Without pretending to be exhaustive, Berger et al. study

in [41] TTL cache networks, and provide analytical methods to characterize

the performance of these systems. Abedini and Shakkottai consider in [18]

the wireless scenario, with elastic and inelastic traffic requests. Finally, a very760

promising research path is the one that considers virtualized storage resources

as in [42], where a cloud-based content delivery system is taken into account.

One of the scenarios where CCN can potentially boost the network perfor-

mance is video distribution [35, 43, 44]. Due to the relatively small content

catalog, large file sizes and the static nature of content (especially when com-765

pared to web pages), video distribution should take advantage of in-network

caching capabilities of CCN, moving the content closer to the locations where

most of the users are actually requesting it.

In order to satisfy video demands, nowadays other technological infrastruc-

tures known as Content-Delivery Networks (CDNs), built as overlays on top770

of TCP/IP, are exploited to serve this precise scope.

Adhikari et al. study in [45] the Netflix video streaming platform, by an-

alyzing the video delivery performance in a scenario where many CDNs are

used for video streaming purposes. In [46], Mansy and Ammar focus on a sce-

nario where the CDN cooperates with P2P to serve adaptive video streaming775

requests. The authors show that such a hybrid scenario has interesting per-

formance properties that can potentially reduce the costs paid by the content
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provider. Liu et al. have measured in [38] the performance of video distribu-

tion when clients leverage the CDN infrastructure to retrieve video content. In

order to further improve the users’ quality of experience, the authors suggest780

to adopt a control plane that automatically selects the best bit-rate and CDN

server according to the network state.

In terms of performance optimization, three classic problems have to be

solved in a CDN:

1. Server Placement : choose the locations where to place the CDN servers.785

2. Replica Object Placement : choose the locations and the number of object

replicas by distributing them on the available servers.

3. Surrogate Server Selection: route object requests by selecting a replica

server storing a copy of the given object.

Without pretending to be exhaustive, hereafter we mention relevant works790

addressing each of the above-mentioned problems. In particular, the center place-

ment problem is used to solve both server placement as well as the replica object

placement, by modeling the problem as a graph where a given distance metric

should be minimized [11, 47]. The size of the problem, which becomes even

larger when studying object placement, forces to formulate heuristic algorithms795

that find sub-optimal solutions, such as those presented in [48, 49].

Finally, in [50], surrogate server selection strategies used by YouTube are

evaluated in order to understand which parameters may influence the CDN

server selection process.

6.2. Content Popularity Models800

In this section we review relevant works regarding content popularity evolu-

tion in the Internet. Due to its worldwide success, many research works have

studied the popularity evolution of video contents [51, 37, 24].

In [51], Cha et al. have studiedVideo-on-Demand (VoD) systems for User Gen-

erated Content (UGC). The authors provide evidences that the popularity of UGC805
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is ephemeral, and traditional content popularity prediction techniques are in-

effective. In fact, while TV-broadcasters deliver the same content to all their

users at the same time, VoD services, instead, let each customer choose which

video she is going to watch.

Dán and Carlsson in [37], and Cha et al. in [51] observe that an exponential810

cutoff term should be added to a power-law model to better represent the content

popularity. In [24], Figueiredo et al. provide evidences that the popularity

evolution of a given UGC video depends also on the type of content it represents.

In particular, copyright-protected materials tend to get most of their views very

early in the lifetime, and sudden burst of popularity are very common among815

top-list videos.

Despite being very interesting, all the works reviewed so far cannot be easily

used to generate synthetic workloads ; instead, two models to produce synthetic

traces have been presented in [25, 26]. Borghol et al. present in [25] a model

that can be used to generate such synthetic workload to represent the popularity820

evolution of UGC. Their model splits the lifetime of a content in three stages:

before, at or after the age at which the content reaches its peak popularity. The

main shortcoming of this model is that it requires several parameters to be used

in practice:

1. the content popularity distribution for each stage of the lifetime; 2. the825

content movement process across the different stages and 3. the consumer view

rate distributions for contents belonging to each group.

Another model, that we adopted in this paper to generate realistic work-

loads in the presence of bursty popularity evolution, has been presented by

Ratkiewicz et al. in [26], and has been extensively discussed in Sec. 3. Despite830

the fact that it models the popularity evolution with only one parameter, this

proposal has many strengths: it is accurate (as shown by the authors them-

selves [26]) and, at the same time, simple.
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7. Conclusion

In this paper we compared CCN and CDN by formulating novel optimization835

models to analyze the performance bounds of these network architectures, con-

sidering time-varying demands to represent content popularity evolution. The

proposed models are such that the relevant characteristics of CCN and CDN

are explicitly taken into account.

Our numerical results suggest that the performance bounds for CDN archi-840

tectures are better in terms of network traffic than observed for CCN, even when

few CDN replica servers are deployed in the network. In our considered scenar-

ios, we observed that in the Netrail topology CCN can reach a better value for

the objective function compared to CDN only if this latter is at least 15 times

slower to react to popularity changes. On the other hand, while considering the845

larger Géant topology, we observed that CDN is always to be preferred since it

reaches up to 14% better performance than CCN.

Our analysis is in line with the results presented in [9]: spreading the caching

storage uniformly in the network does not necessarily lead to better performance

than that obtained by concentrating it on fewer nodes. In other words, in terms850

of the overall network traffic CCN does not necessarily perform better than

CDN. Our view is that rather than being two antagonist models, CCN and

CDN should complement each other; in particular CCN is a very promising

architecture to reduce the management overhead that the network introduces,

whereas CDN is to be preferred if the main goal is to achieve the highest per-855

formance gains.
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