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Abstract

Content Delivery Networks (CDNs) have been identified as one of the rel-

evant use cases where the emerging paradigm of Network Functions Virtual-

ization (NFV) will likely be beneficial. In fact, virtualization fosters flexibility,

since on-demand resource allocation of virtual CDN nodes can accommodate

sudden traffic demand changes. However, there are cases where physical ap-

pliances should still be preferred, therefore we envision a mixed architecture in

between these two solutions, capable to exploit the advantages of both of them.

Motivated by these reasons, in this paper we formulate a two-stage stochastic

planning model that can be used by CDN operators to compute the optimal

long-term network planning decision, deploying physical CDN appliances in the

network and/or leasing resources for virtual CDN nodes in data centers. Key

findings demonstrate that for a large range of pricing options and traffic profiles,

NFV can significantly save network costs spent by the operator to provide the

content distribution service.
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1. Introduction

The worldwide success of content-rich web applications like social networks

or on-demand streaming services has forced network operators to invest a signif-

icant amount of money in order to keep up-to-date their communication infras-

tructures [1]. In particular, Content Delivery Networks (CDNs) have nowadays

become a necessary (and well-established) technology to efficiently serve the

traffic demands that consumers are generating, while supporting the high level

of performance and reliability that providers are demanding [2].

Although CDN is an effective infrastructure to move replicas of popular con-

tents closer to the users’ locations, it requires significant investments to be built

and operated. As an example, the Akamai infrastructure comprises more than

61 000 servers deployed in 1 000 networks and 70 countries worldwide [3]. To

reduce the capital expenditures and improve the performance of CDNs, organi-

zations such as the Internet Engineering Task Force (IETF) and the European

Telecommunications Standards Institute (ETSI) have recently begun a stan-

dardization process for two alternative architectures:

• Content Delivery Network Interconnection (CDNI);

• Virtual Content Delivery Network (vCDN).

Despite the fact that they both have to deal with network content distri-

bution, these proposals have a radically different scope: the former (CDNI) is

mostly concerned with the co-operation of many CDN providers [4], whereas

the latter (vCDN) proposes to virtualize the CDN services on top of the novel

layer for Network Functions Virtualization (NFV) [5].

While both the architectures aim at optimally exploiting available physical

resources, the grounds of CDNI are settled on agreements between different

CDN operators that often are in direct competition in the same market. On

the other hand, the NFV approach is to run network functions in a virtualized

environment, executed on a shared physical infrastructure composed of indus-

try standard high volume servers, storage and switches [5]. Therefore, vCDN
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implemented on top of NFV enjoys the positive advantage of avoiding poten-

tial competition issues, since the virtualized environment ensures the necessary

level of isolation between the different network functions. Furthermore, spare

NFV substrate capacity can be leased by network operators to third parties, a

condition that makes vCDN appear even more profitable.

Motivated by the previous background, in this paper we tackle a funda-

mental issue that arises in such context: the planning problem for a mixed

physical-virtual Content Delivery Network under uncertain traffic demands. In

our formulation, the CDN operator can choose between purchasing physical

CDN appliances and leasing instances of virtual CDN nodes provided by an in-

frastructure operator. However, while vCDN nodes can be activated on-demand

if the traffic requests require to do so, the installation of physical CDN nodes

must be chosen on a long-term schedule. For both physical or virtual CDN

surrogate servers, the operator must carefully choose their location, while min-

imizing the overall costs. Due to the fact that planning is performed on a

long-term basis, the theoretical framework of stochastic optimization will be

used to guarantee robustness of the solution with respect to the uncertainty in

the probabilistic description of future traffic demands.

The contributions of this paper are summarized as follows:

1. We formulate a two-stage stochastic planning model used by CDN oper-

ators to compute optimal, long-term network planning decisions, under

traffic demands uncertainty. In particular we introduce the deterministic

equivalent program in the extensive form of the two-stage stochastic CDN

planning program.

2. We propose a greedy heuristic approach that finds good planning solutions

(close to the optimum, in several cases) in polynomial time even for large-

scale network topologies.

3. We implement the single and multicut versions of the L-shaped algo-

rithm [6], which is a very effective approximation method for the two-stage

stochastic problem we formulate in this work.
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4. We perform an extensive numerical evaluation, considering real scale topolo-

gies and a wide range of parameters. We further compare the execution

time of the greedy heuristic with the proposed exact solution strategies:

(1) the deterministic equivalent program and (2) the L-shaped algorithm.

Our key findings suggest that a mixed physical-virtual CDN infrastructure

leads to significant lower costs when compared to those obtained by a standard

CDN, while being robust with respect to sudden traffic demand changes.

The paper is organized as follows: Sec. 2 discusses related work. In Sec. 3

we present our contribution; in particular, the system is described in Sec. 3.1;

the optimization model is presented in Sec. 3.2, while the L-shaped and greedy

algorithms are illustrated in Sec. 3.3. Numerical results are presented in Sec. 4,

and Sec. 5 concludes this paper.

2. Related Work

In this section, we survey relevant literature on Network Functions Virtual-

ization (Sec. 2.1), Content Delivery Networks (Sec. 2.2) and Stochastic Opti-

mization techniques (Sec. 2.3).

2.1. Network Functions Virtualization

One of the key enabling paradigms that will considerably increase the dy-

namicity of ICT networks is Network Functions Virtualization (NFV) [5], which

is discussed in recent surveys [7, 8, 9, 10, 11]. Indeed, Service Providers and

Network Operators are facing increasing problems to design and implement

novel network functionalities, following the rapid changes that characterize the

current Internet and Telecom operators [12].

To support the network virtualization paradigm, one of the challenges that

must be solved is to find a mapping between a set of requests for virtual network

resources and the available underlying physical infrastructure, ensuring that

desired performance requirements on nodes and links are guaranteed [13]. This
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is the virtual network embedding (VNE) problem, which is known to be NP-

hard, since it can be reduced to the multi-way separator problem [14]. VNE has

received a lot of attention from the community, and several heuristic algorithms

have been proposed, e.g. in [15, 16, 17, 18].

Jarray et al. propose in [15] a column-generation technique coupled with a

rounding heuristic to discover the most profitable embedding, under the con-

strained physical capacity of the infrastructure. Deterministic and randomized

rounding techniques are used by Chowdhury et al. in [16], where they further

facilitate the virtual link mapping by designing an augmented graph descrip-

tion to efficiently support node location constraints. Cheng et al. in [17] solve

the node mapping step with a greedy algorithm: higher ranking is given to the

nodes that possess more spare resources and are placed in better locations of

the network.

Rather than assuming that the operator knows a-priori the traffic demands,

our contribution is to consider the case where their probability distribution is

known, and our proposed formulation is robust with respect to such uncertainty.

2.2. Content Delivery Networks

In the last few years, content multihoming is emerging as a novel technique

for content delivery networks that makes it possible to jointly use many CDN

services: [1, 2, 19, 20].

Adhikari et al. show in [1] that the Netflix infrastructure already leverages

multiple CDNs (Akamai, LimeLight and Level-3). The authors observe that the

customers are mapped to a particular CDN in a rather static manner. In [2],

Liu et al. further confirm that other major content publishers such as Hulu, Mi-

crosoft, Apple, Facebook and MSNBC are currently already exploiting content

multihoming. Furthermore, given the practical relevance of this architecture,

they design optimization algorithms to minimize the overall distribution costs

under constrained quality requirements. Finally, Wang et al. extended in [19]

the work of Liu et al., by explicitly considering capacity constraints on the

surrogate nodes.
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The novelty of our approach is to consider a new distribution architecture,

implemented on top of NFV, where virtual CDN nodes can be used for content

delivery purposes. Rather than forcing the provider to settle agreements with

other CDN operators, our proposal guarantees better isolation and dramatically

limits potential competition issues.

2.3. Stochastic Optimization

In practical scenarios, network design cannot assume that future traffic de-

mands are known a-priori; on the other hand, more advanced optimization tech-

niques must be used to take into consideration the stochastic nature of input

parameters: [21, 22, 23].

Atamtürk et al. formulate in [21] a two-stage network design model with

traffic demand uncertainty. In their approach, the operator performs the plan-

ning decision according to a probabilistic description of traffic demands. The

value of the second-stage recourse variables is chosen by changing flow rout-

ing. Liu describes in [22] the basic stochastic procedures applied to a flow

assignment network design problem, showing the here-and-know solution and

the scenario-tracking result obtained for the flow-assignment. A multistage

stochastic programming model for mobile radio access networks has been pro-

posed by Eisenblätter et al. in [23]. In their formulation they jointly take into

consideration the coverage and capacity of their communication infrastructure.

In line with previous literature, our formulation takes into account the un-

certainty embedded in future traffic demands. Our contribution is to apply the

theoretical framework of stochastic optimization to content distribution.

3. Optimal Content Delivery in NFV

In this section we describe our proposed solution for the optimal content

delivery planning in NFV. Sec. 3.1 introduces the system model and relevant

assumptions. In Sec. 3.2 we formulate the optimization model, while in Sec.

3.3 we discuss the design of the L-shaped and greedy algorithms.
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Figure 1: System model. The network is composed by consumers, routers, virtual and physical

CDN surrogates. Our proposed optimization model selects (1) the planning of physical CDNs

and (2) request routing.

3.1. System Model and Assumptions

Figure 1 shows the system model we consider in our proposal. In this work

we tackle the long-term planning problem from the point of view of a CDN

provider. The aim of the provider is to perform two choices:

1. Select whether and where physical CDN nodes should be installed in the

network topology;

2. Select the optimal request routing, given the installed physical CDNs and

the virtual nodes available.

Since the planning decision is operated on a long-term time schedule, the provider

does not deterministically know what is going to happen in the future. On the

other hand, we assume that an estimate of the continuous probability distribu-

tion of future traffic demands is known for the planning problem. However, for

the sake of simplicity, and as frequently done in the literature (e,g: [6, 23]), we

discretize this information on a finite number of scenarios, therefore our traffic

model is jointly time-varying and stochastic in its nature.

As shown in Fig. 1, traffic demands are expressed by the consumers. Vir-

tual and physical CDN nodes can both be used to efficiently serve consumers’
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demands, however there exist major differences (in terms of capacity, activation

choice and pricing policy) between these two types of CDN hosts:

• Capacity: virtual CDN nodes can serve a lower amount of traffic requests

since the presence of the hypervisor and the shared hardware infrastruc-

ture reduces the throughput of the CDN surrogates.

• Activation choice: virtual CDN servers can be used on-demand, and they

do not need to be explicitly activated. On the other hand, if the operator

chooses to install a physical CDN server, it will be activated once and it

will stay active throughout the entire time horizon.

• Pricing policy: physical CDN nodes have an activation price that considers

both the capital expenditure (CAPEX) for the acquisition of the device as

well as the long-term operational expenditure (OPEX) costs. On the other

hand, the virtual CDN nodes have a traffic-proportional price related to

the OPEX cost component, which is the per-bandwidth leasing price that

the vCDN owner charges.

Since virtual CDN nodes can be used on-demand, they can serve the portion of

traffic requests with the highest variability. To improve the quality of service of

a CDN, surrogate servers must be selected close to the location of consumers.

For this purpose, we use the link delay to control the performance of the infras-

tructure: we assume that the content provider wants to serve a fraction of the

overall requests within a bounded limit on the delay.

Popular CDN providers such as Amazon CloudFront or Microsoft Azure

CDN do not have an activation cost but charge for their services according to the

amount of traffic that surrogates are providing, regardless of the caching storage

used. Moreover, frequent flash crowds make the object popularity suddenly

change, whereas having an estimate of the aggregate future demands is instead

much easier [24]. For these reasons, we focus on infrastructure planning and

request routing, while we do not tackle the replica placement problem.

8



Table 1: Notation used in this paper.

Input Parameters

D Set of consumers (destination nodes)

S
Set of candidate surrogate servers (source nodes)

S = SP ∪ SV

SP Set of candidate physical CDN servers

SV Set of candidate virtual CDN servers

T Set of time slots

Φ Set of stochastic scenarios

r
t,φ
d

Traffic requests of client d ∈ D, at time slot t ∈ T ,

for scenario φ ∈ Φ

ǫ
Minimum service level guaranteed (fraction of traffic

requests served with a bounded delay of at most ∆)

∆ Maximum tolerated delay

δs,d Delay between the nodes s ∈ S, d ∈ D

KP
s Capacity of the physical CDN server s ∈ SP

KV
s Capacity of the virtual CDN server s ∈ SV

CP
s

CAPEX and OPEX costs of the physical CDN server

installed at a candidate site s ∈ SP

CV
s

Usage cost of the virtual CDN server at the

candidate site s ∈ SV

pφ Realization probability for the scenario φ ∈ Φ

Decision Variables

as
0-1 Physical CDN activation variable. as = 1 if a

physical CDN is installed at the candidate point s ∈ SP

y
t,φ
s,d

Physical CDN flow variable for requests served by s ∈ SP

to client d ∈ D, at time t ∈ T , and scenario φ ∈ Φ

z
t,φ
s,d

Virtual CDN flow variable for requests served by s ∈ SV

to client d ∈ D, at time t ∈ T , and scenario φ ∈ Φ
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3.2. Optimization Model

In this section we describe the optimization model we formulate for the

optimal planning of a mixed physical-virtual CDN infrastructure. The notation

is summarized in Table 1.

Let S = SP ∪SV be the set of CDN surrogate servers, where SP and SV rep-

resent candidate physical and virtual surrogate nodes, respectively. Consumers

are denoted with D, the set of time slots is represented with T , while the set

of stochastic scenarios is Φ. Each scenario φ ∈ Φ has an associated realization

probability, represented by pφ. Consumers d ∈ D express a time-varying traffic

demand for each scenario φ ∈ Φ, that we indicate with r
t,φ
d . The CDN provider

ensures that at least a fraction ǫ of the aggregate requests in every time slot

is served by CDN nodes within a bounded delay, denoted as ∆. The topolog-

ical information is encoded in our proposed optimization model using the δs,d

input parameter, which represents the delay between client d ∈ D and CDN

node s ∈ S. KP
s and KV

s are the bandwidth capacities for physical and virtual

CDNs, respectively. Physical nodes have an activation cost CP
s , while virtual

CDN nodes have a traffic-proportional cost CV
s .

Our proposed optimization model chooses the optimal physical nodes place-

ment and request routing. as is a binary decision variable that is set to 1 if and

only if the physical candidate server s ∈ SP is activated. Traffic requests for

consumer d, in time slot t for scenario φ can be served by flows yt,φs,d and z
t,φ
s,d . In

particular, yt,φs,d is a flow originating from the physical node s ∈ SP , while z
t,φ
s,d

is a flow provided by the virtual node s ∈ SV .

The deterministic equivalent program in the extensive form for the CDN

planning problem of our infrastructure (EF-CDN) is formulated as follows:

min
∑

s∈SP

[

CP
s as

]

+ EΦ





∑

s∈SV

∑

t∈T

∑

d∈D

(

CV
s z

t,φ
s,d

)



 (1)
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subject to:

∑

d∈D

y
t,φ
s,d ≤ asK

P
s ∀s ∈ SP , t ∈ T , φ ∈ Φ (2)

∑

d∈D

z
t,φ
s,d ≤ KV

s ∀s ∈ SV , t ∈ T , φ ∈ Φ (3)

∑

s∈SP

y
t,φ
s,d +

∑

s∈SV

z
t,φ
s,d = r

t,φ
d ∀d ∈ D, t ∈ T , φ ∈ Φ (4)

∑

d∈D

[

∑

s∈SP |δs,d≤∆

y
t,φ
s,d +

∑

s∈SV |δs,d≤∆

z
t,φ
s,d

]

∑

d∈D

r
t,φ
d

≥ ǫ ∀t ∈ T , φ ∈ Φ (5)

as ∈ {0, 1} ∀s ∈ SP (6)

y
t,φ
s,d, z

t,φ
s,d ∈ R

+ ∀s ∈ S, d ∈ D, t ∈ T , φ ∈ Φ. (7)

The objective function (1) minimizes the overall costs given by the activation

of physical CDN nodes as well as the usage of the virtual infrastructure. In

particular, the virtual cost component is computed as the expected value for all

the considered scenarios. Constraints (2) set a capacity bound on the overall

demand served by physical CDN surrogates. If a physical surrogate is not

activated, that is as = 0, it will not be capable to serve any request. Similarly,

the virtual CDN nodes capacity is fixed in (3). In (4) we make sure that the

overall clients’ demands are served in any time slot and scenario, by virtual

or physical surrogate servers. Flows can be split across multiple CDN servers.

In (5) we control the overall service quality. We make sure that a fraction

of at least ǫ requests in each time slot is served by CDN surrogates within a

maximum delay of ∆. Finally, binary restrictions on the activation variables are

set in (6), while non-negativity constraints on the continuous flow variables are

enforced in (7). Rather than considering the worst or mean case, the stochastic

formulation ensures that constraints hold in every scenario, while the objective

function is optimized given the uncertainty on future traffic requests.

In order to solve the optimization problem (1)-(7) we employ different strate-

gies:
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1. A mixed integer linear programming solver (MILP);

2. The L-shaped algorithm (single and multicut versions);

3. A polynomial-time greedy heuristic.

In Sec. 3.3 we present the L-shaped and greedy algorithms.

3.3. Stochastic CDN Planning Algorithms

Finding the optimal solution for the stochastic CDN planning problem is

extremely time consuming, especially in large-scale, real network scenarios, as

those used in our numerical evaluation. Motivated by this observation, we now

present two algorithms to efficiently solve the stochastic CDN planning problem:

i) the L-shaped algorithm and ii) the greedy algorithm.

3.3.1. L-Shaped Algorithm

The L-shaped algorithm can be used to find an exact solution of the opti-

mization problem we formulated in Sec. 3.2. Theoretical results guarantee that

the L-shaped algorithm converges to the optimal solution, but in some cases the

speed of convergence might be too slow for the considered application.

The L-shaped algorithm, whose pseudo code is given in Algorithm 1, pro-

ceeds according to the following steps (we refer to Birge and Louveaux [6] for

an introduction to this algorithm):

• Step 1 : We initialize indices r, s, ν to zero (r = s = ν = 0) and we define

the optimization problem in canonical form:

min cTa+
∑

φ∈Φ

pφq
T
φyφ (8)

subject to:

Tφa+Wyφ = hφ φ ∈ Φ (9)

as ∈ {0, 1} (10)

yφ ≥ 0 φ ∈ Φ (11)
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where c is the vector of physical CDN server installation costs, c =

{CP
1 , . . . , CP

|SP |}, and qφ is a three-dimensional matrix, which can be straight-

forwardly expressed in terms of the usage cost of virtual CDN servers.

Similarly, when the problem in (1)-(7) is represented in canonical form,

the constraints are represented in matricial form, and therefore Tφ and hφ

can be easily defined as a function of parameters KP
s , K

V
s , r

t,φ
d and ǫ.

We have two sets of variables: i) “here-and-now” variables which are the

binary activation variables as for the physical CDN nodes and ii) “wait-

and-see” variables which are the continuous flow variables yφ, composed

of elements yt,φs,d and z
t,φ
s,d. It is worth noting that it is easier to determine

the flow variables yφ once given the nodes activation variables as.

• Step 2 : We increment ν by 1 (ν = ν+1) and we solve the Master Problem

(MP) (12)-(16):

min cTa+ θ (12)

subject to:

Dla ≥ dl l = 1, ..., r (13)

Ela+ θ ≥ el l = 1, ..., s (14)

a ∈ {0, 1} (15)

θ ∈ R
+ (16)

In MP, we consider only the physical nodes activation variables (the MP

problem does not contain the stochastic scenarios). The set of inequali-

ties in (13) and (14) represent the feasibility and optimality cuts of MP,

respectively. In the first round, these sets are empty. Let (aν , θν) be an

optimal solution of MP. If no constraint (14) is present, θν is set equal to

−∞ and is not considered in the computation of the vector aν .

• Step 3 : We assume in this step that the here-and-now variables are known

(i.e., the vector aν is computed in the previous step) and we solve, for each
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Algorithm 1: L-Shaped Algorithm

Input : 〈D,S, T ,Φ, rt,φd ,KP
s ,K

V
s , C

P
s , CV

s , δs,d,∆, ǫ, pφ〉

Output: â, ŷ
t,φ
s,d, ẑ

t,φ
s,d , min cost

1 Initialization: r = s = ν = 0;

represent the optimization problem (1)-(7) in canonical form: (8)-(11);

2 ν = ν + 1;

solve the Master Problem (MP) defined in (12)-(16);

(aν , θν) = get MP solution();

3 foreach φ ∈ Scenarios do

solve the Linear Problem (LP) in (17)-(19);

w′ = get LP solution ObjFunValue();

if w′ ≥ 0 then

compute Dr+1 and dr+1 according to (20) and (21);

generate a feasibility cut; r = r + 1;

add the feasibility cut to the MP problem; go to Step 2;

end

end

4 foreach φ ∈ Scenarios do

solve the LP in (22)-(24);

(ŷt,φs,d, ẑ
t,φ
s,d) = get LP solution(aν);

compute Es+1 and es+1 according to (25) and (26);

end

Let wν = es+1 − Es+1a
ν ;

if θν < wν then

generate an optimality cut; s = s+ 1;

add the optimality cut to the MP problem; go to Step 2;

end

Optimal solution found: â = aν ;

min cost = calculate ObjFunValue(â, ŷt,φs,d, ẑ
t,φ
s,d);

return(â, ŷt,φs,d, ẑ
t,φ
s,d, min cost);
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scenario φ ∈ Φ, the following linear problem:

min w′ = (1, . . . , 1)v+ + (1, . . . , 1)v− (17)

subject to:

Wy + Iv+ − Iv− = hφ − Tφa
ν (18)

y ≥ 0,v+ ≥ 0,v− ≥ 0 (19)

If for some φ the optimal value w′ > 0, then let σν be the corresponding

multiplier and we define Dr+1 and dr+1 as follows:

Dr+1 = (σν)TTφ (20)

dr+1 = (σν)Thφ (21)

Dr+1 and dr+1 are used to generate a constraint called a feasibility cut of

type (13). Then, r is incremented by 1 and this feasibility cut is added to

the set (13). At this point, go to Step 2. When for all φ ∈ Φ w′ = 0, go

to Step 4.

• Step 4 : As in Step 3, for each scenario φ ∈ Φ, we solve the following linear

problem:

min qT
φy (22)

subject to:

Wy = hφ − Tφa
ν (23)

y ≥ 0 (24)

Then we define the multiplier πν
φ associated with the optimal solution of

the above problem (for each φ ∈ Φ). In this step, we define Es+1 and es+1

as follows:

Es+1 =
∑

φ∈Φ

pφ(π
ν
φ)

TTφ (25)

es+1 =
∑

φ∈Φ

pφ(π
ν
φ)

Thφ (26)
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Let wν = es+1 − Es+1a
ν . If θν ≥ wν , stop; aν is an optimal solution.

Otherwise, s = s+1 and we generate the constraints (called the optimality

cuts) using the above calculated terms in (25) and (26), and we add the

optimality cuts to the set (14) and then the algorithm returns to Step 2.

3.3.2. Greedy Algorithm

In this section we describe the polynomial-time heuristic we designed to

compute a close-to-optimal solution to the planning problem. The pseudo-code

is provided in Algorithm 2 to describe the steps we use to achieve this purpose.

At the beginning of the algorithm, in Step 1, all the physical nodes are

activated and sorted. In particular, we give higher priority to those nodes that

can serve the largest amount of traffic demands within a delay of ∆. Given the

Algorithm 2: Greedy Algorithm

Input : 〈D,S, T ,Φ, rt,φd ,KP
s ,K

V
s , C

P
s , CV

s , δs,d,∆, ǫ, pφ〉

Output: â, ŷ
t,φ
s,d, ẑ

t,φ
s,d , min cost

1 â = [1; 1; ...; 1]; phy nodes = sort phy CDN nodes();

2 if ¬is feasible(â) then

return INFEASIBLE ASSIGNMENT ;

end

〈ŷt,φs,d, ẑ
t,φ
s,d , min cost〉 = get LP solution(â); best sol = â;

3 foreach s ∈ phy nodes do

âs = 0 ;

〈ŷt,φs,d, ẑ
t,φ
s,d , current min cost〉 = get LP solution(â);

if current min cost ≥ min cost then

break ;

end

min cost = current min cost ; best sol = â;

end

4 â = best sol ; 〈ŷt,φs,d, ẑ
t,φ
s,d , min cost〉 = get LP solution(â);
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structure of the problem, infeasible solutions are those that cannot be served

even when all the physical CDN nodes have been activated.

In Step 2 we check this condition and eventually signal a potential infea-

sibility. The get LP solution function computes a solution for the continuous

relaxation of the model (1)-(7), using a standard linear programming solver, and

therefore has a polynomial-time complexity. As outputs, it returns the optimal

flows for the physical and virtual CDN nodes as well as the overall cost. In case

of infeasibility, the output value of min cost is set to infinite.

The loop in Step 3 deactivates at every iteration one new physical node,

according to the previously generated ordering, and it completes when the ob-

jective function does not improve anymore. Lastly, in Step 4 we compute the

optimal flows starting from the best physical nodes allocation choice.

4. Numerical Results

In this section we present the numerical results we obtained performing a

thorough analysis of our models and heuristics under realistic network condi-

tions.

Unless stated otherwise, our network topology is created using the Barabási–Albert

model and is composed of 50 consumers, 20 physical and 15 virtual CDN nodes.

Traffic demands are generated using as a reference the Cisco VNI data for

the 2014-2017 years: the planning horizon is of 3 years and we used 36 different

time slots. Traffic uncertainty is taken into account by considering 10 differ-

ent traffic scenarios, with a variable overall demand between 80% and 120% of

the Cisco forecast. To control the overall demand, we limit to 20Gbit/s the

maximum traffic requests that a consumer can generate in a time slot of a sce-

nario. Physical CDN nodes have a capacity of 12.5Gbit/s, while virtual CDNs

can serve up to 8Gbit/s. Similar trends have been observed for other capacity

values, omitted here for the sake of brevity. Link delays are generated in the

range of those available on Rocketfuel for the Sprintlink (US) topology, with an

average delay of 3ms. Moreover, we assume the CDN provider wants to guar-
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antee that at least 95% of the requests are served by surrogates with a delay

lower than 12ms, that is, selected CDN nodes are, on average, 4 hops far from

the consumer’s location.

Lastly, prices are set as follows: we assume that the cost to install and

operate one CDN node is set in the range [8; 12] kUSD, while different prices will

be considered for virtual CDN nodes in the range [0.001; 10] USD per Mbit/s.

For the same physical-virtual price ratios, even by considering different values

for the physical CDN pricing, we observed similar trends as those discussed in

this section. Hereafter, we report the result we obtained using CPLEX 12.5 [25]

as a MILP solver, bounding the maximum execution time of the algorithms to

1 hour (with a 5% MIP gap), and using a machine equipped with a quad-core

Intel i7-3770 (3.40 GHz) CPU with 16 Gbyte of RAM. Lastly, for each of the

results we performed 20 different runs and we report the narrow 95% confidence

intervals.

We first present an example network scenario (Sec. 4.1), then we analyze

NFV benefits in large-scale topologies in terms of network cost, studying the

impact of the physical CDN capacity, the number of clients, the number of

physical and virtual nodes, traffic uncertainties and minimum service level to

be guaranteed (Sec. 4.2). The effect of vCDN pricing is then discussed (Sec. 4.3),

along with the computing time necessary to obtain the solution (Sec. 4.4).

4.1. Example network scenario.

To highlight the impact of the ∆ and ǫ parameters (the maximum tolerated

delay and the minimum service level guaranteed, respectively), expressed in

constraints (5), on the solution of the optimization model (1)-(7), we present

here an example scenario, where 5 physical CDNs (with a capacity of 50Gbit/s

each) are deployed.

Fig. 2 shows the objective function value (the overall cost) as a function of

these two parameters. In particular, the lower the tolerated delay ∆, the higher

the overall cost the operator must incur to ensure the feasibility of the solution.

In fact, the overall cost for ∆ = 25 ms is up to ≈ 5 times higher than that
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Figure 2: Effect of the Service Level and Delay. The figure shows the overall cost as a function

of the desired service level (ǫ) and for different delays (∆ = {25, 30, 35, 40} ms).

obtained with ∆ = 40 ms. Similarly, the higher the value of ǫ, the higher the

overall cost, which more than doubles when the required service level increases

from 70% to 95% for ∆ = 35 and 40 ms, for example. In particular, this behavior

is explained by the fact that the operator must use in these cases virtual CDN

nodes to serve the traffic requests within the maximum tolerated delay, while

guaranteeing the minimum service level. On the other hand, when ∆ is large

(or ǫ is small), the model can leverage the services provided by physical CDNs

even though they are far from the content consumers, and thus decreases the

overall operator cost.

4.2. NFV Benefits

Fig. 3 shows the cost benefits for the mixed physical-virtual CDN architec-

ture, considering different virtual prices. As expected, in Fig. 3a-3f, lower CDN

prices lead to lower overall costs. The effect of the physical CDN capacity is

shown in Fig. 3a. If the capacity of the physical CDN appliances is lower than

10Gbit/s, using virtual nodes becomes mandatory since otherwise an infeasibil-

ity is produced. When the physical CDN nodes capacity is set to 15Gbit/s, cost

savings up to 46% are experienced for cheap virtual CDN pricing (i.e, 0.001 USD

per unit of bandwidth), whereas the saving is reduced to 16% if we set a vCDN

price of one order of magnitude larger (i.e, 0.01 USD per unit of bandwidth).
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Figure 3: NFV Benefits. Plots 3a-3f show the overall cost benefits of an architecture composed

of a mix of physical and virtual CDN nodes (denoted in the figures with vCDN), with respect

to the scenario where only the physical CDN infrastructure is used (denoted in the figures

with CDN). Different prices are considered for the vCDN case, as shown in the legend (0.01,

0.005, 0.001). The impact of several parameters is investigated, including the physical CDN

capacity, the number of clients, the traffic variance, the desired service level, the number of

available physical and virtual nodes.

20



Fig. 3b shows the effect of the number of clients on the costs. The physical-

only CDN infrastructure cannot handle more than 50 clients, whereas up to 100

clients can be served if we also leverage the 15 virtual CDNs deployed. The

effects of traffic uncertainties are quantified in Fig. 3c, where we show the

overall cost as a function of the traffic demand variance (starting from 0, i.e.

from perfect traffic knowledge, and increasing it). With the largest variance

that we took into account, the vCDN infrastructure leads to cost savings in the

range 16-43% according to the vCDN pricing.

Fig. 3d shows the effect of the minimum service level (ǫ) on the cost. It can

be seen that in the four considered cases the cost increases with ǫ. Note that

the impact of ǫ on the solution of the stochastic CDN planning problem can

be more appreciated when the number of physical and virtual nodes is smaller,

and to guarantee feasibility, virtual CDN nodes must be used more extensively.

Finally, in Fig. 3e and Fig. 3f we plot the total cost the operator incurs

when varying the number of physical and virtual CDN nodes, respectively. As

expected, the higher the number of physical nodes deployed in the network, the

lower is the cost for the operator; this trend is the same for the four considered

cases. Given that the number of physical CDN servers is fixed and equal to 20,

in Fig. 3f we plot the overall cost obtained when the number of virtual nodes

increases from 1 to 50. We can observe from this figure that for a small-to-

medium number of virtual CDN nodes (i.e., ≤30), the planning cost significantly

decreases with this parameter (from 1.5 105 to 0.5 105 USD, especially, when

the cost per unit of bandwidth is 0.001 (the “vCDN 0.001” case) and then it

stabilizes (at 0.5 105 USD) for large values. The trend in Fig. 3e and Fig. 3f is

due to the fact that a medium number of virtual and physical nodes is sufficient

to serve all the traffic requests of consumers while guaranteeing a minimum

service level of 95%; we intuitively expect that for a small number of physical

CDN nodes, more and more virtual nodes are needed in order to serve consumers

at higher service levels.
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(c) Physical nodes activation

Figure 4: Effect of the vCDN Price. Plots 4a-4c show the effect of the virtual nodes pricing on

the overall cost (Fig. 4a), the fraction of traffic served by the physical infrastructure (Fig. 4b)

and the number of physical nodes activated (Fig. 4c), for different solution algorithms as well

as a physical-only infrastructure (denoted in the figures with CDN).
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4.3. Effect of the vCDN Price

Due to its remarkable effect, in Fig. 4 we show the impact of the virtual

CDN pricing using the different solution algorithms considered in this work.

The overall cost is portrayed in Fig. 4a. Solutions obtained with exact solvers

such as the deterministic equivalent program in the extensive form or the L-

shaped algorithm lead to costs up to 11% (and on average 6%) lower than those

reported with the greedy heuristic. Fig. 4a clearly shows that the higher the

prices, the lower the economic benefits of using a mixed physical-virtual CDN

infrastructure. In particular, considering prices in the range [0.001; 0.5] USD per

unit of bandwidth, the cost savings compared to the physical-only solution are

in the range 5-64%. Fig 4b shows the proportion of physical traffic with respect

to the overall demand, as a function of the price of virtual nodes. Cheap prices

make the virtual CDN capacity be fully saturated, and for this reason the left

hand-side of Fig. 4b has an horizontal trend that accounts for 57% of the overall

traffic. As a consequence, Fig. 4c shows that the number of activated physical

CDN nodes does not increase for virtual prices lower than 0.01USD. Comparing

Fig. 4b and 4c, the slope of the curve is less steep in the second plot, since there

are cases where it is convenient to strategically deploy a physical CDN server in

a special position of the topology even though it is not fully used by the clients.

It is interesting to note that for both Fig. 4b and 4c the heuristic algorithm

leads to solutions that are practically overlapped to the optimal choice.

4.4. Computing time

To limit the effects of infeasibilities that negatively affect results on the com-

puting time, hereafter we raise the number of virtual CDN nodes to 50, making

the network be capable to serve up to 150 consumers. Fig. 5 shows the execution

time of the different algorithms as a function of the number of clients (Fig. 5a),

the number of physical (Fig. 5b), and virtual CDN nodes (Fig. 5c).

The number of clients is the parameter that mostly affects the execution

time, as portrayed in Fig. 5a. In particular, the MILP solver for the deter-

ministic equivalent program has a time trend that is exponential in the number
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Figure 5: Execution time. Plots 5a-5c show the behavior of the different solution algorithms

as a function of the number of clients as well as the number of surrogate nodes. We observe

that the number of clients has the most remarkable effect on the execution time.
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of served clients (Fig. 5a), but linear in the number of physical (Fig. 5b) and

virtual CDNs (Fig. 5c). While the MILP solver can hardly scale to topologies

with a larger number of nodes, this possibility is instead offered by the L-shaped

decomposition and our proposed heuristic. As a matter of fact, all these algo-

rithms can solve the planning problem saving up to 94% of time compared to

the MILP problem, when considering 150 clients, as shown in Fig. 5a. Lastly,

although there are cases where the heuristic algorithm is slightly slower than

the L-shaped algorithm (as in Fig. 5c), we remark the fact that the heuristic

has a worst-case polynomial time complexity, whereas a comparable theoretical

result for the L-shaped algorithm does not hold.

5. Conclusion

In this paper we tackled the stochastic planning problem for content delivery

to study potential benefits that Network Functions Virtualization can provide

for content distribution purposes. We considered a mixed architecture where

both physical as well as virtual CDN nodes can be used by a CDN owner to

implement the content distribution service. The owner performs the planning

choice for the physical CDN infrastructure on a long-term time schedule, pos-

sessing only a stochastic estimate of future traffic demands.

Our study shows that a mixed solution where both virtual an physical CDN

nodes are used can dramatically reduce the overall costs sustained by the op-

erator to purchase and operate the distribution infrastructure. In particular,

we observed that gains can be up to 65% when considering the cheapest vCDN

price. Our contribution is also to formulate efficient solution algorithms for the

two-stage stochastic planning problem that can scale to realistic topology sizes.

Rather than solving the deterministic equivalent problem in the extensive form,

our proposed L-shaped algorithm and the greedy heuristic can efficiently find a

solution, saving up to 95% of time compared to the MILP solver.
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