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Abstract—Information Centric Networking (ICN) is a novel
paradigm that aims at improving the performance of today’s
Internet by supporting universal caching and multicast content
delivery features on every network device.

In this paper we propose a strategy to stimulate third parties
to jointly lease the unused bandwidth and storage available on
wireless access points in an ICN. We formulate this problem as a
combinatorial reverse auction run by a content provider willing
to increase the number of users reached by his service. We first
show that the optimal allocation algorithm is NP-hard, we then
provide greedy heuristics that guarantee the individual rationality
and truthfulness properties and we compare their performance
numerically. Finally, we evaluate the benefits of our proposed
mechanisms in terms of the computational time necessary to
execute the allocation algorithms, as well as the cost savings
for the content provider obtained by offloading the backhaul
connections using the distributed caches to directly serve users’
requests.

The novelty of our approach is to simultaneously take into
account in the mechanism design the bandwidth as well as the
storage available at the access network, and to study their mutual
interaction.

I. INTRODUCTION

The way customers use Internet nowadays has radically
changed with respect to the original design goals that had
driven the development of the TCP/IP protocol stack [1]. As a
matter of fact, although the Internet was initially conceived as
a means to establish a point-to-point communication between a
client machine and a remote server, it is currently used mostly
as a content distribution infrastructure [2].

In order to better handle this usage shift, new Informa-
tion Centric Networking (ICN) design proposals for the Future
Internet are recently gaining momentum. These designs have
specifically been formulated to create new protocols centered
around the concept of what the user is willing to retrieve, rather
than where the data can be found. In fact, their distinctive
characteristic is that they replace at the packet level the source
and destination addresses with content names. Routing and
forwarding are thus performed according to the name of the
data that has to be delivered [3].

In this paper we analyze a relevant scenario where the
content provider has the simultaneous objectives of 1) ex-
tending his mobile customer base by offering the users an
ubiquitous access to the provided content and 2) performing
server offloading by exploiting the built-in caching features
of ICNs.

In our vision, the user buys a digital content, and the
content provider offers the connectivity to retrieve the cor-
responding data. As an example, we believe that this “wire-
less shopping” business model can be effectively applied to
online content stores such as e-book libraries, music and
video streaming services, online magazines and newspapers as
well as application stores. Some steps towards this direction
have been done by Amazon, which is providing to Kindle
users the “Free 3G” mobile broadband connection service
to wirelessly browse the store, purchase and download the
content.

Since the content provider should not bear the costs of the
realization of a new access network, we propose the creation of
a marketplace where third party access point owners will offer
their unexploited bandwidth and storage resources as they will
receive economic incentives for their cooperation. However,
misbehaving access point owners may jeopardize the efficiency
of the allocation mechanism by choosing strategically to
declare false valuations for the offered resources. In order
to solve this issue, auction theory provides insights for the
design of tamper-proof mechanisms characterized by the fact
that the dominant strategy of every bidder is to declare the real
valuation for the provided resources.

The contribution of this paper is threefold:

1) We design an optimal mechanism that can be used to
motivate access point owners to jointly lease their unused
bandwidth capacities and cache storage, in exchange for
economic incentives. The mechanism is a reverse auction
that guarantees the individual rationality and truthfulness
properties as it forces the owners to declare their real
valuations for the provided resources.

2) We show that the proposed optimal algorithm is NP-hard.
In order to cope with the computational complexity, we
then provide three variants of a greedy algorithm that can
be used to obtain a sub-optimal solution in polynomial
time.

3) We provide performance comparisons of the proposed
strategies. We show that all the variants of the greedy
algorithm outperform the optimal one in terms of execu-
tion time; however, this comes at an increased economical
cost that the provider needs to face, due to the sub-optimal
property of the discovered solution.

This paper is structured as follows: in Sec. II we dis-
cuss related work. Sec. III describes the network architecture
and motivates our proposal. Sec. IV formulates the optimal
combinatorial reverse auction as an optimization model, while



Sec. V proposes three greedy algorithms to solve the allocation
problem in polynomial time. Numerical results are analyzed in
Sec. VI. Finally, concluding remarks are discussed in Sec. VII.

II. RELATED WORK

In this section, we briefly survey the literature on Infor-
mation Centric Networks (ICNs). Sec. II-A reviews the ICN
design principles, while Sec. II-B presents auction mechanisms
that can be extended to ICNs in order to stimulate resource
leasing.

A. Information Centric Network Solutions

Information Centric Networks have been designed with the
ambitious goal to provide a new networking paradigm that
could better accommodate new performance, security, mobility
and scalability requirements imposed on the Internet by its
users. Several architectures for ICNs have been proposed in
the literature and in ongoing research projects: DONA [4],
CONET [5], PURSUIT [6], and NDN/CCN [7].

For the sake of simplicity, we specifically design our
proposal for NDN/CCN (Named Data Networking/Content-
Centric Networking), since a widely used and open imple-
mentation of this model is available1. Additionally, to the best
of our knowledge, it is the proposal that has received most
of the attention from the scientific community. However, we
would like to point out the fact that our model can also be
adapted to other ICN designs in a straightforward way, since
the only requirement that needs to be enforced is the possibility
to implement content caching on an access point.

Addressing the content rather than the location has the
main advantage of improving the performance by making
universal in-network caching as well as multicast delivery
easily implementable in the network architecture [8]. For this
reason, it becomes vital to understand the effect of in-network
caching in order to study the behavior of an ICN. In particular,
in [9], Fricker et al. propose a model to compute the hit
rate for a single and two-layer cache hierarchy, given a Zipf
content popularity distribution. While, Psaras et al. [10] studied
caching performance for a tree-like CCN topology, by means
of representing the state of every router using Markov chains.

B. Auction Theory in Communication Networks

Auction theory has been used to design efficient allocation
mechanisms in several network contexts and it is extremely ap-
pealing to model the problem of spectrum leasing to secondary
users tackled in cognitive radio networks [11], [12]. Besides
these classical scenarios, auctions are becoming an even more
interesting tool to model bandwidth allocation.

Dai et al. in [13] presented a collaborative caching
auction system for wireless video streaming based on the
Vickrey-Clarke-Groves (VCG) mechanism. Their proposal fos-
ters the cooperation between cache servers by ensuring that ev-
ery bidder declares his real private valuation for the auctioned
resource, thus ensuring the truthfulness property.

Unlike the surveyed literature, our approach not only takes
into account the available bandwidth but it also considers the

1https://www.ccnx.org

Figure 1. Network architecture. A single content provider (CP) is considered
in our design. Access points (APs) are equipped with caching storage. Mobile
clients (MCs) connect to a subset of the available APs. The demand of a MC

will be satisfied either by cached content, or by retrieving the data directly
from the servers of the CP using the available backhaul Internet connection.
Our mechanism derives the MCs to APs allocation that minimizes the total
cost.

storage space offered by every access point owner. Given
the fact that we study the performance of this mechanism
for a CCN network, the availability of caches not only reduces
the backhaul capacity used at every access point, but it is also
beneficial to the content provider himself, since it offloads its
servers.

III. SYSTEM MODEL

In this section we illustrate the principles, definitions and
assumptions characterizing the communication network of our
scenario. Sec. III-A will describe the network architecture and
discuss the benefits provided by our allocation algorithm to the
content provider, while Sec. III-B will clarify the structure of
the economic incentives to the access point owners and explain
the properties enforced by the auction mechanism.

A. Advantages for the Content Provider

A graphical representation of the system model we consider
in this paper is shown in Fig. 1. A single content provider (CP)
wants to lease a set of wireless access points (APs) in order to
increase his customer base by providing an ubiquitous content
delivery service to mobile clients (MCs).

The core business of the provider is to distribute contents
that will be accessed by the customers under payment of a
fee. The hardware infrastructure owned by the CP does not
comprise the radio access network, since it is beyond the scope
of the service it provides; however, we assume that the CP
owns a set of content distribution servers reachable through
any Internet connection.

Raising the number of customers reached by the service
jointly increases the remuneration of the CP as well as the
operational costs (OPEX) due to the increased load of the
computational infrastructure. An interesting feature offered
by ICN that can mitigate the effects of this trade-off is
universal caching: each AP is equipped with a variable quan-
tity of storage that is used to memorize content previously
forwarded to the destinations. For this reason, we propose that
the operator leases not only the radio access and backhaul



connection capacities, but also portions of the caches available
at the access points. By exploiting the caching feature of ICN
we make the content move across the network towards the
locations where most of the users are requesting it.

B. Economic Incentives to the Access Point Owners

We assume that the APs are owned by third party users.
They can participate to the bandwidth allocation by submitting
to the CP the bid [bj , sj ] where bj is the price at which
the j-th AP agrees to jointly share the unexploited bakhaul and
wireless bandwidth as well as a quantity sj of cache. The main
difference with respect to classical optimization techniques is
that in our case the real valuation vj of each owner is kept
hidden; thus, in the most general case, vj 6= bj .

Let pj ∈ R
+ be the price paid by the CP to lease

the j-th AP. The utility function of the AP owner is such that:

uj =

{

pj − vj if AP j is selected

0 otherwise.
(1)

We say that individual rationality holds if the utility of
each player is always non-negative: ∀j ∈ A, uj ≥ 0. When
the access point is not selected, the owner’s utility is null
since he doesn’t incur additional costs given by incoming
traffic and at the same time he doesn’t receive any economic
incentive. Meanwhile, a rational player will choose to play
only if pj ≥ vj and thus uj ≥ 0.

When the CP has collected all the sealed bids of the APs,
it will in turn select a set of access points that should be
rewarded, with the joint aim to satisfy the traffic demands di
of the mobile clients and minimizing the sum of incentives
paid to the AP owners and the operational cost (OPEX)
of the computational infrastructure. Thus, we would like to
design a two step mechanism that 1) chooses which wireless
access points should be selected among those that participated
to the allocation, and 2) computes the rewards paid to the
corresponding winners, in such a way that every user is forced
to declare a price equal to the true valuation of his offer.

We make the assumption that each access point is directly
connected to a backhaul Internet connection. For the time
being, we assume that this is a symmetric channel whose
capacity is known to the operator. We also assume that it is
very unlikely that the AP owner declares a false quantity of
available cache storage since this misbehavior can be easily
detected and punished by the content provider. Notwithstand-
ing, the mechanism needs to force the AP owners to declare
their real valuations, since they may be tempted to lie in order
to increase their utilities by behaving strategically.

IV. OPTIMAL ALLOCATION AND PAYMENT SCHEME

This section illustrates the optimal mobile clients allocation
and access point payment algorithm. We will derive the opti-
mal allocation rule in terms of: 1) the prices paid by the content
provider (CP) to remunerate the selected access point owners
and 2) the operational cost (OPEX) faced by the CP due to the
load on his computational infrastructure. The notation used in
this paper is summarized in Table I.

Table I. SUMMARY OF THE NOTATION USED IN THIS PAPER.

Parameters of the ILP model

M Set of Mobile Clients

A Set of Access Points

bj Bid of AP j

sj Storage space for caching offered by AP j

hj Average hit-rate for AP j

Rj Backhaul bandwidth available at AP j

Lj Maximum coverage radius of AP j

li,j Distance between MC i and AP j

ri,j Maximum Wi-Fi rate of the MC i when it is connected to AP j

di Bandwidth demand of MC i

C Cache miss cost per unit of bandwidth, paid by the CP

Variables of the ILP Model

xi,j Binary variable that indicates whether MC i is assigned to AP j

yj Binary variable that indicates whether AP j is selected or not

Parameters of the Auction

vj Private valuation of AP j

pj Actual price paid by the CP to the j-th AP owner

uj Utility function of the j-th AP owner

We denote with M the set of mobile clients (MCs),
while A is the set of access points (APs). Each MC i ∈ M
generates a traffic demand di that might be satisfied by at most
one AP j ∈ A.

Due to locality constraints, the APs have a limited max-
imum coverage radius, that we denote with Lj for AP j.
Let li,j be the distance between MC i and AP j, and let ri,j be
the maximum rate of MC i when connected to AP j. If MC i
is beyond the range of AP j, the corresponding rate will be
null: ri,j = 0, ∀ i ∈ M, j ∈ A | li,j > Lj .

In order to participate to the auction, AP owners are
required to declare sj , the amount of storage they will offer
for caching purposes. This quantity will be used by the content
provider (CP) in order to compute the average cache hit rate
for AP j, denoted by hj . If hj = 0 this means that AP j does
not cache any object.

Cache misses increase the load on the computational in-
frastructure of the CP. We denote with C the cost per unit of
bandwidth due to cache misses. Lastly, let Rj be the bandwidth
of the backhaul connection available at AP j.

The binary variable xi,j ∈ {0, 1} is used to represent the
assignment between MC i and AP j, and is such that:

xi,j =

{

1, if MC i is assigned to AP j

0, otherwise.
(2)

Furthermore, we denote with the binary variable yj the set
of APs selected by the auction:

yj =

{

1, if AP j was selected by the auction

0, otherwise.
(3)

Given the above definitions and assumptions, the mobile
clients allocation problem (MCAP) can be formulated as
follows:



min
∑

∀j∈A

yjbj +
∑

∀i∈M
∀j∈A

xi,jdi(1− hj)C (4)

s.t.
∑

∀j∈A

xi,j = 1 ∀i ∈ M (5)

∑

∀i∈M

dixi,j

ri,j
≤ 1 ∀j ∈ A (6)

∑

∀i∈M

dixi,j(1− hj) ≤ Rj ∀j ∈ A (7)

xi,j ≤ yj ∀i ∈ M, j ∈ A (8)

xi,j ∈ {0, 1} ∀i ∈ M, j ∈ A (9)

yj ∈ {0, 1} ∀j ∈ A (10)

The objective function (4) minimizes the total cost of the
content provider, which is given by:

1) the incentives paid to remunerate the selected access
points:

∑

∀j∈A

yjbj ; (11)

2) the infrastructure costs due to cache misses:
∑

∀i∈M
∀j∈A

xi,jdi(1− hj)C. (12)

Eq. (5) expresses the set of full coverage constraints which
force every mobile client to be assigned to exactly one access
point.

Constraints (6) and (7) limit the number of MCs assigned
to each AP, given that the radio access network and the
backhaul Internet connection have a bounded capacity. While
constraints (6) impose that the total client demand served by an
access point doesn’t exceed the capacity of the radio access
network, constraints (7) consider the fact that the backhaul
Internet connection serves only the aggregate demand that
generates a cache miss.

Constraints (8) make sure that only the APs that are serving
at least one MC are selected by the mechanism. Finally, the set
of constraints (9) and (10) express the integrality conditions
on the decision variables.

After having defined the ILP model used to solve MCAP,
we now illustrate the algorithm that forces the AP owners to
bid their real valuations. Algorithm 1 formalizes the steps that
the auctioneer should follow in order to determine the APs that
should be selected as well as their payments for the provided
resources. It returns the list of selected APs yj , the assignment
matrix of MCs to APs xij and the corresponding payments pj ,
where as usual i ∈ M, j ∈ A.

The algorithm proceeds in three steps. In step 1,
the ILP model is solved and the minimum cost alloca-
tion (yj , xi,j) is computed. In step 2 the solution of the ILP
model without the j-th AP is determined, in other terms,
the algorithm solves again the ILP model (Eq. (4)-(10))
with the additional constraint yj = 0. Finally, step 3
computes the optimal price for the j-th AP according to
the Vickrey-Clarke-Groves mechanism with Clarke pivot rule,

Algorithm 1: Optimal and Truthful Reverse Auction

Input : M,A, bj , sj , di, rij , hj , Rj

Output: yj , pj , xij

1 (yj , xij) ⇐ Solve the ILP model ;
foreach j ∈ A : yj = 1 do

2 (y
′

j , x
′

ij) ⇐ Solve the ILP model without AP j ;
3 pj ⇐

∑

n∈A
n 6=j

(

y
′

nb
′

n − ynbn

)

+
∑

i∈M
n∈A

(x
′

in − xin)di(1− hn)C;

end

which ensures individual rationality and truthfulness [14].
The optimal price represents the “opportunity cost” that the
presence of the j-th AP causes to the other bidders.

It can be shown that Alg. 1 is NP-hard, in fact, it
is straightforward to derive a polynomial time procedure
that can reduce the Multidimensional Knapsack Problem to
the ILP model (4)-(10), as their structure is similar. There-
fore, since solving the MKP is at least as difficult as solv-
ing the optimal allocation problem, and MKP is known to
be NP-hard [15], Alg. 1 is NP-hard.

V. GREEDY ALGORITHMS

The computational complexity of Alg. 1 is such that, as the
number of MCs m and APs a increases, the completion time of
the optimal algorithm raises exponentially. In order to find an
allocation strategy that can effectively scale up to large network
instances, this section provides a computationally efficient,
polynomial-time algorithm with three alternative strategies,
that still guarantees truthfulness and individual rationality. We
begin by describing the greedy MC alternative, while we will
talk about the other greedy strategies at the end of the section.

Let kj =
bj

|Mj |
be the ratio between the bid of

the j-th AP (bj) and the number of MCs that it can potentially
serve |Mj |. The quantity kj can be interpreted as the price per
mobile client that should be paid to the j-th AP if it served
all the MCs in its range. Let c be the index of the critical
access point, which is defined as the first AP that has not
been selected by the mechanism.

In the same way as in the optimal auction, the greedy
algorithm (Algorithm 2) is characterized by the following
two phases: 1) the allocation phase, which selects the APs
characterized by the lowest kj until all the demands of MCs
are satisfied and 2) the payment phase, which determines the
price paid to the selected APs as a function of the critical
access point c.

Algorithm 2: Greedy Cache and Bandwidth Auction

Input : M,A, bj , sj , di, rij , hj , Rj

Output: yj , pj , xij

1 (yj , xij , c) ⇐
Greedy Allocation(M,A, bj , sj , di, rij , hj , Rj);
foreach j ∈ A : yj = 1 do

2 pj ⇐ bc
|Mc|

|Mj | ;

end



Algorithm 3: Greedy Allocation (Step 1 of Alg. 2)

Input : M,A, bj , sj , di, rij , hj , Rj

Output: yj , xij , c

1 L ⇐ Sort
(

j ∈ A,
bj

|Mj |
, “non-decreasing”

)

;

U ⇐ M;
while U 6= ∅ do

j ⇐ Next(L); yj ⇐ 1;
2 while Is Feasible Solution(M,A, bj , sj , di, rij , hj , Rj)

do

Vj ⇐ Sort
(

i ∈ Mj ,
di
rij

, “non-decreasing”
)

;

i = Next(Vj);
if yi = 0 then

xij ⇐ 1; U = U \ {i};
end

end
end

3 c ⇐ Next(L) ;

The greedy allocation of MCs to APs, as well as the
identification of the critical access point c, are performed
by Algorithm 3. The allocation procedure starts by sorting
the APs in non-decreasing order according to the correspond-
ing kj values (Step 1). This is done with the aim of selecting
the “most promising” APs in terms of the declared price per
number of reachable mobile clients. We then iteratively allo-
cate to the APs the largest number of unassigned mobile clients
by choosing the MCs which have lower capacity demand di

rij
,

while still preserving the feasibility of the solution (Step 2).
Alg. 3 completes the execution by assigning all the mobile
clients to a subset of the available APs, and by determining
the critical access point c (Step 3), where the critical access
point is the first AP that hasn’t been selected by the algorithm
(the first looser).

Finally, Algorithm 4 checks if the solution is feasible, by
determining whether the constraints of the ILP model hold. In
detail, Step 1 checks if the MC is assigned to at most one AP
as imposed by constraints (5), Step 2 checks whether the
available Wi-Fi bandwidth is not saturated as in constraints (6),
and lastly Step 3 checks if the backhaul connection can
accommodate the allocated traffic as in constraints (7).

Alg. 2 implements a truthful auction since 1) the allocation
phase respects the monotonicity property as the APs are sorted
in non-increasing order of their bids per number of covered
mobile customers, and 2) there exists a critical value which
determines whether the AP has been selected or not. As
demonstrated in [14] the previous two conditions ensure the
truthfulness of the greedy algorithm.

By jointly substituting Step 2 of Alg. 2 and Step 1 of Alg. 3,

Algorithm 4: Is Feasible Solution (Step 2 of Alg. 3)

Input : M,A, bj , sj , di, rij , hj , Rj

Output: t
1 c1 ⇐

∑

∀j∈A

xi,j ≤ 1 ;

2 c2 ⇐
∑

∀i∈M

dixi,j

ri,j
≤ 1 ;

3 c3 ⇐
∑

∀i∈M dixi,j(1− hj) ≤ Rj ;

t ⇐ c1 ∧ c2 ∧ c3;

Table II. SUMMARY OF THE 3 PROPOSED VARIANTS FOR THE GREEDY

ALGORITHM

Greedy

Variant
Step 2, Alg. 2 Step 1, Alg. 3

MC

(G.m.)
pj ⇐ bc

|Mc|
|Mj | L ⇐ Sort

(

j ∈ A,
bj

|Mj |
, “non-decr”

)

Cache

(G.c.)
pj ⇐ bc

hc
hj L ⇐ Sort

(

j ∈ A,
bj

hj
, “non-decr”

)

Backhaul

(G.b.)
pj ⇐ bc

Rc
Rj L ⇐ Sort

(

j ∈ A,
bj

Rj
, “non-decr”

)

we can change the optimization strategy of the greedy algo-
rithm; in particular, we propose the following three variants:

1) Greedy MC (G.m.);
2) Greedy cache (G.c.);
3) Greedy backhaul (G.b.).

As discussed previously, the greedy MC (G.m.) alternative
gives higher priority to the APs that can potentially serve
more MCs, due to their space location. On the other hand,
the greedy cache (G.c.) selects the APs that are leasing larger
caching storage; lastly, the greedy backhaul (G.b.) chooses
the APs with a faster backhaul Internet connection. Table II
summarizes these three variants, which will be compared
numerically in Sec. VI. Finally, we observe that all the variants
we propose do not modify the monotonicity property of the
allocation phase; therefore, it is straightforward to show that
truthfulness and individual rationality still hold.

VI. NUMERICAL RESULTS

In this section, we analyze and discuss the numerical
results obtained solving our proposed models and heuristics in
realistic, large-size network scenarios. More specifically, we
first illustrate (Sec. VI-A) the experimental methodology used
to evaluate the proposed algorithms, and then (Sec. VI-B) we
discuss the obtained results.

A. Methodology

Simulations were conducted by distributing 50 APs uni-
formly in a 300 × 300 m2 grid, while the locations of MCs
were selected as a bi-variate Gaussian distribution centered
on uniformly chosen APs. The bids of the APs are selected
uniformly in the [7, 15] USD range, whereas the demands
of every MC were generated in the range [0.5, 3] Mbit/s.
We performed 50 runs for every scenario, computing the
narrow 95% confidence intervals reported in each figure.

At each AP, we chose the backhaul Internet bandwidth
randomly in the set {1; 6; 8; 20; 100}Mbit/s, while the size of
cache storage was uniformly selected in the range [10, 100]GB.
We set the average object size to 11 Kbytes and the Zipf pop-
ularity exponent to 0.8, according to the standard web-content
scenario investigated in [9]. The hit rate is then computed using
the single-layer cache model proposed by [9] for a LFU cache.

We define the normalized cache size, N , as the ratio
between the average cache size and the size of all the objects:

N =
Avg. cache size

Objects cardinality · Average object size
. (13)

Since we assume that the object cardinality can ei-
ther be 107 or 109, the normalized cache sizes are thus
equal to 0.524 and 0.005 respectively.
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(c) Bandwidth Saved for Caching

Figure 2. Social Welfare, Total Cost and Bandwidth Saved for Caching as a function of the number of mobile clients. The number of access points is set
to 50 and the objects cardinality is fixed and equal to 107, which corresponds to a Normalized Cache Size N of 0.524; this means that, on average, caches can
store 52% of the total number of objects.
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(a) Avg. Hit Rate; 107 objects; N = 0.524
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(b) Avg. Hit Rate; 109 objects; N = 0.005
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(c) Completion Time

Figure 3. Average Hit Rate and Completion Time, as a function of the number of mobile clients. The number of access points is set to 50, the objects cardinality
is equal to 107 for Figures 3a and 3c while it is equal to 109 for Fig. 3b.

Regarding the three variants of the algorithms presented in
Table II, we denote the greedy MC, cache and backhaul with
G.m., G.c. and G.b., respectively. We analyze and compare
the performance of the different algorithms according to the
following metrics:

• Social welfare (SW ): which is the objective function of
the ILP model (4), and has a monetary currency as unit
of measurement;

SW =
∑

∀j∈A

yjbj +
∑

∀i∈M
∀j∈A

xi,jdi(1− hj)C

• Total cost (TC): which has the same expression as
the SW apart from the fact that instead of considering
the bids, it takes into account the actual price paid to
the AP owners;

TC =
∑

∀j∈A

yjpj +
∑

∀i∈M
∀j∈A

xi,jdi(1− hj)C

• Bandwidth saved for caching (SB): which is the total
amount of traffic directly served by caches, measured
in Mbit/s;

SB =
∑

∀i∈M
∀j∈A

xi,jdihj

• Average hit rage (h̄): defined as the ratio between the
content served by the caches and the sum of all the clients’
demands;

h̄ =
SB

∑

∀i∈M
∀j∈A

xi,jdi

• Completion time (t): the time (expressed in seconds) spent
by the algorithm to compute the allocation and determine
the incentives paid to the AP owners.

B. Performance Analysis

Unless otherwise specified, the figures illustrated in the
following are related to a network scenario with 107 different
objects; hence, the normalized cache size is N = 0.524. A sim-
ilar trend has been observed for 109 objects (N = 0.005), but
it is not shown due to space constraints.

First of all, the social welfare (SW ) as a function of the
number of MCs is shown in Fig. 2a. As expected, such metric
has an increasing trend, since the higher the number of MCs,
the higher the costs that the content operator has to face. We
also note that the optimal allocation performs better than all
the greedy strategies. Quantitatively, the SW generated by
the greedy cache is on average 50% higher than the optimal
solution, while the other two variants of the greedy algorithm
are comparable to each other, and generate more expensive
allocations (the worst of which being 150% costlier than the
optimal).

Nevertheless, the gap between the greedy and the optimal
algorithm is further reduced for the total cost metric (TC).
Fig. 2b shows the total cost paid by the content provider,



by jointly considering the actual price to remunerate the
selected APs as well as the cache miss costs. As illustrated
in the figure, the backhaul variant of the algorithm is not
only less efficient with respect to the other alternatives, but
it also produces results with higher variance. Still, the greedy
cache algorithm proves to generate interesting solutions, being
only 34% higher than the optimal. In addition to that, we
observed even a smaller gap between the two solutions when
the cardinality of objects was 109, being the greedy cache
algorithm only 22% costlier than the optimal.

The robustness of the greedy cache strategy is further con-
firmed by the bandwidth saved for caching (SB) metric, shown
in Fig. 2c. Since the model assumes that the characteristics of
the popularity distribution of the requests do not change as the
number of MCs increases, the overall SB increases linearly.
Interestingly, Fig. 2c further shows that if the main aim of the
content provider is to offload the servers, the greedy cache
variant well approaches the optimal solution. In particular,
the greedy cache algorithm saves on average only 5% less
bandwidth than the optimum, while the same metric raises
to 25.5% for the worst case represented by the greedy backhaul
strategy.

Fig. 3a and Fig. 3b show the average hit rate (h̄), respec-
tively with 107 and 109 objects. First of all, we note that while
in Fig. 3a the average hit rate for the optimal algorithm is
above 80%, in Fig. 3b it decreases below 25%. Nevertheless we
underline that achieving a hit rate that approaches 25%, while
having cache sizes that can only store 0.5% of the available
objects, is remarkable. This behavior can be explained due
to two reasons: 1) the power-law characteristic of the Zipf
distribution models the fact that, in the Internet, few objects
are extremely popular, while many objects are rarely accessed
and 2) our mechanism selects the APs that are most valuable
in terms of the available cache. Apparently, Fig. 3b shows
an unexpected result: the greedy cache seems to behave
better than the optimal algorithm. This result, however, is not
surprising since, as a matter of fact, the optimal algorithm
minimizes the sum of the prices paid to AP owners as well as
the cache miss costs, while Fig. 3a and Fig. 3b portrait only
the cache miss costs, which is only a part of the total cost.

Finally, as shown in Fig. 3c, the greedy algorithm beats
the optimal allocation procedure by one order of magnitude in
terms of the completion time (t). As expected, the greedy MC
is slower than the other choices, since it needs to additionally
compute the set of MCs that each AP has to serve.

VII. CONCLUSION

This paper proposed a novel mechanism for Information
Centric Networks to stimulate wireless access point owners to
jointly lease their unused bandwidth and storage space to a
content provider.

We provided an algorithm to determine the optimal al-
location of mobile clients to access points that ensures the
individual rationality as well as the truthfulness properties by
forcing the AP owners to bid the real valuation for the offered
resources. We showed that the optimal allocation problem is
NP-hard, and provided three efficient alternatives of a greedy
algorithm that computes a sub-optimal solution of the problem

in polynomial time, while still guaranteeing the individual
rationality as well as the truthfulness properties.

Finally, numerical results demonstrated that the perfor-
mance of the greedy cache algorithm well approaches the
results obtained by the optimal solution. In particular, while
the greedy cache algorithm raises the total cost for the content
provider of 34%, it is only 5% worse than the optimal solution
with respect to the saved bandwidth, while being one order of
magnitude faster than the optimal algorithm.

In future works, we would like to further address the
routing problem in ICNs: the presence of the distributed cache
as well as the stateful information available at every router
poses additional questions on how these characteristics can
affect the performance of this novel paradigm.
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