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Abstract—Game-theoretic Demand-Side Management (DSM)
systems represent a promising solution to control the electrical
appliances of residential consumers. Such frameworks allow
indeed for the optimal management of loads without any central-
ized coordination since decisions are taken locally and directly
by users.
In this paper, we focus our analysis on a game-theoretic DSM
framework designed to reduce the bill of a group of users.
In order to converge to the equilibrium of the game, we
adopt an efficient learning algorithm proposed in the literature,
Exp3, along with two variants that we propose to speed up
convergence. In defining these methods, we model the appliances
scheduling problem as a Multi-Armed Bandit (MAB) problem, a
classical formulation of decision theory. We analyze the proposed
learning methods based on realistic instances in several use-case
scenarios and show numerically their effectiveness in improving
the performance of next generation smart grid systems.

I. INTRODUCTION

The recent evolution of power grids, with the integration

of distributed generation, decentralized storage systems and

communication infrastructures, is radically changing their

operation and architecture. In this new scenario, consumers

are playing more and more an active role, particularly in

stabilizing the power grid by dynamically adjusting their

demand with respect to grid and market conditions. To this

end, retailers are introducing novel tariffs, such as Time-Of-

Use (TOU) tariffs and Real-Time Pricing (RTP), in which

prices change in response to variations in supply and demand

in order to incentivize consumers to adopt more sustainable

and efficient power usage habits.

Such new policies call for automatic Demand-Side Manage-

ment (DSM) mechanisms which can optimally control users’

power loads by modulating the power absorption of elastic

appliances (e.g., heating and air conditioning systems) and

scheduling the execution of shiftable devices (e.g., washing

machine and dryer). In the literature, several centralized DSM

mechanisms have recently been proposed [1]. All these so-

lutions require some sort of coordination system and proper

protocols to exchange all energy data and identify the best

scheduling solution, which is then forwarded to all customers.

However, such frameworks may not be applied in real scenar-

ios, mainly because of the security and privacy threats arising

from data gathering and exchange procedures.

DSM systems based on decision theory represent the so-

lution to these problems since they allow customers (or even

single appliances taking autonomous decisions, as we envision

in our paper) to converge to desired operating points of the

system in a fully distributed manner. For this reason, in this

paper, we model the DSM scheduling problem as a Multi-

Armed Bandit (MAB) problem, a classical and very effective

formulation adopted in decision theory. The MAB problem

naturally arises in contexts where agents (appliances, in our

case) simultaneously attempt to acquire new knowledge about

the system (the exploration phase) and optimize their decisions

based on the acquired knowledge (the exploitation phase).
The approach proposed in this work is specially tailored

for distributed DSM solutions designed to schedule the electric

devices of residential consumers on a daily basis. In particular,

in our framework, each appliance decides autonomously its

schedule for the next day, with the objective of minimizing

the expected regret with respect to the cost-optimal strategy.

Appliances strategies are evaluated in terms of their corre-

sponding energy bills that are determined based on a dynamic

tariff in which prices are a function of the overall power

demand of devices.
In order to identify the appliances schedule, we consider

and evaluate different algorithms to find an optimal balance

between the exploration and exploitation efforts. Specifically,

we adopt an efficient learning algorithm proposed in the litera-

ture (named Exponential-weight algorithm for Exploration and

Exploitation, Exp3 [2]), along with two variants that we design

specifically for our scheduling scenario, named Exp3a and

Exp3b, respectively, which are tailored to speed up the conver-

gence to system-wide efficient equilibria. In the first variant

(Exp3a), Krasnoselskij iterations are used [3], that is only a

subset of appliances at each iteration updates their choice.

In the second variant (Exp3b), we assume that additional

information can be easily made available to appliances: after

every iteration (i.e., on a daily basis) the retailer broadcasts to

all players the electricity tariff applied that day, defined based

on the aggregated power demand of users; such information

is exploited to further speed up convergence.
We analyze the proposed algorithms based on realistic

instances of the DSM game and show their effectiveness in

converging to very efficient operating points in several use-

case scenarios.
In summary, our paper makes the following key contribu-

tions:

• We propose a novel approach, based on the multi-armed

bandit problem, to select efficient appliances scheduling



patterns in a completely distributed manner. A state-

of-the-art algorithm (Exp3) is adopted, along with two

variations we specifically design to speed-up convergence

towards very efficient equilibria in a smart grid scenario.

• We analyze the convergence properties of the proposed

learning algorithms in terms of achieved equilibrium as

well as the number of iterations to reach this latter.

• We perform a thorough numerical analysis of our pro-

posed algorithms in several realistic use-case scenarios,

which demonstrate that our proposed approach is promis-

ing and very effective to improve the performance of next

generation smart grid systems.

The paper is structured as follows: Section II discusses

related work. Section III provides an overview of the game the-

oretic demand management framework that we have adopted

in this work. Section IV describes the MAB-based learning

algorithms that we have designed to converge to system-wide

efficient equilibria. Performance assessment is illustrated and

discussed in Section V. Finally, Section VI concludes this

paper.

II. RELATED WORK

Demand side management methods have been recently

proposed in smart grids to properly control and schedule users’

loads [4]. In particular, DSM schemes can be applied to shift

the users’ demand from peak to off-peak periods, therefore

reducing the need for generation, transmission and distribution

capacity, as well as power grids investments. At the same time,

DSM can also address issues related to electric grids such as

the integration of Renewable Energy Sources (RESs) which

are intermittent and uncontrollable by nature, hence raising

brand new problems in the demand-supply balancing process.

These issues can be mitigated by DSM systems by means of

properly scheduling the users’ loads based on the availability

of renewable energy generation [5].

In the field of DSM systems, distributed methods have

gained increased attention. Consistent improvements of the

grid efficiency can indeed be obtained only by coherently

managing the energy resources of groups of users whose dif-

ferences and randomness, in terms of electricity consumption

needs, can be exploited to adapt the overall load demand to the

grid requirements. To this end, several centralized frameworks

have been proposed in the literature, aiming at controlling

the electric loads of groups of collaborative customers [6],

[7]. However, these solutions require a centralized controller

to gather users’ information and optimize their energy plans.

To this end, a large volume of data must be collected and

transmitted through the smart grid network, thus introducing

scalability constraints, as well as novel threats to the cus-

tomers’ security and privacy [8]. For these reasons, distributed

DSM methods have been proposed in which decisions are

taken locally by users. In such context, game theory represents

the ideal framework to design distributed DSM solutions since

it permits to model and study the interactions among the

independent rational players of the power grid [9]. In this case,

the users’ load scheduling problem is formulated as a game,

where the players are the consumers and their strategies are

the schedules of their electric appliances. The goal of the game

is to reduce either the peak of the total demand, the overall

energy costs, or the users’ electricity bills [10].

DSM methods based on game theoretical frameworks have

been designed to provide equilibria that improve the efficiency

of the power grid from a system-wide perspective. However,

converging to the game equilibria is non-trivial, and learning
algorithms are required to enable players to reach the desired

outcome [11]. Learning methods are iterative processes in

which players, in turn, estimate the utility associated with

their strategies based on their knowledge of the game state,

and decide which strategy to play in the current iteration

depending on the decision logic of the algorithm. Several

learning algorithms have been proposed in the literature which

differ in the learning style and in the assumptions on the

interaction among players. Regret Matching methods [12], for

example, are characterized by players who attempt to minimize

their regret from using a certain strategy. These methods rely

on the assumption that each player can estimate both its own

utility and the utility he would have obtained by playing all

other actions. On the other hand, in Reinforcement Learning
methods [13], players attempt to maximize their utility rather

than considering the regret associated with their actions.

Specifically, at each iteration of the algorithms, actions leading

to higher utility are associated with higher probabilities to be

chosen in the next stage. Regret Matching and Reinforcement
Learning methods, as well as several other algorithms, have

been extensively studied in several research fields, including

robotics [14] and telecommunications [15], [16]. For this

reason, some of the solutions proposed in these fields can be

applied to game theoretic DSM frameworks. However, security

and privacy concerns could raise when applying these methods

to real implementations of demand management solutions.

Learning algorithms proposed in [10] and [17], for example,

require each player to broadcast his appliances schedule to

either the energy service provider or to other users, therefore

introducing serious privacy issues [8], [18].

The algorithms proposed in this paper are related to multi-

armed bandit problems which are of fundamental importance

in stochastic decision theory due to their application in numer-

ous engineering problems, such as wireless channel access,

communication jamming, object tracking, and smart grids.

Such problems are the most basic examples of sequential

decision problems with an exploration-exploitation trade-off:

this is the balance between staying with the option that gave

highest payoffs in the past and exploring new options that

might give higher payoffs in the future [2], [19].

A survey on multi-armed bandit problems is provided in

[2], with a focus on two extreme cases in which the analysis

of regret is simple and elegant: i.i.d. payoffs and adversarial

payoffs. The work in [20] adopts hidden Markov models in the

context of smart grids to capture the dynamics of renewable

energy resources, and formulates the stochastic scheduling

problem as a partially observable Markov decision process

multi-armed bandit problem. In order to solve the problem, a



value iteration algorithm is used.

Differently from existing works, our paper proposes a novel

MAB approach for scheduling appliances in a cost-efficient,

fully-distributed way. Numerical analysis demonstrate the ef-

fectiveness of our approach both in terms of achieved results

and convergence to efficient equilibria.

III. DISTRIBUTED DSM: PROBLEM FORMULATION AND

GAME MODEL

In this paper, we consider a fully distributed demand-side

management framework based on a non-cooperative game

theoretical approach [21]. This framework is designed to

efficiently schedule the electric appliances of a group of

residential consumers, H, over a 24-hour time period divided

into a set, T , of time slots. Each consumer h ∈ H has to

schedule a set of non-interruptible appliances, Ah, which must

be executed only once during the day T . Each appliance

a ∈ A, where A denotes the set of all appliances (i.e.,

A = ∪h∈HAh), is characterized by a fixed load profile, laf ,

having a duration of Fa time slots. Specifically, laf represents

the power consumption of a in the f -th time slot of its load

profile and f ∈ Fa = {1, 2.., Fa}. Moreover, each appliance

a ∈ A can only be executed within a time window delimited

by a minimum starting-time slot, STa, and a maximum ending-

time slot, ETa.

A real-time pricing is used to define the price of electricity

at time t ∈ T , ct. Specifically, ct is modelled as an increasing

function of the total power demand, yt, of the group of users

H at time t:

ct = cAnc + cEn · yt ∀t ∈ T (1)

where cAnc is the cost of ancillary services (e.g., electricity

transport, distribution and dispatching, frequency regulation,

power balance) and cEn is the slope of the cost function.

The objective of each consumer h ∈ H is to optimally

schedule his appliances in order to minimize his daily bill,

Uh, defined as follows:

Uh =
∑

t∈T
yht · ct (2)

where yht is the power demand of consumer h at time t.
In [21], we show that if each appliance decides au-

tonomously its scheduling in a fully distributed fashion (single-
appliance DSM) with the goal of minimizing its bill, only a

negligible increase of the consumers’ bill is found with respect

to the case in which each consumer schedules the whole set of

his appliances (multiple-appliance DSM). For this reason, in

this paper, we will use the single-appliance DSM model since

it requires a less complex architecture without home servers

that collect all devices information and play on behalf of the

consumers.

Note that since appliances are modelled as a non-

interruptible activities with fixed load profiles, defining their

schedules is equivalent to deciding their start-times. For this

reason, in this paper, we use the terms schedule and start-time

interchangeably.

A. Distributed Single-Appliance DSM: Game Model

The appliance scheduling problem is modelled as a game

G = {A, I,U}: A is the set of players (i.e., appliances),

I � {Ia}a∈A is the set of strategies which correspond to

the appliances schedules and U � {Ua}a∈A is the set of

utility functions that coincide with the devices electricity bills.

Specifically, the strategy of player a is Ia � {xat}a∈A, where

xat are binary variables defined for each device a ∈ A and

for each time slot t ∈ T . These variables are equal to 1 if the

appliance a starts at time t and 0 otherwise. As a consequence,

defining these variables is equivalent to deciding the start-time

of the appliance. The possible schedules that form the strategy

space Ia of each player a (of consumer h) must satisfy the

following set of constraints:

Ia =

{
−→x a =

[
xa1...xat...xa|T |

]
∈ {0, 1}|T | :

ETa−Fa+1∑
t=STa

xat = 1 (3)

yat =
∑

f∈Fa:f≤t

lafxa(t−f+1) ∀a ∈ Ah, t ∈ T (4)

∑
a∈Ah

yat ≤ πSL ∀t ∈ T
}
. (5)

Constraints (3) guarantee that appliance a is executed only

once within the interval [STa, ETa]. Constraints (4) determine

the daily consumption profiles of all the appliances of the con-

sumer h, which depend on their schedules (i.e., {xat}a∈Ah
).

Finally, constraints (5) limit the overall power consumption

of consumer h, since in every time slot t ∈ T the electricity

bought from the grid cannot exceed the Supply Limit (SL)

defined by the retailer and denoted by πSL.

Each appliance a chooses its strategy Ia to minimize its

cost Ua. The utility function of each player, Ua, which is a

function of I, is defined as follows:

Ua(I) =
∑
t∈T

yat · ct (6)

where yat, which represents the amount of electricity demand

of appliance a at time t, is a function of xat.

The solution of the distributed single-appliance game is

characterized by a Nash Equilibrium (NE) which is a strategy

profile I∗ = (I∗
a , I∗

−a) from which no player has an incentive

to deviate unilaterally. One can prove that this game is a

potential game if ct is convex with respect to yt. Potential

games have several nice properties, such as the existence

of at least one pure Nash equilibrium. Furthermore, such

games have the Finite Improvement Property: any sequence

of asynchronous improvement steps is finite and converges to

a pure equilibrium.

IV. DISTRIBUTED LEARNING ALGORITHMS

In order to converge to the equilibrium of the DSM game

presented in Section III, we propose three efficient learning



algorithms that enable players to reach the desired game

outcome in a distributed fashion. These algorithms are exe-

cuted in parallel by players, and therefore do not require any

communication among them.

In the following, we first formalize the scheduling learning

problem, then we describe the 3 algorithms that we have

implemented to solve it.

A. Model and Problem Formulation

In the load schedule learning problem, all players, which are

represented by the set of appliances A, have to decide their

schedule autonomously. Specifically, each player a ∈ A can

choose any start-time sa within its set of feasible schedules,

Sa:

Sa = {t ∈ T : t ∈ [STa;ETa − Fa + 1]} (7)

which represents the subset of time slots of T that satisfy the

scheduling constraints (3).

The selection process of the devices start-time, which can

be performed based on several logics as described below, has

to be repeated every day within the time horizon K. Hereafter,

we denote with ska the schedule chosen within set Sa by player

a ∈ A on day k ∈ K.

At the end of each day k, each player a receives a bill Uk
a

from the retailer, computed as follows, based on equation (6):

Uk
a =

∑
t∈T

ykat · ckt (8)

where ckt and ykat are, respectively, the cost of electric energy

and the power demand of each player on day k. Both ckt and

ykat can be easily computed based on the sequence {ska}a∈A
which is known to the retailer. Specifically,

ykat =
∑

f∈Fa:f≤t

lafx
k
a(t−f+1) ∀a ∈ A, t ∈ T (9)

ckt = cAnc + cEn
∑
a∈A

ykat ∀t ∈ T (10)

where xat = 1 if t = ska, 0 otherwise. It is worth noting,

from equations (8) and (10), that even if every player runs

the learning algorithms independently of others, each player’s

action affects the other ones since it modifies the electricity

prices.

In choosing the devices start-time, the player’s objective is

to minimize its total bill, i.e. the sum of the bills received over

the time horizon K. As bills differ from schedule to schedule,

the goal is to find the schedule with the lowest expected bill as

early as possible, and then to keep using it on future days. To

this end, the learning algorithms have to be properly designed

to achieve the best trade-off between the exploration of the

solutions space and the exploitation of the statistics gathered

in past iterations.

In the following, we first propose the utilization of an

efficient learning algorithm proposed in the literature (named

Exponential-weight algorithm for Exploration and Exploita-

tion, Exp3 [2]), and we further describe two variants we

have designed specifically for our scheduling scenario, named

Exp3a and Exp3b, in order to speed up the convergence to

system-wide efficient equilibria. The first variant (Exp3a),

makes use of Krasnoselskij iterations [3], which means that

only a subset of players at each iteration updates their choice.

In the second variant (Exp3b), we suppose that additional

information is available to users: after every iteration, the

retailer broadcasts to all players the electricity tariff applied

that day, defined based on the aggregated power demand of

users.

B. Exp3: Exponential-weight algorithm for Exploration and
Exploitation

The scheduling learning problem of each player a can

be modeled as a multi-armed bandit problem in which each

possible schedule sa ∈ Sa coincides with an arm and the

reward received by the player at round k by picking a given

arm corresponds to the opposite of the bill (i.e., −Uk
a ). As a

consequence, minimizing the total bill over the time horizon

is equivalent to maximizing the total reward.

Since the load scheduling problem of each player can be

represented as a multi-armed bandit problem, some of the

solutions proposed in the literature for MAB frameworks can

be efficiently applied to the DSM game. Specifically, in this

work, we consider the algorithm Exp3. This method, whose

pseudo code is shown in Figure 1, is a randomized algorithm

in which, on each day k, the schedule of the player a is

selected according to the probability distribution pk(sa), with

sa ∈ Sa, which represents the probability of choosing the

schedule sa at iteration k. In the definition of pk(sa), γ is an

exploration parameter and wk(sa), with sa ∈ Sa, are weights

that depend exponentially on the bills received in the past. This

distribution, which is a mixture of uniform and exponential

distributions, is designed to efficiently balance the exploration

and exploitation phases of the algorithm.

After drawing a schedule ska based on the distribution pk(·),
the player a receives a bill Uk

a and updates the weights for the

next day, wk+1(·). Note that at iteration 1 of the algorithm,

w1(·) are all set to one and pk(·) is a uniform distribution over

Sa since no information on the game state is available.

C. Exp3a: Exponential-weight algorithm for Exploration and
Exploitation with Krasnoselskij iteration

In our work, we have observed via numerical simulations

that by applying the algorithm Exp3, players may not reach a

stable equilibrium state. As a consequence, players may keep

switching between different schedules, in an almost cyclic

manner. In order to address this issue, we propose a variant of

the Exp3 algorithm, called Exp3a, based on the Krasnoselskij

iteration: on each day, only a fraction λ ∈ [0, 1] of players,

randomly selected within set A, are allowed to change their

schedule with respect to the previous iteration.

The pseudo code of Exp3a is the same as the algorithm

Exp3, except for line 8. In fact, in this case, the player selects



1: procedure EXP3
2: γ ∈ (0, 1]
3: w1(sa) = 1 ∀sa ∈ Sa

4: for k = 1, 2, ... do
5: for all sa ∈ Sa do

6: pk(sa) = (1− γ)
wk(sa)∑

si∈Sa
wk(si)

+ γ
|Sa|

7: end for
8: Choose ska randomly accordingly to pk(·)
9: for all sa ∈ Sa do

10:

ŵk(sa) =

{
−Uk

a /p
k(sa) if sa = ska

0 otherwise

11: wk+1(sa) = wk(sa)exp(
γŵk(sa)

|Sa|
)

12: end for
13: end for
14: end procedure

Fig. 1. Pseudo-code of algorithm Exp3

a new schedule with probability λ, otherwise it keeps using

the schedule chosen on the previous day.

D. Exp3b: Exponential-weight algorithm for Exploration and
Exploitation with estimated bills

In the Exp3 algorithm, at every iteration k, the distribution

probability pk(·) is updated based only on the actual bill

received by player a due to its selection of schedule ska,

without considering any other information. Even if this feature

of the algorithm makes it simple and easy to apply in real use-

case scenarios, it may lead to low convergence rates. In fact,

since no information on the other possible schedules is used in

updating probability values pk(·), a longer exploration phase

may be required to gather statistics on all possible solutions.

In order to address this issue and speed up the convergence

process, we propose a variant of the Exp3 method, called

Exp3b, in which probabilities pk(·) of player a on day k are

updated based on information on all the possible schedules

sa ∈ Sa. Specifically, this algorithm relies on the assumption

that after every iteration k, it is possible to estimate the bills

that every player a would have paid if it had executed any

other schedule within the feasible set Sa. To this end, we

suppose that at the end of each iteration, the retailer broadcasts

to players the electricity tariff applied that day, ckt , defined

based on the aggregated power demand of users.

The pseudo code of Exp3b is the same as the algorithm

Exp3, except for line 10, which is rewritten as follows:

ŵk(sa) =

{
−Uk

a /p
k(sa) if sa = ska

−Ûk
a /p

k(sa) otherwise
(11)

where Uk
a is the actual bill received by player a on day k by

selecting the schedule ska and Ûk
a , which is computed based

on the electricity prices ckt broadcast by the retailer, is the bill

that player a would have paid by choosing a different schedule

sa ∈ Sa \ {ska}. Note that Ûk
a is only an estimate of the bill

that player a would have paid, since by selecting a schedule

different from ska, the actual tariff used on day k would have

been slightly different from the one broadcast by the retailer,

as it is clear from the electricity price definition of equation

(10).

V. NUMERICAL RESULTS

This section presents the numerical results we have obtained

by testing the multi-armed bandit algorithms proposed in this

paper on realistic instances of the DSM scheduling prob-

lem [22], [23]. Specifically, we first describe the experimental

methodology of our tests, then we illustrate and discuss the

performance achieved by the proposed algorithms.

A. Tests Methodology

In our tests, we evaluate the MAB learning algorithms over

a period of 10000 days (i.e., iterations), each one represented

by a set T of 24 one-hour time slots. In order to assess the

performance of the proposed methods as the number of users

increases, we vary the size of the set of consumers H in the

range [10, 50]. Each of these users is connected to the grid

with a power demand limit, πSL, of 3 kW and has 4 shiftable

electric appliances out of 11 realistically-modeled devices1.

In order to investigate the effect of the scheduling flexi-

bility (i.e., the size of the [STa, ETa] time-window) on the

performance of the learning algorithms, we consider three

different cases: No Flexibility, in which the devices scheduling

is fixed and cannot be modified, Low Flexibility and High
Flexibility in which, respectively, 3 and 8 different possible

schedules can be selected for each device. Specifically, for

each of these cases, the starting-time slot of the appliances,

STa, is randomly selected for each consumer within the set

T to represent a population of heterogeneous users. On the

other hand, the ending-time slot, ETa, is defined based on

the value chosen for STa in order to guarantee the number of

different possible schedules associated with the correspond-

ing flexibility level (i.e., ETa = STa + Fa − 1 without

flexibility, ETa = STa + Fa + 1 with low flexibility and

ETa = STa + Fa + 6 with high flexibility).

Finally, regarding the electricity tariff, we define it based

on the real-time pricing currently used in Italy for large

consumers. Specifically, we fix the cost of ancillary services

cAnc = 50 × 10−6 $ and the slope of the pricing function

cEn = ( 0, 11 × 10−6)/|H| $/kWh.

To evaluate the performance of the proposed MAB methods,

we compare the Nash Equilibrium of the DSM game with

the outcome obtained by applying the distributed learning

algorithms, in terms of:

• Aggregated utility: the overall electricity bill of the group

of users, H.

• Peak demand: the peak of the aggregated power demand

of the group of users, H.

1Namely, shiftable devices: washing machine, dishwasher, boiler, vacuum
cleaner; fixed devices: refrigerator, purifier, lights, microwave oven, oven, TV,
iron



• Fairness: we measure the fairness of the DSM outcome

in terms of sharing of the energy bill among users, based

on the Jain’s Fairness Index (JFI) [24].

Moreover, we further investigate the convergence time of

each learning scheme to the Nash equilibrium and its depen-

dence on the number of consumers taking part in the DSM

game.

Note that, for each case defined in our tests, we generate

5 different instances. In Subsection V-B, we only report the

average results obtained for each test scenario.

B. Performance Evaluation

Figures 2, 3, and 4 show the numerical results obtained

in our tests as a function of the number of iterations of

the learning algorithms, with a population of 50 consumers.

Specifically, in these figures, we divide the time horizon into

periods of 500 iterations, for each of which we report the

mean value and the 95% confidence interval of the observed

results. Moreover, in order to investigate the convergence

of the proposed MAB methods, we also represent the Nash

equilibrium of the DSM game and the performance of the

appliance scheduling game without scheduling flexibility, i.e.,

when the usage of electric devices is fixed and cannot be

modified by the DSM system.
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Fig. 2. Aggregated utility with 50 users.

Numerical results show that the basic MAB Exp3 algorithm
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Fig. 3. Aggregated peak power demand with 50 users.

has the best performance in the long-run since it yields to

outcomes which are closer to the Nash Equilibrium than those

obtained with the other methods. However, this result comes at

the cost of a worse stability and rate of convergence. Indeed,

in the Exp3 case, players do not reach a stable equilibrium

state, as it can be noted by analyzing the confidential intervals.

This highlights the inability of this algorithm to anticipate

the players “behavior” in the next iteration, which causes an

extended exploration phase in which devices keep switching

between different schedules, in an almost cyclic manner. As

for the low convergence speed, it is explained by the fact that,

at each iteration, the Exp3 algorithm updates its schedules

distribution probabilities pk(·) based only on the actual bill

paid by playing the chosen schedule, without estimating the

potential bills associated with the other schedules. As a conse-

quence, a prolonged exploration stage is required to evaluate

all the scheduling combinations.

As illustrated in Figures 2- 4, the stability and convergence

rate of the learning process can be improved with the proposed

variants of the Exp3 algorithm. Specifically, in the Exp3a

case, only a few devices are actually allowed to change their

strategies with respect to the previous iteration, thus reducing

the game dynamics and improving the stability of the game

outcome. Moreover, in the case of the Exp3b learning method,

the exploration phase of the learning process is shortened
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Fig. 4. Fairness of the DSM solution with 50 users.

by updating the schedules distribution probabilities based on

the bills associated with all the potential schedules, thus

determining a lower convergence time.

It can be further observed that the system flexibility in

scheduling the electric devices notably influences the conver-

gence speed of the MAB algorithms. More specifically, the

learning algorithms have higher convergence rates with a short

flexibility level. In fact, in this case, the solution space of the

problem is smaller since each player has a lower number of

strategies to try, therefore reducing the exploration phase of the

learning process. However, as expected, shorter convergence

times come at the cost of higher bills and peaks of energy

demand, as well as lower fairness. Nevertheless, even with

a low flexibility level, the MAB algorithms allow players to

achieve better results than those observed with fixed schedules

(i.e., without the DSM system), except for the Exp3b algorithm

which has a too short exploration phase.

In addition to the schedule flexibility, the convergence speed

of the proposed MAB learning algorithms also depends on

the number of shiftable devices which take part in the loads

scheduling game. Indeed, as illustrated in Table I for the Exp3

method, the greater the number of appliances (i.e., users), the

faster the convergence. These results affirm the applicability

of such learning algorithms to real use-case scenarios, where

thousands of users would participate in the DSM game with

the expectation of reducing their bills even in the short-term.

TABLE I
CONVERGENCE TIME (MEASURED AS NUMBER OF ITERATIONS) WITH

EXP3 ALGORITHM AND 1% AND 5% NASH EQUILIBRIUM GAPS

NE Gap 5 % NE Gap 1 %
Flexibility Low High Low High

U
se

rs

10 51 622 3491 -
20 3 588 3362 -
30 1 447 3217 -
40 1 450 2673 9403
50 1 447 2648 8897

VI. CONCLUSIONS

Demand-side management systems are currently considered

a very effective solution to control users’ power loads in

the smart grid. In this paper, we proposed several solutions

specially tailored for a DSM framework used to schedule

the electric devices of residential consumers on a daily basis

in a distributed fashion, with the goal of minimizing their

bills. In our vision, each appliance decides autonomously

(and independently of other appliances) its schedule for the

next iteration based on multi-armed bandit algorithms, finding

an optimal balance between the exploration and exploitation

efforts. In particular, at each iteration, each player chooses an

action (i.e., a feasible appliance schedule) which minimizes

the expected regret with respect to the cost-optimal strategy.

We measured the performance of our proposed methods

and scheduling algorithms using realistic instances of the

DSM load scheduling game, showing their effectiveness in

converging to very efficient operating points characterized by

low tariffs. Moreover, our proposed methods do not require

any communication among players, therefore addressing both

security and privacy concerns that affect other solutions pro-

posed in the literature. For this reason, our proposed schemes

represent a promising and very efficient solution to implement

DSM systems in next generation smart grid infrastructures. In

such context, this work proposed to model the problem of

appliances scheduling as a multi-armed bandit problem.
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