
Stochastic Planning for Content Delivery: Unveiling

the Benefits of Network Functions Virtualization

Michele Mangili∗†, Fabio Martignon∗‡ and Antonio Capone†
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Abstract—Content Delivery Networks (CDNs) have been iden-
tified as one of the relevant use cases where the emerging
paradigm of Network Functions Virtualization (NFV) will likely
be beneficial. In fact, virtualization fosters flexibility, since
on-demand resource allocation of virtual CDN nodes can accom-
modate sudden traffic demand changes. However, there are cases
where physical appliances should still be preferred, therefore we
envision a mixed architecture in between these two solutions,
capable to exploit the advantages of both of them. Motivated by
these reasons, in this paper we formulate a two-stage stochastic
planning model that can be used by CDN operators to compute
the optimal long-term network planning decision, deploying
physical CDN appliances in the network and/or leasing resources
for virtual CDN nodes in data centers. Key findings demonstrate
that for a large range of pricing options and traffic profiles, NFV
can significantly save network costs spent by the operator to
provide the content distribution service.

Keywords—Content Distribution, Network Function Virtualiza-
tion, Resource Allocation, Stochastic Network Planning.

I. INTRODUCTION

The worldwide success of content-rich web applications
like social networks or on-demand streaming services has
forced network operators to invest a significant amount of
money in order to keep up-to-date their communication infras-
tructures [1]. In particular, Content Delivery Networks (CDNs)
have nowadays become a necessary (and well-established)
technology to efficiently serve the traffic demands that con-
sumers are generating, while supporting the high level of
performance and reliability that providers are demanding [2].

Although CDN is an effective infrastructure to move
replicas of popular contents closer to the users’ locations, it
requires significant investments to be built and operated. As
an example, the Akamai infrastructure comprises more than
61 000 servers deployed in 1 000 networks and 70 countries
worldwide [3]. To reduce the capital expenditures and improve
the performance of CDNs, organizations such as the Internet
Engineering Task Force (IETF) and the European Telecom-
munications Standards Institute (ETSI) have recently begun a
standardization process for two alternative architectures:

• Content Delivery Network Interconnection (CDNI);
• Virtual Content Delivery Network (vCDN).

Despite the fact that they both have to deal with net-
work content distribution, these proposals have a radically
different scope: the former (CDNI) is mostly concerned with
the co-operation of many CDN providers [4], whereas the
latter (vCDN) proposes to virtualize the CDN services on

top of the novel layer for Network Functions Virtualiza-
tion (NFV) [5].

While both the architectures aim at optimally exploiting
available physical resources, the grounds of CDNI are settled
on agreements between different CDN operators that often
are in direct competition in the same market. On the other
hand, the NFV approach is to run network functions in a
virtualized environment, executed on a shared physical infras-
tructure composed of industry standard high volume servers,
storage and switches [5]. Therefore, vCDN implemented on
top of NFV enjoys the positive advantage of avoiding potential
competition issues, since the virtualized environment ensures
the necessary level of isolation between the different network
functions. Furthermore, spare NFV substrate capacity can be
leased by network operators to third parties, a condition that
makes vCDN appear even more profitable.

Motivated by the previous background, in this paper we
tackle a fundamental issue that arises in such context: the plan-
ning problem for a mixed physical-virtual Content Delivery
Network under uncertain traffic demands. In our formulation,
the CDN operator can choose between purchasing physical
CDN appliances and leasing instances of virtual CDN nodes
provided by an infrastructure operator. However, while vCDN
nodes can be activated on-demand if the traffic requests require
to do so, the installation of physical CDN nodes must be
chosen on a long-term schedule. For both physical or virtual
CDN surrogate servers, the operator must carefully choose
their location, while minimizing the overall costs. Due to
the fact that planning is performed on a long-term basis, the
theoretical framework of stochastic optimization will be used
to guarantee robustness of the solution with respect to the
uncertainty in the probabilistic description of future traffic
demands.

The contribution of this paper is summarized as follows:

1) We formulate a two-stage stochastic planning model
used by CDN operators to compute the optimal, long-
term network planning decision, under traffic demands
uncertainty.

2) We propose a greedy heuristic approach that finds good
solutions (close to the optimum, in several cases) even
for large-scale network topologies, and we compare its
execution time with exact solution strategies: (1) the
deterministic equivalent program in the extensive form
and (2) the L-shaped algorithm (single and multicut
versions) [6].

3) We perform an extensive numerical evaluation, consider-
ing real scale topologies and a wide range of parameters.



Our key findings suggest that a mixed physical-virtual CDN
infrastructure leads to significant lower costs when compared
to those obtained by a standard CDN, while being robust with
respect to sudden traffic demand changes.

The paper is organized as follows: Sec. II discusses related
work. In Sec. III we present our contribution; in particular,
the system is described in Sec. III-A; the optimization model
is presented in Sec. III-B, while the greedy algorithm is illus-
trated in Sec. III-C. Numerical results are presented in Sec. IV,
and Sec. V concludes this paper.

II. RELATED WORK

In this section, we survey relevant literature on Net-
work Functions Virtualization (Sec. II-A), Content Deliv-
ery Networks (Sec. II-B) and Stochastic Optimization tech-
niques (Sec. II-C).

A. Network Functions Virtualization

To support the network virtualization paradigm, one of
the challenges that must be solved is to find a mapping
between a set of requests for virtual network resources and
the available underlying physical infrastructure, ensuring that
desired performance requirements on nodes and links are
guaranteed [7]. This is the virtual network embedding (VNE)
problem, which is known to be NP-hard, since it can be
reduced to the multi-way separator problem [8]. VNE has
received a lot of attention from the community, and several
heuristic algorithms have been proposed, e.g. in [9]–[11].

Jarray et al. propose in [9] a column-generation tech-
nique coupled with a rounding heuristic to discover the most
profitable embedding, under the constrained physical capacity
of the infrastructure. Deterministic and randomized rounding
techniques are used by Chowdhury et al. in [10], where
they further facilitate the virtual link mapping by designing
an augmented graph description to efficiently support node
location constraints. Cheng et al. in [11] solve the node
mapping step with a greedy algorithm: higher ranking is given
to the nodes that possess more spare resources and are placed
in better locations of the network.

Rather than assuming that the operator knows a-priori
the traffic demands, our contribution is to consider the case
where their probability distribution is known, and our proposed
formulation is robust with respect to such uncertainty.

B. Content Delivery Networks

In the last few years, content multihoming is emerging as
a novel technique for content delivery networks that makes it
possible to jointly use many CDN services: [1], [2], [12].

Adhikari et al. show in [1] that the Netflix infrastructure
already leverages multiple CDNs (Akamai, LimeLight and
Level-3). The authors observe that the customers are mapped
to a particular CDN in a rather static manner. In [2], Liu et
al. further confirm that other major content publishers such
as Hulu, Microsoft, Apple, Facebook and MSNBC are cur-
rently already exploiting content multihoming. Furthermore,
given the practical relevance of this architecture, they design
optimization algorithms to minimize the overall distribution
costs under constrained quality requirements. Finally, Wang

et al. extended in [12] the work of Liu et al., by explicitly
considering capacity constraints on the surrogate nodes.

The novelty of our approach is to consider a new dis-
tribution architecture, implemented on top of NFV, where
virtual CDN nodes can be used for content delivery purposes.
Rather than forcing the provider to settle agreements with other
CDN operators, our proposal guarantees better isolation and
dramatically limits potential competition issues.

C. Stochastic Optimization

In practical scenarios, network design cannot assume that
future traffic demands are known a-priori; on the other hand,
more advanced optimization techniques must be used to take
into consideration the stochastic nature of input parame-
ters: [13]–[15].

Atamtürk et al. formulate in [13] a two-stage network de-
sign model with traffic demand uncertainty. In their approach,
the operator performs the planning decision according to a
probabilistic description of traffic demands. The value of the
second-stage recourse variables is chosen by changing flow
routing. Liu describes in [14] the basic stochastic procedures
applied to a flow assignment network design problem, showing
the here-and-know solution and the scenario-tracking result
obtained for the flow-assignment. A multistage stochastic
programming model for mobile radio access networks has been
proposed by Eisenblätter et al. in [15]. In their formulation
they jointly take into consideration the coverage and capacity
of their communication infrastructure.

In line with previous literature, our formulation takes into
account the uncertainty embedded in future traffic demands.
Our contribution is to apply the theoretical framework of
stochastic optimization to content distribution.

III. OPTIMAL CONTENT DELIVERY IN NFV

In this section we describe our proposed solution for
the optimal content delivery planning in NFV. Sec. III-A
introduces the system model and relevant assumptions. In Sec.
III-B we formulate the optimization model, while in Sec. III-C
we discuss the design of a near-optimal heuristic algorithm.

A. System Model and Assumptions

Figure 1 shows the system model we consider in our pro-
posal. In this work we tackle the long-term planning problem
from the point of view of a CDN provider. The aim of the
provider is to perform two choices:

1) Select whether and where physical CDN nodes should be
installed in the network topology;

2) Select the optimal request routing, given the installed
physical CDNs and the virtual nodes available.

Since the planning decision is operated on a long-term time
schedule, the provider does not deterministically know what is
going to happen in the future. On the other hand, we assume
that an estimate of the continuous probability distribution of
future traffic demands is known for the planning problem.
However, for the sake of simplicity, and as frequently done
in the literature (e,g: [6], [15]), we discretize this information
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Figure 1. System model. The network is composed by consumers, routers,
virtual and physical CDN surrogates. Our proposed optimization model selects
(1) the planning of physical CDNs and (2) request routing.

on a finite number of scenarios, therefore our traffic model is
jointly time-varying and stochastic in its nature.

As shown in Fig. 1, traffic demands are expressed by the
consumers. Virtual and physical CDN nodes can both be used
to efficiently serve consumers’ demands, however there exist
major differences (in terms of capacity, activation choice and
pricing policy) between these two types of CDN hosts:

• Capacity: virtual CDN nodes can serve a lower amount of
traffic requests since the presence of the hypervisor and
the shared hardware infrastructure reduces the throughput
of the CDN surrogates.

• Activation choice: virtual CDN servers can be used on-
demand, and they do not need to be explicitly activated.
On the other hand, if the operator chooses to install a
physical CDN server, it will be activated once and it will
stay active throughout the entire time horizon.

• Pricing policy: physical CDN nodes have an activation
price that considers both the capital expenditure (CAPEX)
for the acquisition of the device as well as the long-term
operational expenditure (OPEX) costs. On the other hand,
the virtual CDN nodes have a traffic-proportional price
related to the OPEX cost component, which is the per-
bandwidth leasing price that the vCDN owner charges.

Since virtual CDN nodes can be used on-demand, they can
serve the portion of traffic requests with the highest variability.
To improve the quality of service of a CDN, surrogate servers
must be selected close to the location of consumers. For this
purpose, we use the link delay to control the performance of
the infrastructure: we assume that the content provider wants
to serve a fraction of the overall requests within a bounded
limit on the delay.

Popular CDN providers such as Amazon CloudFront or
Microsoft Azure CDN do not have an activation cost but charge
for their services according to the amount of traffic that sur-
rogates are providing, regardless of the caching storage used.
Moreover, frequent flash crowds make the object popularity
suddenly change, whereas having an estimate of the aggregate
future demands is instead much easier [16]. For these reasons,
we focus on infrastructure planning and request routing, while
we do not tackle the replica placement problem.

Table I. NOTATION USED IN THIS PAPER.

Input Parameters

D Set of consumers (destination nodes)

S
Set of candidate surrogate servers (source nodes)

S = SP ∪ SV

SP Set of candidate physical CDN servers

SV Set of candidate virtual CDN servers

T Set of time slots

Φ Set of stochastic scenarios

r
t,φ
d

Traffic requests of client d ∈ D, at time slot t ∈ T ,
for scenario φ ∈ Φ

ǫ
Minimum service level guaranteed (fraction of traffic
requests served with a bounded delay of at most ∆)

∆ Maximum tolerated delay

δs,d Delay between the nodes s ∈ S, d ∈ D

KP
s Capacity of the physical CDN server s ∈ SP

KV
s Capacity of the virtual CDN server s ∈ SV

CP
s

CAPEX and OPEX costs of the physical CDN server

installed at a candidate site s ∈ SP

CV
s

Usage cost of the virtual CDN server at the

candidate site s ∈ SV

pφ Realization probability for the scenario φ ∈ Φ

Decision Variables

as
0-1 Physical CDN activation variable. as = 1 if a

physical CDN is installed at the candidate point s ∈ SP

y
t,φ
s,d

Physical CDN flow variable for requests served by s ∈ SP

to client d ∈ D, at time t ∈ T , and scenario φ ∈ Φ

z
t,φ
s,d

Virtual CDN flow variable for requests served by s ∈ SV

to client d ∈ D, at time t ∈ T , and scenario φ ∈ Φ

B. Optimization Model

In this section we describe the optimization model we
formulate for the optimal planning of a mixed physical-virtual
CDN infrastructure. The notation is summarized in Table I.

Let S = SP ∪ SV be the set of CDN surrogate servers,
where SP and SV represent candidate physical and virtual
surrogate nodes, respectively. Consumers are denoted with D,
the set of time slots is represented with T , while the set
of stochastic scenarios is Φ. Each scenario φ ∈ Φ has an
associated realization probability, represented by pφ. Con-
sumers d ∈ D express a time-varying traffic demand for

each scenario φ ∈ Φ, that we indicate with r
t,φ
d . The CDN

provider ensures that at least a fraction ǫ of the aggregate
requests in every time slot is served by CDN nodes within a
bounded delay, denoted as ∆. The topological information is
encoded in our proposed optimization model using the δs,d
input parameter, which represents the delay between client
d ∈ D and CDN node s ∈ S . KP

s and KV
s are the bandwidth

capacities for physical and virtual CDNs, respectively. Physical
nodes have an activation cost CP

s , while virtual CDN nodes
have a traffic-proportional cost CV

s .

Our proposed optimization model chooses the optimal
physical nodes placement and request routing. as is a binary
decision variable that is set to 1 if and only if the physical
candidate server s ∈ SP is activated. Traffic requests for
consumer d, in time slot t for scenario φ can be served by

flows y
t,φ
s,d and z

t,φ
s,d . In particular, y

t,φ
s,d is a flow originating

from the physical node s ∈ SP , while z
t,φ
s,d is a flow provided

by the virtual node s ∈ SV .



The deterministic equivalent program in the extensive form
for the CDN planning problem of our infrastructure (EF-CDN)
is formulated as follows:

min
∑

s∈SP

[

CP
s as

]

+ EΦ





∑

s∈SV

∑

t∈T

∑

d∈D

(

CV
s z

t,φ
s,d

)



 (1)

subject to:
∑

d∈D

y
t,φ
s,d ≤ asK

P
s ∀s ∈ SP

, t ∈ T , φ ∈ Φ (2)

∑

d∈D

z
t,φ
s,d ≤ KV

s ∀s ∈ SV
, t ∈ T , φ ∈ Φ (3)

∑

s∈SP

y
t,φ
s,d +

∑

s∈SV

z
t,φ
s,d = r

t,φ
d ∀d ∈ D, t ∈ T , φ ∈ Φ (4)

∑

d∈D









∑

s∈SP |δs,d≤∆

y
t,φ
s,d +

∑

s∈SV |δs,d≤∆

z
t,φ
s,d

r
t,φ
d









≥ ǫ ∀t ∈ T , φ ∈ Φ

(5)

as ∈ {0, 1} ∀s ∈ SP
(6)

y
t,φ
s,d , z

t,φ
s,d ∈ R

+ ∀s ∈ S, d ∈ D, t ∈ T , φ ∈ Φ. (7)

The objective function (1) minimizes the overall costs
given by the activation of physical CDN nodes as well as
the usage of the virtual infrastructure. In particular, the virtual
cost component is computed as the expected value for all
the considered scenarios. Constraints (2) set a capacity bound
on the overall demand served by physical CDN surrogates.
If a physical surrogate is not activated, that is as = 0, it
will not be capable to serve any request. Similarly, the virtual
CDN nodes capacity is fixed in (3). In (4) we make sure that
the overall clients’ demands are served in any time slot and
scenario, by virtual or physical surrogate servers. Flows can
be split across multiple CDN servers. In (5) we control the
overall service quality. We make sure that a fraction of at
least ǫ requests in each time slot is served by CDN surrogates
within a maximum delay of ∆. Finally, binary restrictions on
the activation variables are set in (6), while non-negativity
constraints on the continuous flow variables are enforced in (7).
Rather than considering the worst or mean case, the stochastic
formulation ensures that constraints hold in every scenario,
while the objective function is optimized given the uncertainty
on future traffic requests.

In order to solve the optimization problem (1)-(7) we
employ different strategies:

1) A mixed integer linear programming solver (MILP);
2) The L-shaped algorithm (single and multicut versions);
3) A polynomial-time greedy heuristic.

In Sec. III-C we present our proposed heuristic, while we refer
to Van Slyke and Wets [6] for an introduction to the L-shaped
algorithm since, for the sake of brevity, in this paper we omit
its implementation details.

C. Heuristic Solver

The L-shaped algorithm can be used to find an exact solu-
tion of the optimization problem we formulated in Sec. III-B.
Theoretical results guarantee that the L-shaped algorithm
converges to the optimal solution, but in some cases the
speed of convergence might be too slow for the considered
application. In this section we describe the polynomial-time

Algorithm 1: Heuristic solver

Input : 〈D,S, T ,Φ, rt,φd ,KP
s ,K

V
s , CP

s , CV
s , δs,d,∆, ǫ, pφ〉

Output: â, ŷ
t,φ
s,d , ẑ

t,φ
s,d , min cost

1 â = [1; 1; ...; 1]; phy nodes = sort phy CDN nodes();
2 if ¬is feasible(â) then

return INFEASIBLE ASSIGNMENT ;
end

〈ŷt,φ
s,d , ẑ

t,φ
s,d , min cost〉 = get LP solution(â); best sol = â;

3 foreach s ∈ phy nodes do
âs = 0 ;

〈ŷt,φ
s,d , ẑ

t,φ
s,d , current min cost〉 = get LP solution(â);

if current min cost ≥ min cost then
break ;

end
min cost = current min cost ; best sol = â;

end

4 â = best sol ; 〈ŷt,φ
s,d , ẑ

t,φ
s,d , min cost〉 = get LP solution(â);

heuristic we designed to compute a close-to-optimal solution to
the planning problem. Pseudo-code is provided in Algorithm 1
to describe the steps we use to achieve this purpose.

At the beginning of the algorithm, in Step 1, all the physical
nodes are activated and sorted. In particular, we give higher
priority to those nodes that can serve the largest amount of
traffic demands within a delay of ∆. Given the structure of the
problem, infeasible solutions are those that cannot be served
even when all the physical CDN nodes have been activated.
In Step 2 we check this condition and we eventually signal a
potential infeasibility. The get LP solution function computes
a solution for the continuous relaxation of the model (1)-(7),
using a standard linear programming solver, and therefore
has a polynomial-time complexity. As outputs, it returns the
optimal flows for the physical and virtual CDN nodes as well
as the overall cost. In case of infeasibility, the output value
of min cost is set to infinite. The loop in Step 3 deactivates
at every iteration one new physical node, according to the
previously generated ordering, and it completes when the
objective function does not improve anymore. Lastly, in Step 4
we compute the optimal flows starting from the best physical
nodes allocation choice.

IV. NUMERICAL RESULTS

In this section we present the numerical results we obtained
performing a thorough analysis of our models and heuristics
under realistic network conditions.

Unless stated otherwise, our network topology is created
using the Barabási–Albert model and is composed of 50
consumers, 20 physical and 15 virtual CDN nodes. Traffic
demands are generated using as a reference the Cisco VNI
data for the 2014-2017 years: the planning horizon is of 3
years and we used 36 different time slots. Traffic uncertainty is
taken into account by considering 10 different scenarios, with
a variable overall demand uniformly distributed between 80%
and 120% of the Cisco forecast. Slightly better results were
observed considering the more favorable case of the binomial
distribution with success probability p = 0.5. To control the
overall demand, we limit to 20 Gbit/s the maximum traffic
requests that a consumer can generate in a time slot of a
scenario. Physical CDN nodes have a capacity of 12.5 Gbit/s,
while virtual CDNs can serve up to 8 Gbit/s. Similar trends
have been observed for other values of the capacity, omitted
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Figure 2. NFV Benefits. Plots 2a-2c show the cost benefits of an architecture composed of a mix of physical and virtual CDN nodes (denoted in the figures
with vCDN), with respect to the scenario where only the physical CDN infrastructure is used (denoted in the figures with CDN). Different prices are considered
for the vCDN case, as shown in the legend.
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Figure 3. Effect of the vCDN Price. Plots 3a-3c show the effect of the virtual nodes pricing on the overall cost (Fig. 3a), the fraction of traffic served by the
physical infrastructure (Fig. 3b) and the number of physical nodes activated (Fig. 3c), for different solution algorithms as well as a physical-only infrastructure
(denoted in the figures with CDN).

here for the sake of brevity. Link delays are generated in the
range of those available on Rocketfuel for the Sprintlink (US)
topology, with an average delay of 3 ms. Moreover, we assume
the CDN provider wants to guarantee that at least 95% of
the requests are served by surrogates with a delay lower than
12 ms, that is, selected CDN nodes are, on average, 4 hops far
from the consumer’s location.

Lastly, prices are set as follows: we assume that the cost
to install and operate one CDN node is set in the range
[8; 12] kUSD, while different prices will be considered for
virtual CDN nodes in the range [0.001; 10]USD per Mbit/s.
For the same physical-virtual price ratios, even by considering
different values for the physical CDN pricing, we observed
similar trends as those discussed in this section. Hereafter,
we report the result we obtained using CPLEX 12.5 as a
MILP solver, bounding the maximum execution time of the
algorithms to 1 hour (with a 5% MIP gap), and using a machine
equipped with a quad-core Intel i7-3770 (3.40 GHz) CPU with
16 Gbyte of RAM. Lastly, for each of the results we performed
20 different runs and we report the narrow 95% confidence
intervals.

NFV Benefits. Fig. 2 shows the cost benefits for the mixed
physical-virtual CDN architecture, considering different virtual
prices. As expected, in Fig. 2a-2c, lower CDN prices lead to
lower overall costs. The effect of the physical CDN capacity
is shown in Fig. 2a. If the capacity of the physical CDN
appliances is lower than 10 Gbit/s, using virtual nodes becomes
mandatory since otherwise an infeasibility is produced. When
the physical CDN nodes capacity is set to 15 Gbit/s, cost
savings up to 46% are experienced for cheap virtual CDN
pricing (i.e, 0.001 USD per unit of bandwidth), whereas the
saving is reduced to 16% if we set a vCDN price of one order
of magnitude larger (i.e, 0.01 USD per unit of bandwidth).
Fig. 2b shows the effect of the number of clients on the
costs. The physical-only CDN infrastructure cannot handle

more than 50 clients, whereas up to 100 clients can be served
if we also leverage the 15 virtual CDNs deployed. The effects
of traffic uncertainties are quantified in Fig. 3c, where we show
the overall cost as a function of the traffic demand variance.
With the largest variance that we took into account, the
vCDN infrastructure leads to cost savings in the range 16-43%
according to the vCDN pricing.

Effect of the vCDN Price. Due to its remarkable effect,
in Fig. 3 we show the impact of the virtual CDN pricing
using the different solution algorithms. The overall cost is
portrayed in Fig. 3a. Solutions obtained with exact solvers
such as the deterministic equivalent program in the extensive
form or the L-shaped algorithm lead to costs up to 11%
(and on average 6%) lower than those reported with the
heuristic. Fig. 3a clearly shows that the higher the prices, the
lower the economic benefits of using a mixed physical-virtual
CDN infrastructure. In particular, considering prices in the
range [0.001; 0.5]USD per unit of bandwidth, the cost savings
compared to the physical-only solution are in the range 5-64%.
Fig 3b shows the proportion of physical traffic with respect
to the overall demand, as a function of the price of virtual
nodes. Cheap prices make the virtual CDN capacity be fully
saturated, and for this reason the left hand-side of Fig. 3b has
an horizontal trend that accounts for 57% of the overall traffic.
As a consequence, in Fig. 3c is reported that the number of
physical CDN nodes does not increase for virtual prices lower
than 0.01 USD. Comparing Fig. 3b and 3c, the slope of the
curve is less steep in the second plot, since there are cases
where it is convenient to strategically deploy a physical CDN
server in a special position of the topology even though it is
not fully used by the clients. It is interesting to note that for
both Fig. 3b and 3c the heuristic algorithm leads to solutions
that are practically overlapped to the optimal choice.

Computing time. To limit the effects of infeasibilities that
negatively affects results on the computing time, hereafter we
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Figure 4. Execution time. Plots 4a-4c show the behavior of the different solution algorithms as a function of the number of clients as well as the number of
surrogate nodes. We observe that the number of clients has the most remarkable effect on the execution time.

raise the number of virtual CDN nodes to 50, making the
network be capable to serve up to 150 consumers. Fig. 4
shows the execution time of the different algorithms as a
function of the number of clients (Fig. 4a), the number of
physical (Fig. 4b), and virtual CDNs (Fig. 4c).

The number of clients is the parameter that mostly affects
the execution time, as portrayed in Fig. 4a. In particular,
the MILP solver for the deterministic equivalent program has
a time trend that is exponential in the number of served
clients (Fig. 4a), but linear in the number of physical (Fig. 4b)
and virtual CDNs (Fig. 4c). While the MILP solver can hardly
scale to topologies with a larger number of nodes, this possibil-
ity is instead offered by the L-shaped decomposition and our
proposed heuristic. As a matter of fact, all these algorithms
can solve the planning problem saving up to 94% of time
compared to MILP, when considering 150 clients, as shown
in Fig. 4a. Lastly, although there are cases where the heuristic
algorithm is slightly slower than the L-shaped algorithm (as in
Fig. 4c), we remark the fact that the heuristic has a worst-case
polynomial time complexity, whereas a comparable theoretical
result for the L-shaped algorithm does not hold.

V. CONCLUSION

In this paper we tackled the stochastic planning problem
for content delivery to study potential benefits that Network
Functions Virtualization can lead for content distribution pur-
poses. We considered a mixed architecture where both physical
as well as virtual CDN nodes can be used by a CDN owner
to implement the content distribution service. The owner per-
forms the planning choice for the physical CDN infrastructure
on a long-term time schedule, possessing only a stochastic
estimate of future traffic demands.

Our study shows that a mixed solution where both virtual
an physical CDN nodes are used can dramatically reduce the
overall costs sustained by the operator to purchase and operate
the distribution infrastructure. In particular, we observed that
gains can be up to 65% when considering the cheapest vCDN
price. Our contribution is also to formulate efficient solution
algorithms for the two-stage stochastic planning problem that
can scale to realistic topology sizes. Rather than solving the
deterministic equivalent problem in the extensive form, our
proposed L-shaped algorithm and heuristic can efficiently find
a solution, saving up to 95% of time compared to the MILP
solver.
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