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Abstract—Game theory is a key analytical tool to design
Demand-Side Management (DSM) systems, since it can be used to
model the complex interactions among the independent actors of
the smart grids. In this paper, we propose two learning algorithms
to enable the players of game theoretic DSM frameworks to
autonomously converge to the Nash equilibria of the game, and
we evaluate their performance based on real instances of the
problem.

I. INTRODUCTION

Demand-side management systems represent an efficient
method to control and schedule the consumers’ appliances with
the aim of improving the efficiency of smart grids. Specifically,
these solutions can be applied to shift the users’ demand
from peak to off-peak periods, therefore reducing the need
for generation, transmission and distribution capacity, as well
as the power grids investments.
In the field of DSM systems, game theoretic methods have
gained increased momentum, since they can be used to model
and study the interactions among the independent rational users
of power grids. In this case, the demand management problem
is formulated as a game, where the players are the consumers
or the appliances themselves, the strategies are the schedules
of devices and the utility functions are the energy bills [1]. The
goal of these methods is to drive the system to equilibria that
improve the efficiency of the power grid. However, converging
to the game equilibria is a non-trivial challenge and learning
algorithms are required to this end [2].
In this paper, we propose two distributed learning algorithms,
which enable the consumers to autonomously converge to
the equilibria of DSM games through an iterative procedure.
Specifically, in these algorithms, the scheduling decision prob-
lem of each player is modeled as a Markov chain: each feasible
appliance schedule is associated with a state of the chain, and
state transition probabilities are updated at every iteration of
the procedure, based on the bills of players. At each iteration,
all appliances switch to a new schedule with a probability
proportional to the cost difference between the actual and
cheapest schedules of the previous iteration.
The paper is organized as follows. Section II describes the
learning algorithms that we have designed to converge to the
Nash equilibrium of the DSM game. Numerical results are
provided in Section III and conclusions are drawn in Section
IV.

II. DSM LEARNING ALGORITHMS

In this paper, we consider a generic smart grid model in
which each consumer h of a group of residential users, H,

has a set of appliances, A, that have to be scheduled over
a 24-hour time period divided into a set, T , of time slots.
Each device a of consumer h, which is characterized by a
load profile lah, must be executed only once within the time
window [STah, ETah]. The energy tariff is defined based on
a real-time pricing scheme. Specifically, since the higher the
demand of electricity, the larger the capacity of grid generation
and distribution to install, the electricity price at each time
t ∈ T , ct, is defined as an increasing function of the total
power demand, yt, of the group H at time t.
The appliance scheduling problem can be modelled as a non-
cooperative game G = {N , I,U} [3]: N = A × H is the
players set (player n = (a, h) is the appliance a of consumer

h), I , {In}n∈N is the set of strategies which correspond to

the appliances schedule and U , {Un}n∈N is the set of utility
functions that coincide with the devices electricity bills. In this
DSM game, each player (appliance) n chooses its strategy In
to minimize its cost Un.
In order to enable players to converge to the Nash equilibria of
the game, we have designed two learning algorithms based on
the proportional imitation rule [4]. In these algorithms, which
are defined as iterative procedures, the schedule selection
problem of each appliance n ∈ N is modeled as a Markov
chain (see Figure 1) in which each state s ∈ Sn is associated
with a possible feasible schedule of the appliance n. At
each iteration (i.e., day) k, the appliance n selects a certain
schedule/state s ∈ Sn which gives to n a certain utility (i.e.,
bill) Uk

n . This bill, together with the potential bills that n would
have paid if it had executed any other schedule, is used to
update the states transition probabilities of the chain P (si, sj)
with si, sj ∈ Sn. At the next iteration k + 1, the process
randomly moves to a new state s′ ∈ Sn based on the transition
probabilities, and the appliance n receives a new bill Uk+1

n .
In order to define the transition probabilities, we have designed
two policies: Two-State (TS) policy and Multi-State (MS)
policy. In the first case, in each iteration k, the initial Markov
chain of Figure 1 is reduced to a two-state chain, since only
two possible alternatives are considered to select the device
schedule for the current day: keeping to use the old schedule
or switching to the cheapest schedule among the feasible
ones. In order to foster the change whenever the alternative
schedule is more convenient, the transition probabilities are
updated according to the difference between the corresponding
schedules’ electricity prices. On the other hand, in the MS case,
the algorithm considers all the cheaper schedules among all the
feasible alternatives besides the old schedule and the transition
probabilities are properly defined so that the lower the ratio
between the old and the cheaper schedule, the higher the



probability to change and use such more convenient schedule.

III. NUMERICAL RESULTS

The proposed learning algorithms have been tested on
realistic instances of the DSM problem [5], [6]. Specifically,
we have considered a group of 100 consumers, each one having
4 shiftable devices out of 11 realistically-modeled appliances
(i.e., shiftable devices: washing machine, dishwasher, boiler,
vacuum cleaner; fixed devices: refrigerator, purifier, lights,
microwave oven, oven, TV, iron). As for the load scheduling
flexibility (i.e., the size of the [STn, ETn] time-window),
we have defined three scenarios: no flexibility, in which the
appliances schedule is fixed, low flexibility and high flexibility
in which, respectively, 3 and 8 different possible schedules are
randomly set for each device.
Numerical results are presented in Figure 2, in which we
compare the aggregated users’ bill obtained with the proposed
learning algorithms with the one associated with the Nash
equilibrium of the DSM game, in order to verify the conver-
gence of the learning methods. Moreover, we also show the
aggregated bill paid by the consumers when the usage of the
electric devices is not modified by the DSM system (i.e., no
scheduling flexibility).

As one can note from Figure 2, both the TS and MS learn-
ing policies converge rapidly to the Nash equilibrium. Specif-
ically, the two-state policy converges slightly more quickly
than the multi-state one, which has more alternative schedules
to select at each iteration and, therefore, a more extensive
exploration phase. Other than the policy, the convergence
time depends also on the flexibility of the DSM system: the
algorithms converge more rapidly to the Nash equilibrium with
a short flexibility level, since, in this case, each appliance has a
lower number of strategies to try, therefore requiring a shorter
exploration process. However, the shorter convergence time
comes at the cost of a worse performance of the DSM system
in terms of aggregated bill even if, even with low flexibility,
the consumers always achieve lower bills than those obtained
with fixed schedules.

IV. CONCLUSIONS

In this paper, we presented two distributed learning algo-
rithms to enable the consumers to autonomously converge to
the equilibria of loads scheduling games. In these methods,

Fig. 1. Markov decision chain of the appliance n used in the
scheduling learning process.
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Fig. 2. Aggregated utility with 100 users and different scheduling flexibility
levels.

which are defined as iterative processes, each appliance de-
cides autonomously its best schedule. The scheduling decision
problem, which is based on the proportional imitation rule,
is modeled as a Markov chain, where each feasible appliance
schedule is associated with a state of the chain, and the states
transition probabilities are updated according to the difference
between the paid electricity price and the bills associated with
the other schedules.
The performance of the proposed learning methods have been
evaluated based on realistic instances of the DSM game.
Numerical results have shown that these algorithms quickly
converge to stable Nash equilibria, which lead to cheaper bills
than those obtained without the proposed DSM framework.

REFERENCES

[1] A. Mohsenian-Rad, V. Wong, J. Jatskevich, R. Schober, and A. Leon-
Garcia, “Autonomous demand-side management based on game-theoretic
energy consumption scheduling for the future smart grid,” IEEE Trans.

on Smart Grid, vol. 1, no. 3, pp. 320–331, 2010.

[2] D. Fudenberg, The theory of learning in games. MIT press, 1998, vol. 2.

[3] A. Barbato, A. Capone, L. Chen, F. Martignon, and S. Paris, “A
distributed demand-side management framework for the smart grid,”
2014, preprint, http://arxiv.org/abs/1405.1964.

[4] S. Iellamo, L. Chen, and M. Coupechoux, “Proportional and double im-
itation rules for spectrum access in cognitive radio networks,” Computer

Networks, vol. 57, no. 8, pp. 1863–1879, 2013.

[5] ECORET Project, Official web site (ITA), http://www.rse-web.it/
progetti.page?RSE originalURI=/progetti/progetto/documento/178/
312827&objId=178&typeDesc=Rapporto&RSE manipulatePath=
yes&docIdType=1&country=ita, Sept 2014.

[6] MICENE Project,Official web site (ITA), http://www.eerg.it/index.php?
p=Progetti - MICENE, Sept 2014.


