
A Cache-Aware Mechanism to Enforce Confidentiality,

Trackability and Access Policy Evolution

in Content-Centric Networks

Michele Mangilia,b, Fabio Martignona,c,∗, Stefano Paraboschid

aLRI, Université Paris-Sud, Bat. 650, rue Noetzlin, 91405 Orsay, France.
bDEIB, Politecnico di Milano, via Ponzio 34/5, 20133 Milano, Italy.

cIUF, Institut Universitaire de France
dDip. di Ingegneria, Università degli Studi di Bergamo, Via Marconi 5, 24044 Dalmine (BG), Italy.

Abstract

The Content-Centric Networking (CCN) paradigm introduces a novel communication

model where any node in the network can implement caching functionalities to directly

serve incoming content requests. However, such a radical change in the protocol stack

poses new security challenges since the content producer loses control over the data he

provides to the network.

Our contribution is to propose ConfTrack-CCN, an efficient encryption-based exten-

sion to the CCN proposal, designed to enforce confidential data dissemination, trackable

content access and seamless support of policy evolution. ConfTrack-CCN jointly enforces

all these three requirements by protecting the data with two layers of encryption, the

latter of which evolves to reflect access privilege updates. A forced consumer-producer

interaction makes consumers fetch keying materials, while sending back logging data on

the accessed objects.

To evaluate the traffic reduction that ConfTrack-CCN can guarantee, we perform

thorough simulation campaigns with real network topologies, and we further study the

computational overhead introduced by the encryption primitives we use to secure the

communication. The results clearly show that, on average, ConfTrack-CCN ensures a

20% higher hit-rate than other security schemes, while introducing a negligible compu-

tational overhead.

Keywords: Content-Centric Networks, Security Architectures, Confidentiality,

Trackability, Access Policy Evolution.

∗Corresponding author, Tel: (+33) 01.69.15.68.16, Fax: (+33) 01.69.15.65.86
Email addresses: michele.mangili@lri.fr (Michele Mangili), fabio.martignon@lri.fr (Fabio

Martignon), parabosc@unibg.it (Stefano Paraboschi)

Preprint submitted to Elsevier Computer Networks October 31, 2014

1. Introduction

The objective that drove the development of the Internet when it was originally

conceived in the late ’60s was resource sharing [1]. In fact, the network was designed to let

the scientific community remotely exploit and share the available computational power,

which was very expensive at that time [2]. As a result of this need, the infrastructure

was used mostly to interconnect two remote machines and make them exchange data by

creating an end-to-end communication pipe. The presence in IP packets of the source and

destination addresses of the machines involved in the dialog reflects exactly the above-

mentioned objective. However, nowadays this end-to-end communication model does

not seem to be appropriate anymore. As a matter of fact, in terms of traffic, Internet is

currently mostly used as a means to perform content distribution of static data: users

care about retrieving the content that they are looking for, no matter where it is located

and stored [3].

Content-Delivery Networks (CDNs), such as Akamai [4], are a common technology

used nowadays to serve the ever increasing bandwidth demands of Internet users [5].

CDNs are built as overlay networks on top of the TCP/IP protocol stack. In this ar-

chitecture the publisher (i.e., the origin server) is assisted by a set of replica servers

scattered all over the world, to serve clients’ demands; clients requesting a given content

will be targeted to one of the available replica servers, which will in turn transparently

help the origin server to push the content towards the destination.

Such a content-oriented usage of the network is motivating the research community

to propose brand new architectures for the Future Internet known under the name of

Content-Centric Networks (CCNs). Despite that many CCNs have been proposed in the

literature [6, 7], they all share the common goal of changing the protocol stack to make

the network become an efficient content-distribution infrastructure, without having the

need to implement overlay approaches as done in CDNs. For the sake of clarity, in this

paper we focus our attention on the proposal known under the name of Named-Data

Networking (NDN) [8], since it is, to the best of our knowledge, the CCN architecture

that has so far received most of the attention from the scientific community1.

1For this reason, throughout the paper we will use the terms CCN and NDN interchangeably.

2

The CCN paradigm suggests to provide universal in-network caching as a default

feature implemented right inside the network protocol stack [9, 10]. Due to the presence

of the distributed caches, any node in the network can potentially serve the requested

content without contacting the origin server (i.e., the publisher) [11]. However, this fea-

ture acts as a double-edged sword since, on one side, it clearly improves the performance

of the network, reducing the costs faced by ISPs and content producers to operate the

infrastructure, lowering also the response time for users when accessing large resources.

On the other hand, it demands for novel mechanisms to enforce confidentiality, content

access trackability and to support access policy evolution at the same time.

Enforcing these three requirements in CCN demands for specific solutions. In par-

ticular, in order to make the design as simple as possible, the current proposal for CCN

poses the following constraints:

• Content is immutable (C1): it is impossible to update the content already

published under a given name. If a new version of the content is created, a new

name will be attributed to it, thus ensuring cache-coherency.

• Caches are autonomous (C2): each cache can choose the content replacement

strategy to adopt, thus making it possible for administrators to further customize

the network behavior.

From the security perspective, however, the joint presence of (C1) and (C2) introduces

the challenging issue that once the content has been published in the network, it is

impossible for the producer to make sure that such content is completely removed from

it. In fact, according to (C2) some caches might hold (and serve) the given object

for an indefinite period of time, whereas (C1) negates the possibility to overwrite the

given data. Not to mention, policy evolution clashes with (C1), whereas (C2) negates

the possibility to trust caching nodes or demand their cooperation, since they could act

independently from the content producer’s will. Therefore, in current proposals for CCN,

a consumer whose access privilege to a popular content has already been revoked might

still fetch that data directly from the caches, and, worst of all, without even making the

original producer be aware that the access violation occurred.

For all these reasons, in this paper we propose ConfTrack-CCN , a novel cache-aware

3

and encryption-based mechanism tailored for Content-Centric Networks, designed to be

integrated as an underlying layer of CCN. Data is protected by two layers of symmetric

encryption, the latter of which evolves to match access privilege updates, thus ensuring

confidentiality. Moreover, we force the consumers to retrieve keying material directly

from the original producers, an interaction that provides access trackability feedback.

Lastly, we efficiently enforce access policy evolution by making the nodes refresh only

a small fraction of the cached objects, a strategy that reduces the operational costs

of network operators, since it leads to higher overall hit-rates when compared to those

obtained with custom security solutions implemented at the application level.

In summary, our paper provides the following contributions:

• We discuss the problems that arise in a CCN, regarding confidential and trackable

access to resources, and propose ConfTrack-CCN, a novel security layer that en-

forces confidential and trackable content dissemination in CCNs in a cache-friendly

manner, while providing seamless support to the evolution of access policies.

• We perform a thorough analysis of the security of our proposal, by showing that

the mechanism ensures confidentiality when both the policy evolves and the access

privilege of a user is revoked. We further provide evidence that the encryption

scheme we design can be effectively used to detect and protect against malicious

users that cooperate forming a coalition.

• Wemeasure the performance of our proposed architecture by a simulation campaign

in real network topologies. Numerical results show that ConfTrack-CCN always

performs better than user-based encryption schemes, leading to a higher overall

hit-rate, while introducing a negligible performance penalty.

• We analyze the cryptographic overhead of our proposal by implementing a Java pro-

totype of ConfTrack-CCN. Collected results show that computationally demanding

encryption procedures are executed only once on the content producer side, i.e.,

when a new content is published on the network; a negligible performance overhead

is instead required on the consumer side.

The paper is structured as follows: Sec. 2 provides an overview of our proposal and

introduces the features of the CCN architecture relevant for our design. Sec. 3 describes in
4

detail ConfTrack-CCN, the mechanism we propose to enforce confidential and trackable

content dissemination in CCN. Sec. 4 is dedicated to the security analysis of our proposal

and provides insights regarding the protection offered in the presence of users’ collusion.

A thorough performance evaluation is presented in Sec. 5, using a mathematical analysis,

simulation results as well as a prototype implementation of the proposed encryption layer

in different, realistic network topologies. Sec. 6 discusses related works, and finally, Sec. 7

concludes the manuscript.

2. Overview of the Proposal

We begin this section by providing an overview of our proposal (Sec. 2.1), then we

present Named-Data Networking (NDN, Sec. 2.2), the particular instance of Content-

Centric Network (CCN) that we consider in our design. In Sec. 2.3 we describe our

network model and complementary assumptions, and we finally conclude by illustrating

User-Based Encryption (Sec. 2.4).

2.1. Security Challenges and Proposed Solution

The problem that we tackle in this paper is to support confidential and trackable

access to resources distributed using a CCN while fully supporting policy evolution.

The design principles of Content-Centric Networks leave the responsibility to manage

these properties to the applications. However, despite being technically feasible, our

analysis shows that an implementation of these features with no intervention on the

underlying protocol jeopardizes the correct realization of such security requirements. In

fact, as extensively discussed in Sec. 5.1, the overall cache hit-rate we observed while

using our proposed solution (ConfTrack-CCN) is on average 20% higher than the one

obtained with classic security architectures, meaning that our proposal leads to higher

network efficiency. To achieve this goal, the technique we propose applies a limited variant

to the current CCN protocol, and guarantees a correct enforcement of confidentiality

and trackability that otherwise could discourage content providers to adopt this novel

communication paradigm.

We settle our design on top of the solid ground of standard, state of the art, sym-

metric encryption and hash functions. By doing that, we can furthermore experience all

5

the benefits of leveraging efficient hardware implementations of these primitives that are

commonly provided in standard commercial CPUs since the Intel Westmere microarchi-

tecture (launched in January 2010) [12].

The rationale of our proposal starts from the necessity to control the access to re-

sources, which is needed since: (1) only specific users (e.g., paying subscribers) might

have acquired the privilege to access given data (i.e., Confidentiality requirement), (2) the

content provider wants to keep a precise track of the number and profile of access requests

(i.e., Trackability requirement), and (3) it should be possible to add and revoke access

privileges to users (i.e., Policy evolution requirement). Indeed, most content providers

today, (e.g., YouTube) show great interest in keeping track of every access and do not

directly offer to end users the possibility to download a local copy of the data for post-

poned fruition. However, in current implementations of CCNs, consumers might fetch

contents directly from the caches without sending any type of access feedback to the

original producer. For this reason, our idea is to let each user access an encrypted ver-

sion of the data, taking advantage of network caching for the efficient download of the

content, but forcing them to retrieve the decryption key directly from the origin server,

according to a specified policy.

The access policy may evolve, with the addition and removal of access privileges to

the resources. The addition of an access privilege only requires to authorize a new user

in retrieving the decryption key. The revocation of a privilege instead requires a more

complex solution: the resource is encrypted with a new key that is then made accessible

to the set of users who remain authorized after the evolution of the policy, but the correct

realization of this strategy requires an adaptation of the CCN infrastructure, which will

be reviewed hereafter for the sake of clarity.

2.2. Overview of Content-Centric Networks

Named-Data Networking (NDN) [8] is the Content-Centric Network (CCN) design we

consider in this work. The long term objective of the NDN project is to propose an alter-

native protocol for the “thin-waist” of the hourglass architecture of the network: NDN

should implement only the minimal functionalities needed to ensure global connectivity,

similarly to what the universal network layer of IP is currently doing in the Internet.

6

The fundamental feature consists in replacing host addresses with content names.

Each NDN packet does not contain anymore the source and destination IPs, but in-

stead carries the name of the content that has to be retrieved. From the syntactical

perspective, NDN proposes a hierarchical structure of names: they are composed of a

sequence of variable-length components, each of which is separated by the “/” sym-

bol. At the same time, NDN does not impose any component semantic: the chosen

namespace is completely transparent to the network, thus it is up to every applica-

tion to determine the best namespace conventions according to the type of service that

it is going to deliver. Despite that, the NDN proposal suggests to add version and

segment numbers by default to every name. As an example of an NDN name, con-

sider: /organization.com/arch/Work.zip/ v<Timestamp>/ s5, where organization.com is

a globally routable name, arch/Work.zip is the object name, whereas the version and the

segment number are appended to the two final components of the name, respectively.

As depicted in Fig. 1, in NDN there are two types of packets: (1) Interest and (2)

Data packets. Demands govern the interactions between nodes in the network, therefore

the communication model is pull -driven. A node sending interests acts as a consumer,

whereas a node that can provide data packets behaves as a producer. Routers have a

twofold responsibility: (1) they perform packet forwarding and (2) they can also behave

as distributed caches.

In NDN, network interfaces are abstracted using the concept of “Faces”. A “Face”

can either be a physical network interface, but it can also be an application operating on

a given node.

Each node in NDN is characterized by three data structures:

Interest packet

Content Name Content Name

Data packet

Content Name

Selector
(order preference, publisher filter, scope, ...)

Nonce

Signature
(digest algorithm, witness, ...)

Signed Info
(publisher ID, key locator, stale time, ...)

Data

Figure 1: Interest and Data packets in NDN.

7

1. The Pending Interest Table (PIT);

2. The Content Store (CS);

3. The Forwarding Information Base (FIB).

The PIT is responsible for tracking the list of interests previously forwarded, but not

yet answered. This table stores the faces from which interests were originally received, in

order to implement reverse path forwarding : as soon as a router receives a data packet,

it checks the PIT and forwards the packet on the same faces from which interests for

that object arrived. The CS acts as a persistent caching storage for the node, in order

to implement universal in-network caching. When an interest arrives, the router will

initially query the CS; in the case of a cache hit, the router will be able to directly serve

the data. The FIB comes into play when a cache miss happens: it contains the next-hop

information for prefix names.

An example showing the behavior of a CCN router is depicted in Fig. 2. In State 1,

the router receives two interests and one data packet. As shown in Fig. 2, the interest

for object /prefix/obj1 is directly served by the router since it is available in the CS.

The interest for /prefix/obj2 will be forwarded to Face 3 since it is the destination

available in the FIB. Lastly, the data packet for /prefix/obj3 will be forwarded to Face 0,

as written in the PIT. In State 2, the transition to the next state is represented: as

described, the router forwards one interest and two data packets.

In terms of security, due to the fact that interests do not contain the identity of the

sender, it is difficult for the provider to assess whether the given request came from a

legitimate host or not, thus violating confidentiality requirements. On top of that, no

access feedback is provided to the producer when data packets are served by intermediate

caches, thus violating access tracking requirements. For simplicity reasons, CCNs do not

provide cache coherency features, which means that they do not natively support policy

evolution requirement, since the content published in the network is immutable.

However, at the same time, interesting security features are already provided by

default in NDN: due to the fact that data packets can potentially be served by any node

in the network, they will be signed by the original producer in order to enforce packet

integrity and authentication. Creating a binding between the name of a content and the

8

corresponding bits of data permits to place trust in the packets themselves rather than

trusting the host from which the data was retrieved. The same requirement does not

apply to interest packets: as shown in Fig. 1, they do not possess the “Signature” field.

In addition to that, the applications will have to deal with trust and key management

issues since NDN provides no native support for their enforcement.

2.3. Network Model and Assumptions

Having revised the NDN paradigm we build upon, we now describe our network model

and assumptions. We consider a scenario where the content producer is selling digital

Interest:

/prefix/obj1

Consumer

1

Producer

1

Face 0

Face 1 Face 2

Face 3

Interest:

/prefix/obj2

Data:

/prefix/obj3

CS

Name Prefix Data

/prefix/obj1 1000 bytes

FIB

Name Prefix Faces

/prefix/obj1 3

/prefix/obj2

/prefix/obj3

3

2

PIT

Name Prefix Faces

/prefix/obj3 0

State 1

Producer

2

Consumer

2

Data:

/prefix/obj1

Consumer

1

Producer

1

Face 0

Face 1 Face 2

Face 3

Data:

/prefix/obj3

State 2

Producer

2
Consumer

2

Interest:

/prefix/obj2

Figure 2: Example illustrating the behavior of a CCN router. Two interests and one data packet are
received by the router in State 1. Given the information contained in the Pending Interests Table (PIT),
the Content Store (CS) and the Forwarding Information Base (FIB), in State 2 the router forwards two
data packets and one interest.

9

contents on the network: consumers have to purchase the right to access the data before

being able to make use of the corresponding bits. Since many different types of content

are nowadays distributed through the Internet, we formulate our proposal as to ensure

independence from the particular application considered, meaning that ConfTrack-CCN

can operate regardless of the particular type of content that is going to be delivered.

Some of the most popular digital marketplaces available today (such as iTunes Store,

Google Play, Amazon Store, Netflix, Windows Store) very well exemplify the charac-

teristics of the content distribution service we take into account to design our proposed

solution. While these services usually provide many types of content, ranging from movies

and e-books, to music and applications, the common feature shared by all of them is that

these files are quite large (from few Mbytes, to Gbytes or even more). For this reason,

the producer might want to offload the traffic demand on his technological infrastructure,

by leveraging the services provided by in-network caching.

A common type of contract that these services offer is the subscription plan: the

customer pays for a periodic subscription which gives her/him the right to access a given

subset of the content catalog for the whole duration of the purchased period. As soon as

the right to access the catalog expires, the user should be denied any further access to

the available collection of files. The rising popularity of Netflix provides evidences of the

remarkable importance that these particular types of service play nowadays, therefore

our design for ConfTrack-CCN specifically accommodates this precise need.

Finally, to keep the presentation as clear as possible, we make the assumption that

the particular application considered does not have stringent delay requirements. Despite

the fact that ConfTrack-CCN can also be used for live-streaming (by setting a small size

for the content block), in this paper we are mostly interested in evaluating the security

properties of our scheme and the network performance impact in terms of the hit-rate

that the application is going to experience.

2.4. User-based Encryption Scheme

In this subsection we illustrate the characteristics of user-based encryption and we

show that, despite the fact that it provides interesting security properties, it also com-

pletely jeopardizes the potential benefits introduced by in-network caching mechanisms.

10

Let U be the set of consumers, U ⊆ U denote a subset of users, while O is the set

of objects published by a content provider. We define a user-based encryption scheme

as follows: the content provider generates a new encryption key KU
o , for each content

o ∈ O that a given subset of users U ⊆ U is entitled to access. By restricting the

cardinality of the subset of users considered (i.e.: |U |), we can make this encryption

mechanism be very secure, at the price of jeopardizing the in-network caching efficiency.

As a matter of fact, if we consider a very small subset of users, ideally |U | = 1, many

different copies of the same content (encrypted with different keys) will be published

in the network. This feature not only makes the cardinality of the real object catalog

processed by intermediate routers rise to the very large |U|·|O| size, but it also completely

disrupts the overall object popularity statistics, severely affecting the efficiency of the

caching infrastructure. However, one such scheme has interesting security properties:

confidentiality is enforced by making the producer disclose the decryption keys only to the

authorized users. Instead, trackability and access policy evolution are jointly supported

by the fact that a very low cache hit-rate will be experienced and the producer can easily

re-encrypt the content and publish new versions that fully enforce the new access policy.

On the other hand, user-based encryption can also be used as a mechanism that

generates a high hit rate, but can only provide weak protection. In particular, one such

configuration can be achieved by selecting large |U | values, for instance using only one

encryption key per object (i.e.: U = U).

In the next sections we extensively describe our proposed ConfTrack-CCN mecha-

nism. In particular, the numerical results in Sec. 5 show that ConfTrack-CCN outper-

forms a user-based encryption scheme in terms of network efficiency, by leading to a

much higher overall hit-rate, while correctly implementing the security requirements of

confidentiality, trackability and access policy evolution.

3. Confidential and Trackable Content Dissemination Mechanism

We now introduce ConfTrack-CCN, the novel mechanism we propose to enforce con-

fidential and trackable content dissemination in CCNs, thus representing a fundamental

layer of the Content-Centric Network paradigm. Our vision is based on the following

principles:

11

Table 1: Summary of the notation used to illustrate the confidentiality mechanism.

Summary of the Notation
B The set of content blocks
C The set of chunks
n The number of content blocks, n = |B|
m The number of chunks per content block, m = |C|
Kb The First-Layer encryption key used for content block b ∈ B
s The First-Layer encryption key size expressed in bits

ri, ∀i ∈ {2, ...,m} Sequences of s random bits

K
Keying materials appended to the first chunk.
K = Kb ⊕ r2 ⊕ r3 ⊕ ...⊕ rm, where ⊕ is the bitwise XOR

SK(h, l) The Second-Layer encryption key
stp(h, l) Producer state of the key regression algorithm
stc(h, l) Consumer state of the key regression algorithm

h The version of the key
l The seed used to initialize key regression

• Encryption enforces confidentiality. The producer provides encrypted content

to the network. Caches store content without the right to access the plaintext.

• Key management enforces trackability. Consumers authenticate and directly

retrieve decryption keys from the original publisher.

• Access policy evolution is based on key-derivation and re-encryption.

The evolution of the access policy is enforced by the producer issuing a new version

of the content, encrypted with a new key. There exists a key derivation mechanism

to let the consumer compute keys for previous versions of a chunk.

In order to enforce the above-mentioned requirements, a producer encrypts the con-

tent twice, as detailed in the following two subsections: the First Layer of encryption

forces consumers to retrieve all content chunks (Sec. 3.1), whereas the Second Layer en-

sures that only authorized users can retrieve the current version of keying material (Sec.

3.2). In Sec. 3.3 we describe the authenticated key-retrieval protocol used to exchange

encryption keys securely while sending content access trackability feedback. Finally, in

Sec. 3.4 we show how policy evolution is seamlessly enforced by ConfTrack-CCN.

For the sake of clarity, throughout this section we use the notation summarized in

Table 1.

12

3.1. First Layer of Encryption

The purpose of the First Layer of encryption is to force the consumer to retrieve all

the content blocks before having access to the plaintext version of the requested data. In

order to publish the content, the producer will (1) partition and segment the content,

(2) encrypt the data and (3) piggyback keying material as depicted in Fig. 3 and further

described below.

Content partitioning and segmentation. The original content, whose size is

usually quite large2, is initially partitioned into a set of content blocks denoted with B,

of cardinality n = |B|. Each content block b ∈ B is of fixed size (e.g., 1 Mbyte) and

is segmented according to the CCN specification into a set of chunks denoted with C,

significantly smaller than content blocks (e.g., 1 kbyte each). Each chunk will be trans-

mitted through the network with a CCN data packet, and for this reason a CCN name is

associated to each c ∈ C. We denote with m = |C| the number of segmented packets per

content block, which is computed as a function of the chosen chunk size (e.g., m = 1000).

Content encryption. As shown in Fig. 3, the First-Layer encrypted chunks, de-

noted by FL-Enc Chunks, are produced by encrypting the segmented chunks. The same

First-Layer encryption key, Kb, is used to encrypt all the chunks belonging to the same

content block b ∈ B. Such key is randomly generated by the content producer, and is

stored in a secure way in the FL-Enc chunks as described hereafter. Well-known sym-

metric encryption algorithms, such as AES in Cipher-Block Chaining (CBC) mode with

PKCS#7 padding, can be used to secure the First Layer of encryption; in addition to

that, we assume that the chosen key size is s = 128 bits (note that longer keys can be

seamlessly used). We would like to point out the fact that only Second Layer encrypted

chunks will be transmitted, and eventually cached, into the network.

Piggybacking keying material. As shown in Fig. 4, we force the consumers to

retrieve all the encrypted packets in order to gain access to the plaintext version of the

content block. We reserve the last s bits of FL-Enc chunks to transfer keying material.

The producer generates m− 1 random sequences of s bits r2, r3, ..., rm and then uses

classical secret splitting techniques to compute:

2We focus our description on data with size of many Mbytes, that well represents multimedia content,
like videos.

13

Original Content

Content
Block 1

Content
Block 2

Content
Block n

Chunk
1N

A
M

E Chunk
2N

A
M

E Chunk
mN

A
M

E

FL-Enc
Chunk 1

N
A
M

E

K
e
y
 1 FL-Enc

Chunk 2

N
A
M

E

K
e
y
 2

...

...

... FL-Enc
Chunk m

N
A
M

E

K
e
y
 m

Block
Partitioning

Segmentation

First Layer
Encryption

Second Layer
Encryption

Policy Update
RE-Encryption

...

...

SL-Enc
Chunk 1

Key SK(h,l)N
A
M

E SL-Enc
Chunk 2

Key SK(h,l)N
A
M

E SL-Enc
Chunk m
Key SK(h,l)N

A
M

E

SL-Enc
Chunk 1

Key SK(h+1,l)N
A
M

E SL-Enc
Chunk 2

Key SK(h+1,l)N
A
M

E SL-Enc
Chunk m

Key SK(h+1,l)N
A
M

E

Chunk
m-1N

A
M

E

FL-Enc
Chunk

m-1N
A
M

E

K
e
y
 m

-1

SL-Enc
Chunk m-1
Key SK(h,l)N

A
M

E

SL-Enc
Chunk m-1
Key SK(h+1,l)N

A
M

E

Packets Transmitted
(and Eventually Cached)

in the Network

Figure 3: High-level packet structure defined by ConfTrack-CCN. FL-Enc and SL-Enc denote the 1st

and 2nd-layer encrypted chunks, respectively.

• Kb ⊕ r2 ⊕ r3 ⊕ ...⊕ rm = K, which is appended to the first chunk;

• r2, r3, ..., rm, which are appended to the other chunks.

The joint utilization of CBC and the random values forces the client to retrieve all

the encrypted packets in order to gain access to the plaintext. On the other hand, to

implement access control and deny access to the entire content block to a given user,

we make sure that he will not be able to decrypt at least one SL-Enc chunk, by not

disclosing the corresponding Second Layer key. If the user cannot compute at least one

FL-Enc chunk in the content block, he will not be able to compute the First Layer key

Kb, and therefore, he will not be able to access the plaintext version of the content block.

3.2. Second Layer of Encryption

The purpose of the Second Layer of encryption is to guarantee confidentiality and

prevent collusion, while serving as a basis to ensure trackability.

As depicted again in Fig. 3, after having been processed with the First Layer of

encryption, chunks are further encrypted using one of the available Second-Layer en-

cryption keys. Such keys are generated using the “Key Regression” derivation algorithm
14

Content
Block 1

Second Layer
Key: SK(h,l)

.
.

.

First Layer
Key

SL-Enc
Chunk 1

Key SK(h,l)N
A
M

E FL-Enc
Chunk 1

N
A
M

E

K
e
y
 1

SL-Enc
Chunk 2

Key SK(h,l)N
A
M

E FL-Enc
Chunk 2

N
A
M

E

K
e
y
 2

SL-Enc
Chunk m
Key SK(h,l)N

A
M

E FL-Enc
Chunk m

N
A
M

E

K
e
y
 m

Chunk
1N

A
M

E

Chunk
2N

A
M

E

Chunk
mN

A
M

E

.
.

.

.
.

.

Figure 4: The plaintext can be accessed only if the user can decrypt all the SL-Enc Chunks belonging
to the content block, by using the corresponding Second Layer keys. Once that the FL-Enc Chunks are
obtained, by computing the XOR of the pseudo-random values piggybacked to the FL-Enc Chunks, the
user can compute the First Layer Key, which is then used to decrypt all the chunks belonging to the
content block.

in its KR-RSA formulation [13]. We denote each Second-Layer key with SK(h, l), where

h is the key version, whereas l represents the original seed used to initialize the KR-RSA

algorithm. A given FL-Enc chunk can be encrypted using many Second-Layer keys, each

of which is generated using a different seed l.

As illustrated in Fig. 5, four operations (setup, wind key, unwind key, key deriva-

tion) define the KR-RSA algorithm. The detailed specification of all these operations is

available in Appendix A. The initial producer state, stp(0, l), is computed by the pro-

ducer using the setup operation, whereas the wind key is used to derive stp(h+1, l) given

stp(h, l). The consumer retrieves the consumer state stc(h, l) from the producer, by using

the authenticated key-retrieval protocol described in Sec. 3.3. Given stc(h, l), the con-

sumer can therefore compute SK(h, l) and all the previous versions SK(h′, l), 0 ≤ h′ < h

by using the unwind key and the key derivation operations. We underline that, com-

pared to well known key derivation algorithms (such as S/KEY [14]), KR-RSA provides

two advantages: (1) the wind key operation can be executed an unbounded number of

times, and (2) it is KR-secure, meaning that if two derived keys are released, a third

party cannot discern whether they are linked or not.

Protection against collusion can be provided by means of encrypting the same FL-

15

Setup(l)

Wind
key

stp(0,l) stp(1,l)

Wind
key

stp(2,l)

Wind
key

stp(3,l) ...

stc(1,l) stc(2,l) stc(3,l)

Producer

Key
derivation

Key
derivation

Key
derivation

SK(1,l) SK(2,l) SK(3,l)

Consumer

stc(1,l) stc(2,l) stc(3,l)

Key
derivation

Key
derivation

Key
derivation

SK(1,l) SK(2,l) SK(3,l)

Unwind
key

Unwind
key

Authenticated
Key Retrieval

Figure 5: Key Regression - RSA: stp(h, l) denotes the producer state at version h initialized with seed
l, whereas stc(h, l) is the consumer state. The wind key operation lets the producer compute a new
encryption key SK(h + 1, l), whereas the unwind key operation is used by the consumer to compute
previous key versions.

Enc chunk with many Second-Layer keys generated using different seeds: in this way,

by disclosing different key sets to the users, we can detect malicious nodes that disclose

their secret decryption keys even in the presence of collusion, as discussed in Sec. 4.2.

3.3. Authenticated Key-Retrieval Protocol

Hereafter, we describe the authenticated key-retrieval protocol used by the consumer

to fetch the state stc(h, l) from the producer, while sending content access trackability

feedback. The data exchanged during such interaction comprises: (1) the ID of the

object that the customer is willing to retrieve, objID; (2) the seed used to initialize

KR-RSA, l, and (3) the version of the needed key, h.

We assume that the producer is reachable through the globally routable name /prod.com/,

and that he generated the asymmetric key-pair KeyPairp = (Pub(p), P riv(p)), whereas

the consumer publishes content under the name /cons.com/ and owns the keysKeyPairc =

(Pub(c), P riv(c)). We denote with || the concatenation operator, with Ek(data) the en-

cryption of “data” with key k; finally, the hash of “data” is represented by hash(data).

Fig. 6 summarizes the sequence of messages exchanged. MSG1 is used to communi-

cate to the content producer the namespace /cons.com/rnd1 under which authentication

data was published. MSG1 is at the same time confidential and authentic, since it is

16

Consumer Producer

Interest for Name: /prod.com/key/E
Pub(p)

(MSG
1
)/E

Priv(c)
 (hash(MSG

1
))

MSG
1
 = K_sess || /cons.com/rnd1 || t

s1

Interest for Name: /cons.com/rnd1/E
K_sess

(MSG
2
)/E

Priv(p)
 (hash(MSG

2
))

MSG
2
 = rnd2 || t

s2

Data with Content: E
K_sess

(MSG
3
) || E

Priv(c)
(hash(MSG

3
))

MSG
3
 = t

s3
||rnd3|| /objID/blockID/chunkID/seedID

Data with Content: E
K_sess

(MSG
5
) || E

Priv(p)
(hash(MSG

5
 || rnd3))

MSG
5
 = SK(h,l)

Interest for Name: /prod.com/key/rnd2/t
s2

/E
Priv(p)

 (hash(MSG
4
))

MSG
4
= rnd2 || t

s2

Router

Interest for Name:
/prod.com/objID/blockID/chunkID/seedID

Data with Content:
 /prod.com/objID/blockID/chunkID/seedID/version_h

C
a

ch
e

 H
it

A
u

th
e

n
tica

te
d

 K
e

y
 R

e
trie

v
a

l P
ro

to
co

l
S

L-E
n

c C
h

u
n

k
R

e
q

u
e

st

Figure 6: Messages exchanged in the Authenticated Key-Retrieval Protocol when the consumer down-
loads the Second-Layer encryption key, while jointly authenticating and providing access trackability
feedback.

encrypted with Pub(p), and signed with Priv(c). MSG2 is used to retrieve key informa-

tion and to communicate the random number (rnd2) that will be used by the customer

to generate MSG4 and retrieve the Second-Layer encryption key. MSG3 contains the

basic information /objID/blockID/chunkID/seedID, whereas MSG4 and MSG5 complete

the protocol by permitting to obtain the Second-Layer encryption key, if the consumer

is authorized to fetch it.

As shown in Fig. 6, cache hits can only be generated while retrieving SL-Enc chunks.

This is due to the presence of timestamps in the naming structure we designed for the

authenticated key retrieval protocol. Both the consumer and producer send CCN interest

packets during the key retrieval dialog. Since the CCN model is pull driven, this type

of dialog is necessary to let one host upload data to a remote server. In particular, the

host will publish on the network the content to be uploaded while the server will issue

17

interest packets to retrieve the corresponding data.

The amount of data that nodes exchange in order to transmit keying materials is

practically negligible: less than 5 kbytes must be transmitted for each content block.

The overhead introduced in the Authenticated Key-Retrieval Protocol for a content block

size of 1 Mbyte (as considered in our numerical results) is therefore less than 1%.

3.4. Policy Evolution

ConfTrack-CCN lets the producer make the access policy evolve by revoking access

to the customers not entitled anymore to make use of given resources. In order to enforce

policy evolution, the producer: (1) computes new encryption keys SK(h+ 1, l); (2) re-

encrypts and publishes the new version of the data; (3) does not serve anymore the

obsolete content and (4) does not disclose the new stc(h + 1, l) to the customers whose

access privilege was revoked. More specifically, the rationale behind this approach is

to make sure that some chunks of a content block will be served to the revoked user

encrypted with the SK(h+1, l) key, as enforced by (1)-(3). In this way, the user cannot

obtain the corresponding decryption key stc(h+1, l), as enforced by (4), and consequently

he will not be able to decrypt the corresponding chunk. Finally, even though the user

can retrieve all the chunks in one content block, he will still not be able to decrypt the

whole content block.

Hereafter, we describe the policy evolution mechanism we designed, in order to make

the Content-Centric Network quickly refresh contents as to ensure enforcement of confi-

dentiality properties.

Even if caches can still provide obsolete content as a result of an incoming interest, the

cache evolution mechanism we design is tailored to support such evolution in an efficient

manner. To achieve this goal, we propose an innovative caching policy mechanism that,

at regular intervals, forces the cache to forward an upstream interest for a “fresh” copy of

a single chunk randomly chosen in a given content block. We implement such behavior

by making the router mark cached content as stale, and forcing it to evict the data

from the cache. Our mechanism and the joint presence of the two layers of encryption

ensure that the network will propagate policy evolution changes very quickly, minimizing

the amount of data that nodes exchange. It is important to note that our proposal is

18

backward-compatible: caches not willing to utilize our proposal will work as usual, but

they will experience higher operational costs due to lower hit rates.

We suggest to utilize the naming scheme shown hereafter:

/prod.com/objID/blockID/chunkID/seedID/h. The consumer issues interests without spec-

ifying h, the version of the Second-Layer encryption key: by issuing an interest for

/prod.com/objID/blockID/chunkID/seedID/ the consumer is demanding any version of the

given content chunk, a condition that ensures higher hit rates.

When receiving an interest packet, caches execute Alg. 1.

Algorithm 1: Cache Update Algorithm

Input : prod.com, objID, blockID, chunkID, seedID
Output: DataPkt

1 if IsCached(prod.com, objID, blockID, chunkID, seedID) then
2 t ⇐ GetTimeout(prod.com, objID, blockID);
3 if IsExpired(t) then
4 c ⇐ ChooseCachedRandomChunk(prod.com, objID, blockID);
5 MarkChunkAsStale(c);
6 UpdateTimeout(prod.com, objID, blockID);

end
7 DataPkt ⇐ GetDataPkt(prod.com, objID, blockID, chunkID);

else
8 ForwardInterestUpstream(prod.com, objID, blockID, chunkID);
end

If the interest generates a cache-hit, the “freshness” timeout for /prod.com/objID/blockID/chunkID

is checked (Steps 1-3). If such timeout is expired, the cache will select a random chunk

already cached by the node and belonging to the same content block; such chunk will be

refreshed by making the router mark the content as stale (Steps 4-5), while the timeout

will be updated (Step 6). Finally, the data packet will then be provided to the customer,

by reading it from the content store in case of a cache hit (Step 7), or by forwarding the

interest upstream (Step 8).

4. Security Analysis

In this section we analyze ConfTrack-CCN by studying the security properties of the

proposed mechanism. In particular, in Sec. 4.1 we prove that an adversary whose access

privilege has been revoked cannot access the plaintext version of the content, if at least
19

one SL-Enc chunk has been refreshed. In Sec. 4.2 we instead investigate the problem of

user collusion, and show that ConfTrack-CCN provides strong security properties even

in the presence of a coalition of adversaries.

4.1. Security Proof for the Proposed Cache Management Policy

In this section we prove that, as a result of an access policy evolution for a given

content, our proposed scheme revokes access to a user who is not authorized to obtain

the given content anymore. The rationale behind such property is to make sure that

the user cannot decrypt at least one SL-Enc chunk of a given content block b. If this

is the case, our mechanism guarantees that the user cannot access the plaintext of the

entire content block, since he cannot obtain the First Layer decryption key. Hereafter

we consider the scenario where the access privilege of an adversary A has been revoked

and the caching policy mechanism proposed in Sec. 3.4 has refreshed at least one SL-Enc

chunk of the block b.

Theorem 1. The first encryption layer forces the users to retrieve all the FL-Enc chunks

belonging to the same content block b to gain access to the plaintext version of the data.

Proof. In order to prove the security of ConfTrack-CCN, we take into account the most

adverse case where A could retrieve m SL-Enc chunks, but he was able to decrypt only

m−1 of them; hence, A can access all the FL-Enc chunks of a block apart from the j-th.

Since the FL-Enc chunks contain











rj if j 6= 1

Kb ⊕ r2 ⊕ r3 ⊕ ...⊕ rm = K if j = 1,

(1)

both cases must be considered in the proof.

Case j 6= 1: the adversary can access K and all the random values apart from the j-th

(ri, ∀i : i 6= j). Thus, he can compute K⊕ r2⊕ r3⊕ ...⊕ rj−1⊕ rj+1⊕ ...⊕ rm = Kb⊕ rj .

This cyphertext is the one obtained using the Vernam cipher, an information-theoretically

secure encryption algorithm that provides perfect secrecy under the assumption that the

sequence r2, r3, ..., rm is truly random and will be used only once. Therefore A cannot

compute the decryption key Kb.

20

Case j = 1: A can access all the FL-Enc chunks, apart from the first. For this

reason, he doesn’t know the value of K, but he can extract the sequence of random

values r2, r3, ..., rm. However, these random values are uncorrelated with the encryption

key Kb, which cannot be computed by the adversary. �

As a result of the access policy evolution, ConfTrack-CCN can prevent unauthorized

accesses to the resources distributed in the network. Our mechanism only necessitates

to make sure that at least one SL-Enc chunk cannot be decrypted by the revoked user.

In this way, as Theorem 1 shows, access to the entire content block is denied.

4.2. Detecting Collusion Attacks

As we will show in Sec. 5, ConfTrack-CCN uses shared encryption keys to increase

the overall hit-rate that the network can achieve while reducing also the computational

overhead of the solution. Hereafter, we investigate the problem of user collusion aiming

at disclosing the Second Layer decryption keys to let unauthorized users decrypt the

content that the provider has published in the network. We will show that, by distributing

different key sets to the users, ConfTrack-CCN can also provide collusion prevention and

detection functionalities.

We do not take into account the scenario where an adversary A provides the plaintext

version of the content, because, due to the large data size, we assume that it is cost

ineffective for him to serve the plaintext. On the other hand, it is instead feasible for A

to distribute his own set of decryption keys, due to their modest size.

The content provider may want to distribute the content using only one set of Second

Layer keys, shared among all the users. In this case the overall hit-rate would be very

high, since only one copy of the content is going to be distributed in the network, but the

security of the mechanism would be very low since an adversary A can easily disclose the

set of keys without revealing his own identity. On the other hand, the provider may want

to use different sets of Second Layer encryption keys, making sure that each user has

his own unique set. In this case, if an adversary discloses his keys, the content provider

can easily detect his identity and therefore he will be able to punish the user for this

unauthorized behavior. In this subsection, we consider a scenario in between these two

extremes: the content provider assigns different key sets to the users; therefore, when

21

Table 2: Summary of the notation used for the Collusion Analysis.

Parameters of the model
M Set of malicious users
N Set of non-malicious users
U Set of all users (U = M∪N)
B Set of content blocks
K Set of encryption keys

yu,b,k
Key assignment matrix. yu,b,k = 1 if user u ∈ U is assigned for block b ∈ B
the key k ∈ K; otherwise, yu,b,k = 0.

Decision Variables of the Model

xu,b,k
0-1 Variable that indicates if the identity of user u ∈ U is disclosed for
block b ∈ B with respect to the encryption key k ∈ K

dM Identity disclosure for malicious users
dN Identity disclosure for non-malicious users

performing a key disclosure, the user is implicitly disclosing information on his own

identity. In our model, the content provider should be able to identify the misbehaving

user, given the disclosed keys, even in the challenging scenario where users collaborate

and form a coalition.

With the ILP model presented hereafter we compute the best key disclosure strategy

that the coalition of adversaries can choose. Their objective is to minimize the maximum

identity disclosure of the users in the coalition, in order to make it difficult for the content

provider to identify them as guilty. The key assignment strategy implemented by the

content provider to allocate the Second Layer decryption keys has an important impact

on the overall collusion-resistance properties of the proposed system. To perform one such

analysis, we take into account the adverse scenario where the provider randomly allocates

the Second Layer keys to its users. As reported in Fig. 7, even in this unfavorable case,

ConfTrack-CCN exhibits strong security properties, detecting users’ collusion with very

high probability.

For the sake of clarity, Table 2 summarizes the notation used in this section. Let M

be the set of malicious users, N the set of non-malicious users, while U = M ∪ N is

the set of all the user we consider in our analysis. We denote with B the set of content

blocks, while K is the set of encryption keys.

We consider the most adverse case where malicious users collude. We make the real-

22

istic assumption that colluding members do not know which keys have been assigned to

non-malicious users; hence, their best key disclosure strategy is to minimize the maxi-

mum identity exposure of every member in the coalition by publishing a combination of

the decryption keys possessed by them.

We denote with yu,b,k the key assignment matrix: yu,b,k = 1 if key k is given to user u

for content b, while yu,b,k = 0 otherwise. xu,b,k is a binary decision variable we use to

model both the set of disclosed keys and user identities. In particular, if key k ∈ K for

content b ∈ B is disclosed by some malicious user, all the users u ∈ U for which yu,b,k = 1

will implicitly disclose their identities (and thus, their xu,b,k variable will be set to 1). In

other terms, while disclosing a key for a given block, all the other users to whom that

key was assigned will implicitly disclose their identities at the same time.

We denote with dM the maximum number of times the identity of a malicious user

is disclosed by the mechanism. On the other hand, dN represents the maximum number

of times a non-malicious user is deemed to be guilty. We say that the mechanism is

collusion-resistant if the content provider can identify at least one colluding user as guilty

of disclosing his secret decryption keys. In other words, the maximum number of times a

malicious user is thought to be guilty by the content provider should be greater than the

number of times the content provider thinks another user is responsible for disclosing the

key sequence. Therefore, if dM > dN , we say that the mechanism is collusion resistant.

The optimal key disclosure strategy for A is formulated as an ILP model as follows:

min dM (2)

subject to:

∑

∀p∈U

xp,b,k ≤ (xu,b,k + 1− yu,b,k) |U| ∀(u, b, k) ∈ U × B ×K (3)

∑

∀m∈M
∀k∈K

xm,b,k ≥ 1 ∀b ∈ B (4)

23

xu,b,k ≤ yu,b,k ∀(u, b, k) ∈ U × B ×K (5)
∑

∀b∈B
∀k∈K

xm,b,k ≤ dM ∀m ∈ M (6)

xu,b,k ∈ {0, 1} ∀(u, b, k) ∈ U × B ×K. (7)

The objective function (2) finds the best key disclosure strategy that malicious users

can adopt. Since they do not know which encryption keys are possessed by non-malicious

users, they will therefore minimize their maximum identity disclosure. This explains why

dN does not appear in the objective function.

The set of constraints (3) ensures that if a user in the coalition discloses his key, all

the other users possessing the same key will disclose their identities as well.

In (4), we ensure that at least one key will be disclosed for each block, whereas the

set of coherence constraints (5) forces a user to disclose only the keys he possesses.

Constraints (6) force dM to represent the maximum identity exposure of a user. We

add the binary constraints on the disclosure variable in (7).

Lastly we compute the maximum number of times the identity of non-malicious users

is disclosed, dN , as follows:

dN = max
∀n∈N







∑

∀b∈B
∀k∈K

xn,b,k






. (8)

To evaluate the collusion resistance property of ConfTrack-CCN, we consider different

scenarios with 20 or 25 encryption keys and up to 2000 blocks. We set the total number

of users equal to 50, we uniformly generate the key assignment matrix yu,b,k, and we

perform the analysis with up to 80% colluding members. For each of these scenarios we

consider 100 random collusion sets, then, using the model (3)-(7) and equation (8), we

compute the detection probability. This latter is defined as the ratio between the number

of scenarios where the content provider identifies a guilty user in the coalition and the

total number of scenarios considered. Fig. 7 shows the detection probability as a function

of the size of the colluding users set.

As expected, since encryption keys are uniformly allocated to the users, increasing the

24

2 10 20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

D
e

te
c
ti
o

n
 P

ro
b

a
b

ili
ty

Colluding Nodes [%]

25 Keys, 2000 Blocks

25 Keys, 1000 Blocks

20 Keys, 2000 Blocks

Figure 7: Disclosure Detection Analysis: detection probability as a function of the size of the collusion
set, for 20 or 25 encryption keys and up to 2000 blocks. The total number of users is set to 50.

number of keys and/or chunks is beneficial in terms of resilience against users’ collusion.

In particular, 25 keys and 2000 blocks are sufficient to detect a coalition containing

up to 80% of colluding users, while if we decrease the number of keys to 20, we can

detect misbehaving consumers with very high probability even when 60% of the users

are colluding.

In summary, our proposed mechanism proves to be very robust against collusion, even

in adverse case when the content provider randomly distributes the keys to the users,

and several of them are colluding.

5. Numerical Results

In this section we provide extensive numerical evaluations of our proposal through

simulations as well as using the Java prototype we built. More specifically, Sec. 5.1

quantifies the bandwidth benefits in terms of cache hit-rate that our proposal can provide

with respect to the alternative scenario where a user-based encryption model is used.

In Sec. 5.2 we study the security properties of our solution, whereas Sec. 5.3 provides

computational performance measurements on the prototype of ConfTrack-CCN.

5.1. Cache Hit Analysis

We first quantify the bandwidth benefits that our proposal can guarantee using an

analytic, as well as a simulated model. We abstract the analysis with a hierarchical cache,

an assumption that well represents a scenario where a producer is publishing content and
25

Provider

Consumers

CCN
Router

Figure 8: Single-level cache network topology used for numerical results.

consumers are requesting it through a network of caches [15]. The stochastic process of

content requests expressed by consumers is filtered by each cache as if they were low-pass

filters. Independently from the cache replacement policy chosen, the output process of

a cache does not contain requests for frequently demanded contents, since they generate

cache hits, and as a consequence they are not forwarded upstream.

We denote with U the set of consumers, whereas O denotes the set of objects. For

the sake of simplicity, we assume that objects have the same size Θ; however, our results

can be easily extended to the general case where objects have a variable size. Each

consumer u ∈ U generates requests modeled as a Poisson process with aggregate rate λu,

proportional to the object popularity po, where o ∈ O.

We assume that the popularity distribution of objects is subject to the Independent

Reference Model (IRM), since this leads to very realistic results when the requests are

generated by a large population of users, as shown in [16]. We adopt the Zipf discrete

distribution, which is frequently used in the literature to model the objects popularity

in Internet [15]. Such model describes the popularity rank of each object o ∈ O by

giving higher priority to objects with lower indices. Let α be the Zipf exponent of

the distribution; the Zipf probability mass function for the j-th most popular object is

defined as pj = P (X = j) = 1/jα

∑|O|
i=1

(1/iα)
.

We take into account the least recently used (LRU) cache replacement policy since,

to our knowledge, it is the only one for which a realistic analytic model for cache hits

has been proposed [17]. Under these assumptions, our performance analysis is based on

the model proposed in [17], as it was shown in [16] that this is an extremely accurate

26

0.8 0.9 1 1.1 1.2

0

0.2

0.4

0.6

0.8

1

H
it
 R

a
te

Zipf Alpha Exponent (Popularity)

ConfTrack−CCN − Analytical
ConfTrack−CCN − Sim.

User−based Enc. 10 Objs. − Sim.
User−based Enc. 50 Objs. − Sim.

Figure 9: Hit-rate for a single-level LRU cache network with 108 objects of 1 Mbyte each and 100 Mbyte
of storage, as a function of the Zipf popularity exponent α.

model for hierarchical caches. According to such model, the hit rate for object j ∈ O is

given by h(j) = 1 − e−pjtC , where tC is the root of
∑|O|

j=1 (1− e−pjtC) = M , M being

the cache size, expressed in number of objects.

We compute the hit rate for a single-level cache network (shown in Fig. 8) for α ∈

[0.8; 1.2], because this range of popularity exponents well represents heterogeneous types

of contents, as discussed in [15]. Fig. 9 illustrates the analytic solution of the model,

as well as simulation results obtained using the ndnSIM network simulator [18] for the

single-level cache network with 108 objects of 1 Mbyte each, given a 100 Mbyte cache.

In particular, we consider the following cases:

1. ConfTrack-CCN is used, and 0.1% of each object is encrypted with 5 different keys;

2. User-based encryption is used (as described in Sec. 2.4), and each object is accessed

by 10 users;

3. User-based encryption is used, and each object is accessed by 50 users.

As shown in Fig. 9, the hit rate obtained by ConfTrack-CCN is more than 20% higher

than the one provided when user-based encryption is used, even when few users (i.e., 10)

are accessing the object set.

We further investigated the hit rate considering the Abilene network topology (de-

picted in Fig. 10) [15], with 108 objects of 10 Mbytes each, a Zipf exponent α = 1.2, a

caching storage of 1 Gbyte per node, and varying the following parameters:

27

Figure 10: Abilene topology used for numerical results.

10 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

H
it
 r

a
te

Fraction of Content Encrypted with Many Keys [%]

8 Keys

16 Keys

32 Keys

Figure 11: Hit-rate measured in the Abilene topology as a function of the percentage of contents en-
crypted with many keys.

1. The number of encryption keys used;

2. The fraction of objects encrypted with many keys;

3. The policy evolution delay.

As illustrated in Fig. 11, a higher hit rate is obtained by reducing the number of

Second-Layer encryption keys used, as well as the fraction of objects encrypted with

many of these keys. This result is expected, since there is a clear trade-off between the

performance of the network and the security of the mechanism: if we increase the number

of encryption keys, we increase also the possibility to detect colluding users.

Fig. 12 plots the hit rate as a function of the policy evolution delay. When we impose

very frequent policy updates (e.g., once every 0.1 seconds), the network hit rate drops

below 5%, whereas if the content is updated every 10 seconds or above (a more realistic

assumption), we instead observe that a hit rate higher than 25% is obtained when 8 keys

are used.

Similar results, omitted here due to space constraints, have been observed also in

other network topologies, including the Géant network [19].
28

5.2. Security Analysis

In this section we numerically study the security properties enforced by our pro-

posed ConfTrack-CCN solution, comparing it with a scenario where no other security

mechanism is implemented in the network.

We make the realistic assumption that different traffic classes are handled by the

network; in particular, we consider a traffic mix as in [20] where Video on Demand

(VoD) and User-Generated Content (UGC) are delivered. As detailed in [20], we assume

that UGC traffic is characterized by a content catalog of 108 objects whose average size

is 10 MB, the Zipf exponent is α = 0.8 and accounts for 38% of the overall amount of

requests. On the other hand, VoD traffic is characterized by a catalog of 104 objects of

100 MB each, α = 1.2, and accounts for the remaining 62% of the requests. We simulate

such scenario in the Abilene topology, as described in the previous section, and study the

security properties of our proposed mechanism where CCN routers implement caching

functionalities using either the LRU or a random cache replacement policy. We assume

that the content provider is offering a VoD service, and it wants to securely distribute

the content into the network.

In order to provide evidences that ConfTrack-CCN successfully satisfies the secu-

rity requirements, we measure security violations, as defined hereafter. In particular, a

“trackability violation” arises whenever a consumer can acquire a given content without

making the provider be aware that he did so. We assume that users do not disclose their

decryption keys, therefore “confidentiality violations” happen only in the case of access

0.1 1 3 5 7.5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

H
it
 r

a
te

Evolution delay [s]

8 Keys

16 Keys

32 Keys

Figure 12: Hit-rate measured in the Abilene topology as a function of the policy evolution delay.

29

10
0

10
2

10
4

10
6

10
8

0

20

40

60

80

100

F
ra

c
ti
o

n
 o

f
R

e
q

u
e

s
ts

 [
%

]

Cache size [# objs]

Trackability Violations − RND Cache
Trackability Violations − LRU Cache
Confidentiality Violations − RND Cache
Confidentiality Violations − LRU Cache

(a) ConfTrack-CCN is not-used

10
0

10
2

10
4

10
6

10
8

0

20

40

60

80

100

F
ra

c
ti
o

n
 o

f
R

e
q

u
e

s
ts

 [
%

]

Cache size [# objs]

Trackability Violations − RND Cache
Trackability Violations − LRU Cache
Confidentiality Violations − RND Cache
Confidentiality Violations − LRU Cache

(b) ConfTrack-CCN is used

Figure 13: Security of ConfTrack-CCN - Effect of cache size. Fig. 13a shows the trend of trackability
and confidentiality violations as a function of the cache size, when ConfTrack-CCN is not utilized. Fig.
13b shows the trend for the same security properties, when ConfTrack-CCN is used and all network
routers implement our proposed policy evolution mechanism with a policy evolution delay of 1 second.

policy evolution. For this reason, to simulate a scenario where the access policy changes,

we assume that the producer removes the 100 most popular resources he is publishing,

and we measure the number of successful requests the consumers can issue on the sub-

set of these deleted contents. For each of the analysis we performed 20 different runs,

and figures portray the very narrow 95% confidence intervals. Unless stated otherwise,

we consider a cache size of 104 objects, all the routers implement our proposed policy

evolution mechanism, and a policy evolution delay of 1 second is used.

In Fig. 13a we show the security properties of a network that does not implement

any protection mechanism, as a function of the cache size. We observe that, in terms of

trackability violations, random caching and LRU show practically the same performance;

in particular, even considering small cache sizes (in the order of 103 objects), more than

60% of requests are served without making the producer be aware that users accessed

the content. This behavior is caused by the high efficiency of the caching mechanism,

perfectly in line with the results observed in [20]. On the other hand, as shown in Fig.

13a, random cache replacement is to be preferred in terms of confidentiality violations. In

particular, LRU caches tend to persist popular contents even if the provider has deleted

them from its catalog. Fig. 13b reports instead the performance observed in the same

scenario simulated for Fig. 13a, but when ConfTrack-CCN is used, and all the routers

implement our proposed cache update mechanism. In this case, trackability violations do

30

−2 0 2 4 6 8 10 12

0

20

40

60

80

100

F
ra

c
ti
o

n
 o

f
R

e
q

u
e

s
ts

 [
%

]

Num. Migrated Routers

Trackability Violations − RND Cache
Trackability Violations − LRU Cache
Confidentiality Violations − RND Cache
Confidentiality Violations − LRU Cache

(a) Effect of the Number of Migrated Routers

10
0

10
2

10
4

10
6

0

20

40

60

80

100

F
ra

c
ti
o

n
 o

f
R

e
q

u
e

s
ts

 [
%

]

Evolution Delay [ms]

Trackability Violations − RND Cache
Trackability Violations − LRU Cache
Confidentiality Violations − RND Cache
Confidentiality Violations − LRU Cache

(b) Effect of the Cache Evolution Delay

Figure 14: Security of ConfTrack-CCN - Effect of Number of Migrated Routers and Cache Evolution
Delay. Both Fig. 14a and 14b show the security properties of a network where ConfTrack-CCN is used.
In Fig. 14a we portray the effect of the number of routers implementing our novel cache eviction policy,
while in Fig. 14b we show the effect of the evolution delay parameter for the cache eviction policy.

not happen anymore, whereas a small number of confidentiality violations (< 18%) are

observed when caches are very large and can store up to 107 objects (1/10 of the entire

object catalog). For the sake of conciseness, we are not reporting here similar results

for the User-based encryption since, as thoroughly described in the previous section,

ConfTrack-CCN outperforms user-based encryption in terms of the overall network hit-

rate.

The effect of the number of routers implementing our proposed cache update policy,

and the effect of the evolution delay parameter (i.e.: the timeout of Alg. 1, Sec. 3.4) are

reported in Fig. 14a and 14b, respectively. Since ConfTrack-CCN is used, no trackability

violations are observed, moreover the number of confidentiality violations when using

a random cache replacement policy is negligible regardless of both these parameters.

LRU, instead, is sensitive to both the number of routers implementing our policy and

the evolution delay. In particular, as Fig. 14a shows, by migrating many routers to

our proposed cache update policy, we can significantly reduce the number of observed

confidentiality violations, dropping from 55% of confidentiality violations (when no router

implements our policy), down to almost 0% (when all the routers implement it). On top

of that, as observed from Fig. 14b, the cache evolution delay has a remarkable effect

on the observed number of confidentiality violations, and, as expected, the lower the

timeout, the more secure the network is.

31

0 1 2 3 4 5

0

20

40

60

80

100
F

ra
c
ti
o

n
 o

f
R

e
q

u
e

s
ts

 [
%

]

Simulated time [minutes]

Confidentiality Violations − RND Cache

Confidentiality Violations − LRU Cache

(a) ConfTrack-CCN not-used,
104 objs. cached

0 1 2 3 4 5

0

20

40

60

80

100

F
ra

c
ti
o

n
 o

f
R

e
q

u
e

s
ts

 [
%

]

Simulated time [minutes]

Confidentiality Violations − RND Cache

Confidentiality Violations − LRU Cache

(b) ConfTrack-CCN used, 104

objs. cached

0 1 2 3 4 5

0

20

40

60

80

100

F
ra

c
ti
o

n
 o

f
R

e
q

u
e

s
ts

 [
%

]

Simulated time [minutes]

Confidentiality Violations − RND Cache

Confidentiality Violations − LRU Cache

(c) ConfTrack-CCN used, 105

objs. cached

Figure 15: Temporal Evolution of Confidentiality Violations. We portray the number of confidentiality
violations in time, for different types of cache eviction policies. In Fig. 15a we show the behavior of a
standard CCN network that does not use ConfTrack-CCN, while in Fig. 15b we show the effect of using
our solution. Lastly, in Fig. 15c we consider a cache of one order of magnitude larger, while still using
ConfTrack-CCN.

By adopting our ConfTrack-CCN mechanism, trackability violations do not hap-

pen anymore, moreover the number of confidentiality violations is significantly reduced.

Hereafter, we study the transient behavior of the network in the interval immediately

following the instant when contents are removed from the producers, as a result of an

access policy evolution. In particular, since our proposed cache update algorithm does

not require nodes’ cooperation, a small delay is introduced to effectively revoke the access

to the deleted contents, as shown in Fig. 15.

Fig. 15a and 15b show the advantages of using ConfTrack-CCN and our proposed

cache update mechanism. The trends confirm previous observations on the LRU cache

replacement policy: in terms of confidentiality violations, one such replacement policy

does not provide adequate protection against confidentiality violations. However, by

adopting ConfTrack-CCN as well as our cache update mechanism, we can make the

network quickly remove stale content making the number of confidentiality violations

drop to almost 0% in less than 1 minute. Lastly, in Fig. 15c we study the effect of

the cache size in a scenario where ConfTrack-CCN is still used. In particular, even by

increasing the caching storage of one order of magnitude, the number of confidentiality

violations is still kept under control, and quickly reaches 0% in less than 3 minutes.

5.3. Encryption Performance Evaluation of the Prototype

As described in Sec. 3, ConfTrack-CCN requires the end-hosts to implement cryp-

tographic primitives, in particular the producers encrypt the content, whereas the con-
32

1 5 10 25 50 100

5

10

15

C
o
m

p
le

ti
o
n
 T

im
e
 [
s
]

Keys [#]

Decryption
Encryption

Figure 16: Encryption and decryption completion time, as a function of the number of keys. We consider
100 Mbytes of data and 10 policy updates.

sumers perform the corresponding decryption. Intermediate routers need not execute any

of these cryptographic functions, and therefore this design choice ensures scalability of

our security architecture, making it possible to operate at line speed. In this subsection,

we quantify the computational overhead introduced on the end-hosts by ConfTrack-CCN

to perform the cryptographic operations required to implement our mechanism.

To perform such evaluation, we implemented a Java prototype of the encryption

primitives of ConfTrack-CCN, and performed extensive evaluations to understand the

performance impact of these procedures. All tests have been executed on a dual Intel

Xeon 2.2GHz machine, with 64GB RAM, running Ubuntu Linux 12.04.2 LTS, using

Java SE 7u25 with the Bouncy Castle provider for the Java Cryptography Extension and

the Java Cryptography Architecture. The performance metric considered in all these

evaluations is the completion time of the cryptographic primitives, as a function of:

1. The number of encryption keys ;

2. The number of policy updates ;

3. The size of the data, expressed in Mbytes.

Unless otherwise stated, we performed the tests encrypting 100 Mbytes of data with 10

different keys, considering 10 policy updates. For each scenario that we took into account

we performed 10 runs, and in Fig. 16-18 we further reported the corresponding (nar-

row) 95% confidence intervals.
33

1 5 10 25 50 100

4

5

6

7

8

9

C
o
m

p
le

ti
o
n
 T

im
e
 [
s
]

Policy Evolutions [#]

Decryption
Encryption

Figure 17: Encryption and decryption completion time, as a function of the number of policy evolution.
We consider 100 Mbytes of data and 10 keys.

1 25 50 75 100
0

1

2

3

4

5

C
o
m

p
le

ti
o
n
 T

im
e
 [
s
]

Content Size [Mbytes]

Decryption
Encryption

Figure 18: Encryption and decryption completion time, as a function of the size of the content that has
to be processed. We consider 10 keys and 10 policy updates.

As described in Appendix A, the KR-RSA algorithm generates a public-private RSA

key pair for each Second Layer encryption key. Despite the fact that such generation is

computationally expensive, our proposed mechanism minimizes its performance impact

in two ways: (1) the key-pairs have to be computed only once that new data is published

on the network, and (2) the pairs can also be pre-computed offline.

When releasing a new version of the data by performing a policy update, modular

exponentiation is used to wind/unwind the keys; the other operations require only to

perform fast symmetric AES encryption. It is interesting to note that the fraction of

re-encrypted content only affects the network hit-rate as discussed in Sec. 5.1, while it

34

does not have any impact on the computational performance, since it only requires to

choose an appropriate Second-Layer key among those already generated.

Fig. 16 shows the encryption/decryption completion time as a function of the number

of Second-Layer keys. A linear time is required to compute the RSA key-pairs, and such

computational cost is only paid on the content provider side. Furthermore, we observe

that cryptographic primitives introduce only minor overhead on the consumer side.

The policy evolution frequency as well as the size of the data are positively correlated

with the completion time of the algorithm, as depicted in Fig. 17 and 18, respectively.

The gap between the encryption/decryption curves is due to the cost for initializing the

RSA key-pairs, which is paid only by the content provider, once the data is originally

published on the network.

6. Related Work

Content-Centric Networking aims at providing solid grounds for the Next-generation

Internet architecture, not only by fostering efficient content distribution, but also by im-

proving network security. However, novel issues arise when the addressing space changes

from the host-based model to content-based naming; in particular, the following top-

ics have already been investigated: Integrity and Trust, Denial of Service, Privacy and

Access Control.

Integrity and Trust. Among the advertised advantages of CCN, security is one

of the relevant achievements. In [8], Jacobson et al. describe the networking primitives

offered by NDN/CCN that permit to improve network security in a scenario where con-

tents can be retrieved from any node storing a copy of the given data. In particular,

they formulate the proposal according to which, rather than securing the communica-

tion channel between the two end-points, CCN data packets will be digitally signed by

content producers to enforce integrity and authenticity.

Due to the fact that asymmetric encryption techniques are used to produce the signa-

tures, the relevant problem of determining trust of the exchanged keying material needs

to be taken into account, as envisioned by Smetters and Jacobson in [21]. To foster

openness, the NDN/CCN proposal does not force to adopt any trust management ar-

chitecture for key distribution and, in the general case, many techniques will jointly be

35

used.

A proposal for one such key distribution architecture was recently formulated by

Mahadevan et al. in [22], where a Key Resolution Service (KRS) for NDN/CCN is

presented. Inspired by the hierarchical structure of DNS, the proposed KRS system

can be used to register, store and efficiently distribute keying materials associated with

CCN namespaces, providing adequate support to help consumers check content integrity.

Despite the fact that content integrity can be verified by nodes in the CCN, the presence

of the distributed caches and the way consumers issue interest packets on the network

let adversaries perform content poisoning attacks to distribute fake copies of data. Ghali

et al. present in [23] a ranking algorithm for cached content, specifically designed to

foster eviction from the caching storage of poisoned contents, by gathering statistics on

consumers’ actions as a result of previous content delivery.

Denial of Service. Additional security implications of this novel network model

have also been studied in the literature. In [24], Gasti et al. do a preliminary evaluation

of Denial of Service (DoS) attacks in NDN; in particular, they argue that interest flooding

as well as content/cache poisoning represent the most serious threats. Performing such

a kind of attacks is demonstrated to be possible in [25], where Compagno et al. present

“Poseidon”, a framework that uses local detection as well as collaborative techniques

based on the push-back approach to limit the feasibility of interest flooding attacks in

NDN. DoS attacks are again the topic addressed by Goergen et al. in [26], where they

formulate a proposal for a monitoring architecture that can detect attack patterns by

tracking recent activity happening over the basic data structure of an NDN node.

While content poisoning attacks aim at disrupting integrity by making adversaries

provide novel copies of contents that do not correctly represent the real data requested,

cache pollution attacks instead aim at disrupting cache efficiency by breaking the tempo-

ral correlation of requests. Since they can severely affect the overall network performance,

we group them within the DoS class. As thoroughly discussed in [27], cache pollution at-

tacks can be effectively performed even by an adversary that possesses limited resources.

Since cache pollution attacks can have a network-wide effect and are not confined to a sin-

gle node, Xie et al. present in [27] CacheShield, a pro-active mechanism to prevent cache

pollution in CCN. An alternative approach is proposed by Conti et al. in [28], where the

36

authors formulate a novel pollution detection algorithm. Compared to CacheShield, the

solution envisioned by Conti et al. has a smaller computational footprint while ensuring

at the same time a high overall hit-rate.

Privacy. Despite the fact that packets in NDN do not contain any information

regarding the source host from which they were originally sent, this characteristic is

not sufficient to protect the privacy of the users. Moreover, both Interest and Data

packets leak the name of the contents that users are willing to retrieve, therefore posing

remarkable privacy concerns for NDN. In order to mitigate this issue, DiBenedetto et

al. in [29] propose ANDaNA, an adaptation of onion-routing [30] specifically tailored

for NDN. By using multiple layers of encryption, they make sure that an eavesdropper

cannot leak sensitive information. Another approach based on homomorphic encryption

is instead proposed by Fotiu et al. in [31]. Despite the fact that one such proposal is

specifically tailored for the Publish-Subscribe paradigm, the authors claim that it can

also be applied to CCN and other infrastructures. They envision the implementation of a

brokering system that consumers query to retrieve pointers to the requested information

items, without making the content provider or the brokers know what type of content

the user is willing to access. Another class of attacks is presented in [32], where Acs et al.

focus on timing attacks on caches: in this case, the adversary learns whether a consumer

has requested a given content by querying the neighboring routers and analyzing the

delay. Cache privacy techniques are then analyzed with the precise aim to mitigate the

effects of a timing attack on the distributed caches. Finally, a comprehensive analysis

of privacy issues in ICN, attack categories, adversary models and potential remediation

is provided in [33]. More specifically, authors develop a generic ICN model that can be

applied to different ICN architectures, to map architectural design choices to potential

privacy issues that arise in one such context.

Access Control. The topic of access control in CCN, as clearly recognized in [26],

is extremely important and still deserves further attention. In [34], Zhu et al. propose

a mechanism to enforce confidentiality for a conference tool in NDN. Their proposal

is based on a centralized approach where the user hosting the conference also handles

the generation of symmetric encryption keys to secure the voice stream, while using

public-key cryptography to distribute keying materials. However, one such solution is

37

specifically designed for live streaming applications, and is not suited for a more generic

scenario where large files are distributed through the CCN. Burke et al. formulate in [35]

a proposal to secure light control; however their work, like [34], can hardly be extended

to other more general cases.

A thorough description of the encrypted access control mechanism implemented in

the CCNx prototype [36] is described by Smetters et al. in [37]. Nonetheless, one such

proposal lacks dedicated support for massive content distribution in the network, as well

as adequate support for policy evolution and access feedback, which is instead the focus

of our solution.

The works that most closely resemble ours are illustrated hereafter. Fotiu et al. study

in [38] an access control enforcement delegation mechanism for an ICN, which guarantees

consumers’ privacy in the PURSUIT [39] architecture. However, one such proposal is not

tailored for CCN; in fact, while in PURSUIT can be assumed that a caching node, called

Relaying Party (RP), will provide the content only to the subset of authenticated users,

one such requirement can instead hardly be enforced considering in-network caching as

implemented in CCN. On top of that, their focus on privacy preservation makes it very

difficult to jointly satisfy the trackability requirement.

Zhang et al. propose in [40] to enforce the confidentiality and integrity requirements

by leveraging the services provided by Identity-Based Encryption (IBE). The main ad-

vantage gained by using such technique is that the sender does not need to obtain the

public key certificate of the receiver to transmit data securely. However, the main dis-

advantage of their proposal is that they do not take into account in-network caching,

making the security mechanism not suited to support efficient content distribution in

CCN.

Proxy Re-Encryption (PRE) is used in [41] to support access-control in a content-

centric network. Among the advantages of one such solution, the overall efficiency of the

network is supported by the fact that in-network caching mechanisms can take advantage

of this paradigm: like in our ConfTrack-CCN design, the cyphertext may securely be

cached and served by the CCN routers, whereas keying materials are disclosed by the

producer only upon verification of the access policy. To foster the large scale application

of such paradigm, especially considering the relevant computational overhead introduced,

38

the content will be encrypted using symmetric encryption, while PRE techniques will

only be used to compute the symmetric decryption key. This proposal is therefore prone

to users’ collusion: an adversary can easily break the security of the overall system by

publishing the symmetric decryption key.

Inspired by the works on secure video content streaming, Misra et al. present in [42]

a security architecture specifically tailored to support content distribution in an ICN. By

using Broadcast Encryption and, more specifically, a public-key traitor tracing variant

of Shamir’s threshold secret sharing scheme, their proposed security architecture pro-

vides support for confidential communications in CCN, while offering viable techniques

to revoke access to any given user. On top of that, another positive advantage of this

architecture is that the chosen cryptosystem provides traitor-tracing features, meaning

that colluding users disclosing their private decryption keys will indirectly disclose in-

formation on their identity. Our proposed ConfTrack-CCN is instead designed on the

solid grounds of standard symmetric encryption and hash functions, in order to reduce

the computational overhead to execute the cryptographic primitives. Moreover, it also

provides functionalities to effectively support content access trackability, a feature that

is instead neglected by the system proposed in [42].

To cope with the large files distribution, the solutions reviewed so far use one layer

of symmetric encryption to efficiently secure the data, while enforcing access control

protection by using different versions of public-key encryption (such as IBE, PRE, BE),

to securely distribute keying materials, and ensuring that only authorized users can

retrieve the correct decryption key. However, all these systems can be easily bypassed

by making users disclose the common symmetric encryption key used to initially protect

the content. On top of that, since the symmetric key is shared by all the users, one

such strategy does not reveal any type of information regarding the user’s identity. Our

ConfTrack-CCN mechanism, instead, is tailored to avoid this issue. In fact, in our

design, contents are encrypted twice, using two symmetric keys. To break the system

security, users must disclose the Second Layer decryption keys, but, doing that, they are

also forced to expose their identity. Furthermore, by relying on standard hash functions

and symmetric encryption, our solution significantly improves the overall efficiency of

the mechanism. Finally, for the sake of clarity, Table 3 provides a thorough comparison

39

Table 3: Comparison of Related Works on Access Control.

ConfTrack-CCN [38] [40] [41] [42]

Confidentiality X X X X X

Privacy
Preservation

- X - - -

Trackability X ✗ ✗ - ✗

Access Policy
Evolution

X -
Revocation
is not trivial

X X

Collusion
Protection

X - - ✗ X

Cache
Awareness

X
In PURSUIT,
not in CCN

✗ X X

Performance
Sym. Enc.
Hash Functions

Sym. Enc. IBE PRE BE

of our ConfTrack-CCN scheme with respect to the most notable reviewed literature on

access control enforcement.

7. Conclusions

We proposed ConfTrack-CCN, the first cache-aware, encryption-based mechanism

designed to enforce confidential and trackable content dissemination in Content-Centric

Networks, while seamlessly supporting policy evolution. With our mechanism, the con-

sumers can take advantage of the distributed caches (one of the core elements of CCNs)

to retrieve the encrypted data, while they are instead forced to contact directly the con-

tent producer to fetch keying material, thus authenticating themselves and providing

access trackability feedback.

We evaluated our solution by both developing a mathematical model and through

an accurate simulation analysis with real network topologies, showing that the proposed

mechanism always performs better than user-based encryption. In the most adverse case,

ConfTrack-CCN ensures a 25% hit rate, while user-based encryption schemes can barely

reach 5%. A large gap is also observable in the best case, where our solution scores

a 91% hit-rate, compared to the 58% of user-based schemes. By distributing different

key sets to the users, our proposal provides robust collusion detection and prevention

functionalities, even when 60% of the users are colluding.

On top of that, we also quantified the computational overhead introduced by ConfTrack-

CCN by implementing a Java prototype of our solution and performing extensive mea-
40

surements. We demonstrated that on the consumer side our solution has a negligible

performance cost since it only executes fast operations (it decrypts 100 Mbytes of data

in less than 4 seconds). At the same time, our design limits the impact of demanding

cryptographic primitives such as the generation of the Second-Layer encryption keys:

this operation has to be performed on the content provider side only once.

Appendix A. KR-RSA

In this appendix we describe the KR-RSA key derivation algorithm.

The key regression algorithm is the mechanism we use to generate a sequence of en-

cryption keys that appear to be pseudorandom. While the content provider can compute

subsequent versions of a key, the consumers can only derive previous versions. When

compared to other key-derivation algorithms such as S/KEY [14], key regression (in its

KR-RSA formulation [13]), has two advantages: (1) the content producer can generate

an unbounded number of keys (i.e.: the maximum wind parameter MW is infinite), and

(2) subsequent keys of the sequence appear as pseudorandom.

For the sake of clarity, we use the same notation as in Sec. 3.2. The content producer

generates and persists securely the producer state stp(h, l), while it discloses the consumer

state stc(h, l) to its customers. We denote with SK(h, l) the encryption key, where h is

the version, while l is the seed used to initialize the algorithm.

Given stc(h, l), a consumer can efficiently compute all the previous states stc(1, l), ..., stc(h− 1, l)

as well as the corresponding keys K(1, l), ...,K(h − 1, l), but it cannot compute subse-

quent states stc(h + i, l), ∀i ≥ 1. The sequence of keys is pseudorandom, whereas the

sequence of consumer states is not: in fact, it is possible for an adversary to distinguish

future consumer states from random bits, but the same does not apply to keys.

The key regression scheme is completely identified by four algorithms:

1. Setup: this operation is executed by the content producer and is used to generate

the initial producer state stp(h, l) (Algorithm 2).

2. Wind key: this operation is executed by the content producer. Given the current

41

state stp(h, l), it returns the corresponding consumer state stc(h, l) as well as the

subsequent producer state stp(h+ 1, l) (Algorithm 3).

3. Unwind key: this operation is executed by the consumer. Given the current

consumer state stc(h, l), it returns the previous state stc(h− 1, l) (Algorithm 4).

4. Key Derivation: this operation can be executed by both a content producer and

the consumer. Given the current consumer state stc(h, l) it returns the correspond-

ing encryption key SK(h, l) (Algorithm 5).

In Step 1 of Alg. 2, we use an RSA key generator denoted with Krsa to compute

(N, e, d), where N is the RSA modulus, e is the public exponent, while d is the private

key exponent. In Step 2 a random unsigned integer S in ZN , with standard, big endian

encoding is generated.

Using the well known properties of RSA in Step 1 of Alg. 3, the new value for S is

computed, whereas in Step 1 of Alg. 4 the previous value of S is derived. By keeping d

secret, the one-way property is guaranteed. Lastly, in Step 1 of Alg. 5, by using the

SHA1 hash function, key pseudorandomness is enforced by the mechanism.

Algorithm 2: KR-RSA - Setup

Output: stp(h,l)
1 (N, e, d) ⇐ Krsa ;
2 S ⇐ Z

∗
N ;

3 h ⇐ S ;
4 l ⇐ 〈N, e〉;
5 stp(h,l) ⇐ 〈h, l, d〉;

Algorithm 3: KR-RSA - Wind Key

Input : stp(h = S, l = 〈N, e〉)
Output: stp(h′, l), stc(h, l)

1 S′ ⇐ Sd mod N ;
2 h′ ⇐ S ;
3 stp(h′, l) ⇐ 〈h′, l, d〉 ;
4 stc(h, l) ⇐ 〈h, l〉 ;

42

Algorithm 4: KR-RSA - Unwind Key

Input : stc(h = S, l = 〈N, e〉)
Output: stc(h′, l)

1 h′ ⇐ Se mod N ;
2 stc(h′, l) ⇐ 〈h′, l〉 ;

Algorithm 5: KR-RSA - Key Derivation

Input : stc(h = S, l = 〈N, e〉)
Output: SK(h, l)

1 SK(h, l) ⇐ SHA1(S) ;

References

[1] B. M. Leiner, V. G. Cerf, D. D. Clark, et al. The Past and Future History of the Internet.

Communications of the ACM, 40(2):102–108, 1997.

[2] G Carofiglio, G Morabito, L Muscariello, I Solis, and M Varvello. From content delivery today to

information centric networking. Computer Networks, 57(16):3116–3127, 2013.

[3] Yusung Kim and Ikjun Yeom. Performance Analysis of In-Network Caching for Content-Centric

Networking. Computer Networks, 57(13):2465–2482, 2013.

[4] Akamai Website. http://www.akamai.com/, Last accessed: January 2014.

[5] George Pallis and Athena Vakali. Insight and Perspectives for Content Delivery Networks. Com-

munications of the ACM, 49(1):101–106, 2006.

[6] Christian Dannewitz. NetInf: An Information-Centric Design for the Future Internet. In Proc. 3rd

GI/ITG KuVS Workshop on The Future Internet, Munich, Germany, May, 2009.

[7] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy, Kye Hyun Kim, Scott

Shenker, and Ion Stoica. A data-oriented (and beyond) network architecture. SIGCOMM Comput.

Commun. Rev., 37(4):181–192, 2007.

[8] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H. Briggs, and

Rebecca L. Braynard. Networking Named Content. In Proc. of the 5th Int.l conference on Emerging

networking experiments and technologies (CoNEXT), pages 1–12. ACM, 2009.

[9] Guoqiang Zhang, Yang Li, and Tao Lin. Caching in information centric networking: A survey.

Computer Networks, 57(16):3128–3141, 2013.

[10] HyunYong Lee and Akihiro Nakao. User-assisted in-network caching in information-centric net-

working. Computer Networks, 57(16):3142–3153, 2013.

[11] Jaime Llorca, Antonia Tulino, Kyle Guan, Jairo Esteban, Matteo Varvello, Nakjung Choi, and

Daniel Kilper. Dynamic In-Network Caching for Energy Efficient Content Delivery. In Proc. of

IEEE INFOCOM, pages 245–249, Turin, Italy, April, 2013.

[12] Ryad Benadjila, Olivier Billet, Shay Gueron, and MattJ.B. Robshaw. The intel aes instructions set

and the sha-3 candidates. In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009,

43

volume 5912 of Lecture Notes in Computer Science, pages 162–178. Springer Berlin Heidelberg,

2009.

[13] Kevin Fu, Seny Kamara, and Yoshi Kohno. Key Regression: Enabling Efficient Key Distribution

for Secure Distributed Storage. In Proc. of the 13th Annual Network & Distributed System Security

Symposium (NDSS 2006), San Diego, CA, USA, February, 2006.

[14] Neil Haller. The S/KEY One-Time Password System. In Proc. of the Internet Society Symposium

on Network and Distributed Systems, pages 151–157, February 1994.

[15] Dario Rossi and Giuseppe Rossini. On Sizing CCN Content Stores by Exploiting Topological

Information. IEEE INFOCOM, NOMEN Workshop, pages 280–285, 2012.

[16] Christine Fricker, Philippe Robert, and James Roberts. A Versatile and Accurate Approximation

for LRU Cache Performance. In Proc. of the 24th International Teletraffic Congress, Krakow,

Poland, September, 2012.

[17] Hao Che, Ye Tunk, and Zhijun Wang. Hierarchical Web Caching Systems: Modeling, Design and

Experimental Results. IEEE JSAC, 20(7):1305–1314, 2002.

[18] Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang. ndnSIM: NDN simulator for NS-3. Tech-

nical Report NDN-0005, NDN, October 2012.

[19] Géant Network Website. http://geant3.archive.geant.net/Network/NetworkTopology/pages/

home.aspx, Last accessed: January 2014.

[20] Christine Fricker, Philippe Robert, Jim Roberts, and Nada Sbihi. Impact of traffic mix on caching

performance in a content-centric network. In IEEE NOMEN 2012, Workshop on Emerging Design

Choices in Name-Oriented Networking, Orlando, USA, Mar. 2012.

[21] Diana Smetters and Van Jacobson. Securing Network Content. Technical report, PARC, technical

report TR-06-11, October 2009.

[22] Priya Mahadevan, Ersin Uzun, Spencer Sevilla, and JJ Garcia-Luna-Aceves. CCN-KRS: a key

resolution service for CCN. In Proc. of the 1st Int.l conf. on Information-centric networking (ICN),

pages 97–106. ACM, Paris, France, Sep. 2014.

[23] Cesar Ghali, Gene Tsudik, and Ersin Uzun. Needle in a Haystack: Mitigating Content Poisoning

in Named-Data Networking. In Proc. of NDSS Workshop on Security of Emerging Networking

Technologies (SENT), San Diego, CA, USA, Feb. 2014.

[24] Paolo Gasti, Gene Tsudik, Ersin Uzun, and Lixia Zhang. DoS and DDoS in Named-Data Network-

ing. Technical report, University of California, Irvine, 08 2012.

[25] Alberto Compagno, Mauro Conti, Paolo Gasti, and Gene Tsudik. Poseidon: Mitigating Interest

Flooding DDoS Attacks in Named Data Networking. Technical report, University of California,

Irvine, 2013.

[26] David Goergen, Thibault Cholez, Jérôme François, and Thomas Engel. Security monitoring for

Content Centric Networking. In Data Privacy Management and Autonomous Spontaneous Security,

volume 7731, pages 274–286. 2013.

[27] Mengjun Xie, Indra Widjaja, and Haining Wang. Enhancing cache robustness for content-centric

networking. In Proc. of IEEE INFOCOM, pages 2426–2434, Orlando, Florida, USA, March 2012.

44

[28] Mauro Conti, Paolo Gasti, and Marco Teoli. A lightweight mechanism for detection of cache

pollution attacks in Named Data Networking. Computer Networks, 57(16):3178–3191, 2013.

[29] Steven DiBenedetto, Paolo Gasti, Gene Tsudik, and Ersin Uzun. ANDaNA: Anonymous named

data networking application. In Proc. of the 19th Annual Network & Distributed System Security

Symposium (NDSS 2012), San Diego, CA, USA, February 2012.

[30] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-Generation Onion Router.

In Proc. of the 13th USENIX Security Symposium, San Diego, CA, USA, August 2004.

[31] N. Fotiou, D. Trossen, G.F. Marias, A. Kostopoulos, and G.C. Polyzos. Enhancing information

lookup privacy through homomorphic encryption. Security and Communication Networks, 2013.

[32] Gergely Acs, Mauro Conti, Paolo Gasti, Cesar Ghali, and Gene Tsudik. Cache Privacy in Named-

Data Networking. In Proc. of the 33rd Int.l Conference on Distributed Computing Systems (ICDCS

2013), Philadelphia, PA, USA, July 2013.

[33] Nikos Fotiou, Somaya Arianfar, Mikko Särelä, and George C. Polyzos. A framework for privacy

analysis of icn architectures. In Bart Preneel and Demosthenes Ikonomou, editors, Privacy Tech-

nologies and Policy, volume 8450 of Lecture Notes in Computer Science, pages 117–132. Springer

International Publishing, 2014.

[34] Zhenkai Zhu, Jeffery Burke, Lixia Zhang, Paolo Gasti, Yanbin Lu, and Van Jacobson. A New

Approach to Securing Audio Conference Tools. In Proc. of the 7th Asian Internet Engineering

Conference (AINTEC), ACM, pages 120–123, Bangkok, Thailand, November 2011.

[35] Jeff Burke, Paolo Gasti, Naveen Nathan, and Gene Tsudik. Securing Instrumented Environments

over Content-Centric Networking: the Case of Lighting Control and NDN. In Proc. of the 2nd IEEE

Int.l Workshop on Emerging Design Choices in Name-Oriented Networking (NOMEN), Turin,

Italy, April 2013.

[36] CCNx Website. https://www.ccnx.org, Last accessed: January 2014.

[37] Diana Smetters, Philippe Golle, and Jim Thornton. CCNx Access Control Specifications. Technical

report, Technical report, PARC, 2010.

[38] Nikos Fotiou, Giannis F. Marias, and George C. Polyzos. Access Control Enforcement Delegation for

Information-centric Networking Architectures. In Proc. of the 2nd ICN Workshop on Information-

centric Networking, ICN ’12, pages 85–90. ACM, Helsinki, Finland, August 2012.

[39] Nikos Fotiou, Pekka Nikander, Dirk Trossen, and George C. Polyzos. Developing Information

Networking Further: From PSIRP to PURSUIT. In Broadband Communications, Networks, and

Systems, volume 66 of LNCS, Social Informatics and Telecommunications Engineering, pages 1–13.

Springer, 2012.

[40] Xinwen Zhang, K. Chang, Huijun Xiong, Yonggang Wen, Guangyu Shi, and Guoqiang Wang.

Towards name-based trust and security for content-centric network. In IEEE Int.l Conf. on Network

Protocols (ICNP), pages 1–6, Vancouver, BC Canada, Oct. 2011.

[41] Christopher A Wood and Ersin Uzun. Flexible End-to-End Content Security in CCN. In IEEE

Consumer Communications and Networking Conference (CCNC), pages 1–8, Las Vegas, NE, USA,

Jan. 2014.

45

[42] Satyajayant Misra, Reza Tourani, and Nahid Ebrahimi Majd. Secure Content Delivery in

Information-centric Networks: Design, Implementation, and Analyses. In Proc. of the 3rd ACM

SIGCOMM Workshop on Information-centric Networking, ICN ’13, pages 73–78. ACM, Hong

Kong, China, Aug. 2013.

46

