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An Efficient Auction-based Mechanism for
Mobile Data Offloading

Stefano Paris, Fabio Martignon, Ilario Filippini, and Lin Chen

Abstract—The opportunistic utilization of third party WiFi access devices to offload customer traffic from the mobile network has

recently gained momentum as a promising approach to increase the network capacity and simultaneously reduce the energy

consumption of the radio access network (RAN) infrastructure. To foster the opportunistic utilization of unexploited Internet

connections, we propose a new and open market where a mobile operator can lease the bandwidth made available by third parties

(residential users or private companies) through their access points to increase dynamically (and adaptively) the network capacity. We

formulate the offloading problem as a reverse auction considering the most general case of partial covering of the traffic to be offloaded.

We discuss the conditions (i) to offload the maximum amount of data traffic according to the capacity made available by third party

access devices, (ii) to foster the participation of access point owners (individual rationality), and (iii) to prevent market manipulation

(incentive compatibility). Finally, we propose three alternative greedy algorithms that efficiently solve the offloading problem, even for

large-size network scenarios.

Index Terms—Data offloading, heterogeneous networks, mechanism design, auction

Ç

1 INTRODUCTION

IN recent years, the rapid growth of traffic demand
required by content-rich Internet services accessed by

mobile users through their smartphones has increased the
pressure on mobile operators for upgrading their cellular
networks. Consequently, mobile operators have increased
the capacity of their radio access and backhaul networks
through the development of new technologies and a perva-
sive deployment of new types of base stations. Neverthe-
less, mobile customers are experiencing a “bandwidth
crunch” due to the steady growth of the demand required
by real-time services and the limited capacity of the wireless
access technology.

A promising solution to smoothly handle sudden peaks
of bandwidth demand is represented by the opportunistic
utilization of low-cost and low-power small access devices
(either Small Base Stations, SBSs, or Access Points, APs)
massively deployed over the macro-cell areas by the opera-
tor or third party entities. Third party access devices can
use the legacy transmission technology of the large cell,
such as LTE or beyond, but also rely on existing technology
such as WiFi, thus forming Heterogeneous Mobile Net-
works. Consequently, mobile operators could provide a bet-
ter wireless access service without limiting the maximum

traffic of their customers through a wise management of
their resources and the opportunistic utilization of other
access network technologies.

In this paper, we investigate innovative policies andmech-
anisms to foster the deployment of Heterogeneous Mobile
Networks as a means for mobile operators to increase their
network capacity without deploying additional base stations,
thus reducing their capital expenditure (CAPEX). As any
marketplace, the misbehavior of even few SBS/AP owners
(either residential users or hotspot administrators) playing
strategically might seriously affect the efficiency of the alloca-
tion mechanism used by the mobile operator, thus discourag-
ing honest agents from participating to the market. This, in
turn, reduces the maximum amount of traffic that can be off-
loaded and the potential CAPEX savings. To address this
issue, we present a reverse truthful auction that forces each
SBS/AP owner interested in leasing the unexploited band-
width of its Internet connection to bid truthfully. More gener-
ally, we consider the case of partial/constrained data
offloading that stems from the limited resources provided by
third parties, showing that such a problem asks for a deep
revision of the classical payment rules.

Our work makes the following contributions:

 We propose and analyze a combinatorial reverse
auction to implement an innovative marketplace
both for selecting the cheapest third party access
devices and offloading the maximum amount of
data traffic from the RAN.

 We show that a payment rule that considers only the
variation of the objective function solving the ILP
problemwith andwithout thewinner does not always
ensure the individual rationality of the participants for
the analyzedmobile data offloading problem.

 We present an innovative payment rule based on the
Vickrey-Clarke-Groves (VCG) scheme and demon-
strate that it guarantees both individual rationality and
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incentive compatibility (i.e., truthfulness). To the best of
our knowledge, this is the first payment rule that con-
siders explicitly the trade-off between the total cost
and the gain of offloading data connections.

 Since the optimal reverse auction problem is NP-
hard, we further propose three greedy algorithms
that solve very efficiently (i.e., in polynomial time)
the allocation problem, even for large network
instances, while preserving the truthfulness property.

 We perform a thorough numerical analysis and com-
parative evaluation of the proposed optimal and
greedy allocation algorithms, considering realistic
network scenarios.

The paper is structured as follows: Section 2 discusses
related work. Section 3 presents the system model consid-
ered in our work. Section 4 formulates the combinatorial
reverse auction as an optimization problem, and presents
our new payment rule that makes the auction individually
rational and truthful. Section 5 describes the greedy algo-
rithm to solve efficiently the problem, while Section 6 illus-
trates and analyzes numerical results. Finally, concluding
remarks are discussed in Section 7.

2 RELATED WORK

In recent years, several research groups have investigated
the benefit of opportunistically offloading 3G data traffic on
WiFi access networks to improve the QoS experienced by
mobile devices [1], [2], [3]. Wiffler [2] provides a middle-
ware layer for delay tolerant applications to overcome the
poor availability and performance of WiFi access technol-
ogy in vehicular networks, showing the performance
increase through different experimental scenarios. The
Application Programming Interface proposed in [3] further
develops this approach to improve the performance of the
applications using opportunistic wireless networking.

These works shed lights on the benefits of opportunisti-
cally using multiple wireless connections to increase the
throughput and reduce the latency experienced by data con-
nections. However, they miss opportunities for optimizing
communications, since they design user-centric approaches
without exploiting the global vision of Heterogeneous
Mobile Networks. More recently, works like [4], [5], [6], [7],
[8], [9] leverage both on the global knowledge of the mobile
network operator and the multiple access radio interfaces of
4G smart devices to design auction mechanisms that mini-
mize the overall offloading cost. Nevertheless, these mecha-
nisms fail to find a feasible solution in typical network
scenarios, where only a subset of mobile customers connec-
tions can be offloaded to the surrounding WiFi access net-
works without exceeding their overall capacity. Indeed, the
payment rules designed in these works require the assign-
ment of all mobile data connections (i.e., their complete cov-
ering) in order to guarantee individual rationality and
truthfulness. In contrast, our work presents a new reverse
auction tailored for the more general problem where the
operator can offload only a portion of the overall traffic load
generated by its customers.

With the upcoming generation of cognitive radio
networks, market-based auctions have been extensively
studied as an efficient mechanism to dynamically sublease

the unexploited licensed spectrum to secondary users and
increase the revenue of the spectrum owner [10], [11], [12],
[13], [14], [15].

VERITAS [10] pinpoints the limits of conventional auc-
tions and proposes a truthful and flexible mechanism
requiring only polynomial complexity for solving the spec-
trum allocation problem. TRUST [11] further develops this
approach to support multi-party spectrum trading through
a truthful double spectrum auction based on the well-
known McAfee mechanism. The work presented in [12]
adopts a similar approach to model and solve a broad class
of problems concerning the allocation of spectrum resources
to primary and secondary users in cognitive radio net-
works, while [13] analyzes also the interplay among the
spectrum broker, service providers which are interested in
leasing spectrum bands, and end-users. In [14] the authors
investigate a spectrum marketplace where the spectrum
owner’s uncertainty about the private valuations of spec-
trum bidders is modeled using a Bayesian approach.

Auction theory has also been exploited to design innova-
tive traffic engineering techniques and routing protocols,
both to enhance the utilization of unused network paths
and force the collaboration of intermediate relaying nodes
[16], [17], [18], [19].

Finally, recent research has analyzed virtual network sce-
narios where several service providers compete among each
other for using the resources owned and managed by a net-
work operator [20], [21]. In particular, Jain et al. in [20] pres-
ent a mechanism for per-link bandwidth allocation of end-
to-end paths in wired network, whereas Fu et al. in [21]
design an auction-based stochastic game for resource alloca-
tion of virtual operators in wireless cellular networks.

Unlike recent literature, our work envisions a new mar-
ketplace based on reverse auctions, where WiFi Access
Points are exploited by mobile network operators to offload
the traffic of their customers. This marketplace would
reduce the installation and management costs for mobile
network operators, as well as foster the development of Het-
erogeneous Mobile Networks. Furthermore, we explicitly
consider the more general partial covering problem of data
connections, proposing a new payment rule to address the
limits of the previous schemes.

3 SYSTEM MODEL

This section presents the economic definitions and assump-
tions, as well as the networkmodel we adopt in the design of
our auction mechanisms. Let us refer to the Heterogeneous
Mobile Network (HMN) sample scenario illustrated in
Fig. 1, which is composed of a mobile cellular network
formed by four base stations and a set of WiFi Access Points
connected to the Internet. To simplify the discussion, in the
rest of the paper we consider only WiFi APs as third party
devices rented by the mobile operator; however, we under-
line that the proposed mechanisms can be easily extended to
consider other SBS access technologies like LTE or beyond.
The mobile network is managed by a single operator that
provides ubiquitous access to its mobile customers (MCs),
while each participant to the trading marketplace (either a
residential user or a hotspot operator) is the owner of a wire-
less Access Point. AP owners lease the unused capacity of
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their Internet connections made available through wireless
access points, so that the mobile operator can rent the avail-
able APs’ bandwidth to offload the data traffic of its custom-
ers when, for example, this latter exceeds the maximum
capacity provided by the mobile network, or to save energy
by switching some BSs off. Table 1 summarizes the notation
used in the paper.

3.1 Economic Model

Each AP owner i has an unexploited capacity Ci of its Inter-
net connection that he is willing to lease for a given price vi,
unknown to the operator. To this end, he submits to the
operator the bid bi; Ci½ !, representing the price that i asks for
leasing the capacity Ci of its AP to the operator.

Through the mechanisms proposed in this work, the
operator selects both the access points (APs) and the subset
of its MCs whose data traffic is offloaded from the mobile
network to the selected APs. We remark that, unlike classi-
cal optimization approaches, where the operator knows
exactly the price of each device that it can install, in our sce-
nario such information is hidden, thus we may have bi 6¼ vi.
To prevent market distortion, the mechanisms proposed in
this paper incentivize AP owners to provide the true infor-
mation about the private valuation of their APs (bi ¼ vi) by
ensuring that there are no benefits to lying.

Let us denote by pi $ 0 the price paid by the operator to
AP owner i to exploit its available capacity Ci. Then, assum-
ing a quasi-linear utility function for AP owner i, we can
define the utility of i, ui, as the difference between the price
paid by the operator, pi, and the private valuation vi,
according to Equation (1):

ui ¼
pi % vi if AP i is selected

0 otherwise:

 

(1)

The utility represents therefore the residual gain of owner i

obtained from the leased capacity of its AP. Obviously,
when AP i is not used, the utility of its owner is null, since
both the paid price and the private valuation are null.

3.2 Network Model

We observe that the transmission rate and the channel utili-
zation required to satisfy the bandwidth demand of the
data traffic generated by mobile customers depend on the

channel condition between the smartphone of the mobile
customer and the access point to which it can be connected;
hence, the allocation scheme influences the number of APs
used for the mobile data offloading. Given the amount of
traffic dj of its mobile customer MCj, the operator computes

the vector of channel utilizations, oj
! ¼ oj1 oj2 ::: oji½

. . . ojn!, where each pair ðj; iÞ refers to a possible allocation
of MC j to AP i, whereas n represents the number of APs in
the network. Channel utilizations are computed as follows:

oji ¼
dj

rji

; (2)

where the element oji represents the channel utilization of
AP i when it is used to offload the data traffic of MC j, and
it is computed as the ratio between the traffic demand dj

and the maximum achievable transmission rate of the wire-
less link that might connect MC j and AP i, rji. Note that
this latter value can be easily obtained from the MAC layer
through a scanning of the wireless channels, which is per-
formed periodically by all network devices. To take into
consideration the uncertainty related to traffic description
in wireless systems and prevent throughput collapse caused
by the contention level, we increase the MC bandwidth dj

by a fixed margin, which is computed according to the
recent model presented in [22]. Finally, we observe that our
model can be extended to consider other types of SBS by
slightly modifying expression 2 according to the specific
wireless access technology.

4 OPTIMAL AUCTION FOR MOBILE DATA

OFFLOADING

This section presents the combinatorial reverse auction
we propose to jointly select the wireless APs and the
MCs data connections that can be offloaded from the cel-
lular network when WiFi resources cannot satisfy the
aggregated traffic demand (Section 4.1). We show that a
payment rule, which considers only the variation of the
objective function solving the ILP problem with and
without the winner, provides no incentive to participate

Fig. 1. Network scenario considered in this work. The MN is managed by
a single operator that provides access to its customers (e.g., MCj), while
the unused capacity of wireless access devices (e.g., APi) is leased to
the operator for data traffic offloading.

TABLE 1
Basic Notation used in the Paper

Sets

M Set of Mobile Customers, jMj ¼ m
Mi Subset of MCs that are covered by AP i
A Set of Access Points (i.e., bidders), jAj ¼ n

Parameters
Ci Capacity of the Internet connection offered by AP owner i
bi Bid offered by AP owner i for its Internet connection
vi Real valuation of AP owner i for its Internet connection
pi Price paid by the operator to AP owner i
ui Utility of AP owner i
dj Bandwidth demand of MC j
rji Maximum transmission rate of the wireless link

established between nodes j 2 M and i 2 A
oji Channel utilization of AP i to satisfy the bandwidth

demand of MC j

Variables
xi Binary variable that indicates if AP i wins the auction
yji Binary variable that indicates if MC j is assigned to AP i

PARIS ET AL.: AN EFFICIENT AUCTION-BASED MECHANISM FOR MOBILE DATA OFFLOADING 3
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to the reverse auction under such general assumptions.
Therefore, we define a new payment rule to guarantee
individual rationality and truthfulness, as demonstrated
in Section 4.2. The algorithm implementing the optimal
auction is then presented in Section 4.3.

4.1 Optimal Allocation

Hereafter, we formalize the Integer Linear Programming
(ILP) model which provides the optimal allocation for the
auction, namely the APs to be purchased and the mobile
data traffic that can be offloaded. We first describe the sets
and variables used in our model, then we provide the ILP
description of the problem.

LetM denote the set of MCs, and A the set of wireless
APs whose owners participate to the reverse auction of the
mobile operator. Let us defineMi "M; i 2 A as the set of
MCs that are covered by AP i (i.e., the MCs that are in the
radio range of AP i).

We can now introduce the decision variables used in our
ILP model. Binary variables xi, i 2 A, indicate which resi-
dential users win the auction, i.e., the APs whose available
capacity is exploited by the mobile operator to serve the
extra-traffic of its MCs (xi ¼ 1 if the available capacity of AP
i is used, 0 otherwise). Binary variables yji, i 2 A; j 2 M,
provide the assignment of MCs to APs (yji ¼ 1 if MC j is
assigned to AP i, 0 otherwise).

Given the above definitions and notation, the reverse
combinatorial auction problem with partial covering of
mobile customers can be stated as follows:

min fðx; yÞ ¼
X

i2A

bi ' xi ( c '
X

i2A

X

j2Mi

yji (3)

s:t:
yji ) xi 8i 2 A; 8j 2 Mi

(4)

P

i2A yji ) 1 8j 2M (5)

X

j2Mi

yjioji ) 1 8i 2 A (6)

X

j2Mi

yjidj ) xiCi 8i 2 A (7)

yji ¼ 0 8i 2 A; 8j =2 Mi (8)

xi; yji 2 0; 1f g 8i 2 A; 8j 2 M: (9)

The first term of the objective function (3),
P

i2A bi ' xi, rep-
resents the total cost paid by the operator to lease the APs
used for the data offloading of its mobile network. The
second term,

P

i2A

P

j2Mi
c ' yji, aims at maximizing the off-

loading of data connections from the cellular to the rented
WiFi networks. The parameter c > 0 is a trade-off value
between these two opposing objectives, and it can be seen
as the gain of the operator obtained by offloading the traffic
of MC j to AP i. Constraints 4 are coherence constraints
ensuring that only the access points that win the auction
can be used to serve mobile customer connections. The set

of constraints 5 ensures that mobile data connections are
served using at most one leased access point.

Constraints 6 and 7 prevent the allocation of an overall
traffic demand that cannot be satisfied by an access point,
due to the maximum achievable transmission rate of the
wireless channel and the limited capacity of the Internet
connection made available by the residential user, while
constraints (8) prevent the assignment of MCs to APs that
are not in the reciprocal radio range. Note that the channel
assignment of access points can be optimized in order to
reduce interference effects among nearby devices by using
classical coloring algorithms coupled with the IEEE 802.11k
standard. Finally, constraints 9 ensure the integrality of the
binary decision variables.

Since the operator aims at offloading its mobile network
as much as possible, the parameter c should be set as
pointed out by the following proposition.

Proposition 4.1. In order to offload the maximum amount of traf-
fic of Mobile Clients, the value of the parameter c must be
greater than the maximum bid, namely c > maxfbig.

In fact, it is easy to prove that when parameter
c > maxfbig, we always get an improvement in terms of
minimization of the objective function by selecting an addi-
tional AP h, since bh ) maxfbig < c '

P

j2Mh
yjh.

We underline that our model can be easily extended to
consider other scenarios where, for example, the amount of
allocated radio resources represents a more important met-
ric to select the MCs that should be offloaded. Indeed, the
objective function can be modified to consider as connection
cost a parameter proportional to the radio resources utiliza-
tion of the Base Station, ôj, as follows:

fðx; yÞ ¼
X

i2A

bi ' xi (
X

i2A

X

j2Mi

c ' ôjyji

¼
X

i2A

bi ' xi (
X

i2A

X

j2Mi

ĉjyji

ôj ¼
dj

r̂j
;

where r̂j is the physical rate of the mobile terminal connec-
tion j, which depends on the radio resources allocated by
the BS scheduling algorithm. Therefore, the value of r̂j can
be easily obtained by the operator. Note that to offload the
maximum number of connections, the condition stated in
Proposition 4.1 must be modified as follows:

Proposition 4.2. In order to offload the maximum amount of traf-
fic of Mobile Clients, the minimum value among the parame-
ters ĉj must be greater than the maximum bid, namely
minfĉjg > maxfbig.

We observe that the condition stated in Proposition 4.1
permits to achieve the highest energy savings, since the
higher the number of offloaded connections, the larger is
the set of BSs that can be switched off. Nonetheless, when the
operator wants to limit themaximum offloading cost or have
some guarantee on the price paid to third party APs, the cost
c acts as a reserve price, excluding all those players that have
submitted higher bids than the value that the operator puts
on the MC connection. Therefore, the operator can choose

4 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. X, XXXXX 2014
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the reserve price c to limit the maximum offloading cost, with-
out affecting either the problem feasibility or the solution
properties (i.e., individual rationality and truthfulness).

4.2 Payment Rule

Having defined the ILP model representing the optimal
auction, we now illustrate the payment rule and the condi-
tions that force AP owners to ask their real valuation for the
utilization of the capacity that they make available through
their access points. First, we demonstrate that a classical
payment rule, which considers only the difference of the
objective function minimized with and without the winner’s
presence, cannot be directly applied to the problem ana-
lyzed in this paper. Then, we propose a new payment rule
that guarantees both individual rationality and truthfulness
(incentive compatibility).

In reverse auctions, payment rules usually define the
price paid to winner i as the damage that it causes to other
participants, which can be computed as the difference
between the optimal value of the objective function
obtained with and without i participation.

Mathematically, let ðx; yÞ be the solution to the ILP

problem 3-9, and f"iðx; yÞ the value of the objective func-
tion without considering the bid for AP i, i.e.,

f"iðx; yÞ ¼
P

k2Anfig bk ) xk "
P

k2Anfig

P

j2Mk
c ) yjk.

Furthermore, let ðx"i; y"iÞ denote the solution to the same
problem without considering AP i (i.e., forcing xi ¼ 0 as
additional constraint to the original problem), and

fðx"i; y"iÞ ¼
P

k2Anfig bk ) x"i
k "

P

k2Anfig

P

j2Mk
c ) y"i

jk the

value of the corresponding objective function.
The price paid to winner i using the aforementioned rule

is therefore equal to pi ¼ fðx"i; y"iÞ " f"iðx; yÞ1.

Theorem 4.3. The payment scheme that considers only the dif-
ference in the objective function of the problem (3)-(9) caused
by the winner’s presence does not guarantee individual ratio-
nality when the connections covered by the winner i can be
assigned to a more expensive AP e 2 A, i.e., pi ¼ fðx"i;

y"iÞ " f"iðx; yÞ < vi.

Proof. To prove this theorem, we have to show that the win-
ner of the auction i 2 A is paid less than the value it
asked for using its AP, i.e., ui < 0 , pi < vi. To this end,
we write the payment rule as follows:

pi ¼ fðx"i; y"iÞ " f"iðx; yÞ ¼

¼
X

k2Anfig

bk ) x"i
k "

X

k2Anfig

bk ) xkþ

þ c )
X

k2Anfig

X

j2M

ðyjk " y"i
jk Þ:

(10)

The absolute value of the term qi ,
P

k2Anfig

P

j2Mðyjk "

y"i
jk Þ represents the number of connections that can

be offloaded even without i. Furthermore,
P

k2Anfig
P

j2M y"i
jk -

P

k2Anfig

P

j2M yjk, therefore qi . 0. Indeed,

according to Proposition 4.1, which forces the maximal
covering of MCs connections, the number of connections

assigned to i in the optimal solution y is at least equal to

the one that can be offloaded without i in solution y"i.
Therefore, the enlargement of the solution space by the
addition of a variable (i.e., xi) can only increase the
number of covered connections (recall, however, that
the connections assigned to i are not considered in the
payment rule (10)).

When the connections served by i can be assigned to a
more expensive AP e 2 A, the relation qi ¼

P

k2Anfig
P

j2Mðyjk " y"i
jk Þ < 0 holds, thus pi ¼ be þ c) qi < 0 < vi,

since c > maxfbhg. tu

To better clarify the problem stated in Theorem 4.3, here-
after we present an example in which the individual ratio-
nality is not guaranteed. Let us refer to the network
scenario illustrated in Fig. 2, with three APs and two MCs.
We assume that b1 > b2 > b3, C1 ¼ C2 ¼ C3 ¼ C, and that
d1 þ d2 > C. The APs selected as winners are AP2 and AP3.
In order to determine the price paid to AP3 according to the
rule (10), we need to compute the optimal allocation and the
corresponding value of the objective function with and
without AP3. With AP3, the best solution ðx; yÞ results in the
assignments y12 ¼ y23 ¼ 1 (MC1 is assigned to AP2, MC2 to
AP3). The value of the objective function is equal to

fðx; yÞ ¼ b2 þ b3 " 2c, hence f"3ðx; yÞ ¼ b2 " c.
On the contrary, without AP3, the best solution ðx"3; y"3Þ

results in the assignments y"3

11
¼ y"3

22
¼ 1 (MC1 is assigned to

AP1, MC2 to AP2). The value of the objective function is

equal in this case to fðx"3; y"3Þ ¼ b1 þ b2 " 2c.
The price paid to AP3 according to the rule (10) is

p3 ¼ fðx"3; y"3Þ " f"3ðx; yÞ ¼ b1 " c < v3, hence u3 ¼ p3 " v3
< 0, as c ¼ maxfbig ¼ b1 ¼ v1 > v3. Therefore, the owner of
AP3 has no incentive to participate to the offloading market,
since its utility is negative.

Theorem 4.3 and the example scenario point out that the
payment rule (10) cannot be directly applied to themobile data
offloading problemwith partial covering ofmobile clients.

In order to guarantee individual rationality and make the
payment acting as an incentive for the participation, we pro-
pose to modify the rule (10) adding a new term to the price
paid to the winner that depends on the number of connec-
tions that its presence permits to offload, according to the
following expression:

pi ¼ fðx"i; y"iÞ " f"iðx; yÞ þ c )
X

j2Mi

yji: (11)

Theorem 4.4 (Individual Rationality of 11). The payment
rule defined in Equation (11) satisfies the individual rationality

Fig. 2. Example scenario showing that the payment rule 10 does not
guarantee individual rationality.

1. Note that this rule is equivalent to the VCG scheme when all MCs
can be offloaded even without i, as in [8].

PARIS ET AL.: AN EFFICIENT AUCTION-BASED MECHANISM FOR MOBILE DATA OFFLOADING 5
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property, i.e., 8i 2 A : xi ¼ 1; pi ¼ fðx%i; y%iÞ % f%iðx; yÞþ
c (
P

j2Mi
yji * vi.

Proof. To prove Theorem 4.4 we can observe that

pi ¼ fðx%i; y%iÞ % f%iðx; yÞ þ c (
X

j2Mi

yji

¼
X

k2Anfig

bk ( x
%i
k %

X

k2Anfig

bk ( xkþ

þ c (
X

j2Mi

yji þ
X

k2Anfig

X

j2M

yjk % y%i
jk

" #

2

4

3

5

¼
X

k2Anfig

bk ( x
%i
k %

X

k2Anfig

bk ( xk

2

4

3

5þ c (
X

j2Mi

yji þ qi

" #

:

The first term ½
P

k2Anfig bk ( x
%i
k %

P

k2Anfig bk ( xk/ is
always positive, since the optimal solution without i,

ðx%i; y%iÞ, always contains APs that are more expensive
than the solution with i, ðx; yÞ.

The second term
P

j2Mi
yji þ qi ¼

P

j2Mi
yji %

P

k2A

nfig
P

j2Mðy%i
jk % yjkÞ represents the number of connec-

tions that cannot be covered without i (recall that qi 0 0).
For the same reasons explained in Theorem 4.3, we

have
P

j2Mi
yji * %qi, hence

P

j2Mi
yji þ qi * 0.

The utility of the AP owner i increases proportionally
of the same quantity:

ui ¼ pi % vi

¼
X

k2Anfig

bk ( x
%i
k %

X

k2Anfig

bk ( xk þ c (
X

j2Mi

yji þ qi

" #

% vi:

tu

With our payment rule, the operator pays to the win-
ners of the auction their contribution to the social wel-
fare (i.e., the money that their presence permits to save)
plus an additional incentive that depends on the connec-
tions that without their presence cannot be offloaded
from the RAN, thus forcing to keep the Base Stations
turned on.

Theorem 4.5 (Truthfulness of 11). The payment rule defined in
Equation (11) satisfies the truthfulness property (incentive
compatibility).

Proof. To prove this theorem, we have to show that
uðviÞ * uðv0iÞ; 8v

0
i 6¼ vi, that is, an AP owner i cannot

increase its utility by bidding untruthfully, namely
bi ¼ v0i 6¼ vi.

Let ðx; yÞ and ðx0; y0Þ be the solutions to the problem
(3)-(9), when the AP owner i declares vi and v0i, respec-

tively. Furthermore, let ðx%i; y%iÞ denote the solution to
the same problem without considering the AP i (i.e., forc-
ing xi ¼ 0 as additional constraint to the original prob-

lem). Note that x%i
i ¼ x0%i

i .

The utility of i when it declares vi, uðviÞ, is equal to:

uðviÞ ¼ piðvi; x; yÞ % vi

¼
X

k2Anfig

vk ( x
%i
k %

X

k2Anfig

X

j2M

c ( y%i
jkþ

%
X

k2Anfig

vk ( xk þ
X

k2Anfig

X

j2M

c ( yjk

þ
X

j2Mi

c ( yji % vi

¼
X

k2Anfig

vk ( x
%i
k %

X

k2Anfig

X

j2M

c ( y%i
jkþ

%
X

k2A

vk ( xk %
X

k2A

X

j2M

c ( yjk

 !

;

whereas, when it declares v0i, the utility is equal to:

uðv0iÞ ¼ piðv
0
i; x

0; y0Þ % vi

¼
X

k2Anfig

vk ( x
%i
k %

X

k2Anfig

X

j2M

c ( y%i
jkþ

%
X

k2Anfig

vk ( x
0
k þ vi %

X

k2Anfig

X

j2M

c ( y0jk %
X

j2Mi

c ( y0ji

0

@

1

A:

Since ðx; yÞ is the solution that minimizes the objective
function (3), ðx; yÞ ¼ arg min x 2 X; y 2 Y

P

i2A bi ( xi %
P

i2A

P

j2Mi
c ( yji, we have:

X

k2A

vk ( xk %
X

k2A

X

j2M

c ( yjk

0
X

k2Anfig

vk ( x
0
k þ vi %

X

k2Anfig

X

j2M

c ( y0jk %
X

j2Mi

c ( y0ji;

therefore uðviÞ * uðv0iÞ, and the AP owner i cannot
increase its utility by bidding unilaterally untruthfully. tu

We underline that when the APs provide enough capac-
ity to offload the data traffic and any MC can be handled by
multiple APs (i.e., the third party network provides enough
capacity and redundancy to offload the MC traffic), the pay-
ment rule (10) is equivalent to (11), since there are no exter-
nalities due to traffic covering.

4.3 Optimal Algorithm

Hereafter, we illustrate the algorithm implementing the
optimal mobile data offloading auction run by an operator
to select the cheapest APs that are used to offload the data
connections of the mobile customers from its RAN.

Algorithm 1 receives as input the parameters which
describe the network topology and all offers from the APs’
owners; these latter are composed of the capacity Ci made
available through the APs and the cost bi. It produces as out-
put the subset of APs that will be used to offload the data
traffic of the mobile terminals, (i 2 A : xi ¼ 1) and the price
paid to their owners, pi, as well as the assignment of the
data connections to the selected APs (ðj; iÞ 2 M5A :

yji ¼ 1).
The algorithm proceeds in three steps. In step 1, the

demands of mobile customers connections are transformed
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into equivalent channel utilizations, using the achievable
transmission rate of the links that can be established with
all nearby APs, according to Equation (2). Step 2 consists in
solving the ILP model to find the allocation that minimizes
the objective function (3). Finally, in step 3, the operator
computes the prices paid to the owners of the APs selected
by the previous step according to our rule (11), which guar-
antees a truthful auction.

Algorithm 1. Optimal Reverse Auction

Input:M;A; bi; Ci; c; dji

Output: xi; pi; yji

1 Compute channel utilizations oji;
2 xi ( Solve the ILP model (3)-(9);
3 foreach i 2 A : xi ¼ 1 do

pi ¼ fðx&i; y&iÞ & f&iðx; yÞ þ c )
P

j2Mi
yji;

end

The optimal reverse auction problem detailed in
Algorithm 1 is NP-hard. Indeed, it can be shown that the
knapsack problem can be polynomially reduced to the prob-
lem (3)-(9). Therefore, an operator can hardly find a solution
to reconfigure its mobile network on-the-fly, since the com-
putation time necessary to solve large and real-life network
instances increases very sharply with the network size and
density. However, we observe that in small-size network
scenarios, where the set of covered mobile clientsMi have
minimal overlap, we can optimally solve the mobile offload-
ing problem.

5 GREEDY AUCTION FOR MOBILE DATA

OFFLOADING

In the following, we present three alternative versions of a
very efficient algorithm to solve the allocation problem in
polynomial time. Furthermore, we demonstrate that such
algorithm preserves the truthfulness property, so that the
proposed trading marketplace is robust against any cheat-
ing behavior attempted to rule out honest AP owners.

5.1 Greedy Algorithm

The greedy auction is summarized in Algorithm 2, and it
is composed of two main phases: (1) the allocation phase,
which selects the APs that are used to offload the maxi-
mum amount of data traffic generated by mobile custom-
ers, and (2) the payment phase, which establishes the price
paid to each winner as a function of the first unused AP
in the sorted list (the first loser). This latter is also
referred to as critical access point for i (denoted by s), and
the price asked by its owner as critical value for i, which
will be denoted as ps.

The greedy allocation phase (steps 1–6) sorts the set of
APs that participate to the auction in ascending order,
according to three alternative rules, as illustrated in Table 2.
For the sake of clarity, we explain both phases of the greedy
auction considering the first alternative (greedy MC, which
we will also denote as G.1 for simplicity), namely the rule
that sorts all APs in non-decreasing order of their submitted
bids per number of covered MCs (i.e., the MCs that they
may serve), bi=jMij. Each element of the sorted list is
selected as winner until all available APs are selected or
there exist MCs whose traffic has not yet been offloaded to
any AP. The assignment procedure in step 4 assigns to each
AP i 2 A selected as winner the maximum number of unsat-
isfied MCs in its radio range (j 2 Mi :

P

h2A yjh ¼ 0) such

that either the wireless channel is not saturated (i.e., its utili-
zation is lower than 1) or the overall traffic demand does
not exceed the capacity of the wired connection. Before per-
forming a new iteration to select a new AP from the list L,
the function Refine_Assignment in step 5 attempts to assign
the remaining unsatisfied MCs to those APs that have been
selected as winners in previous iterations. Indeed, previous
winners may have enough spare capacity to serve also these
unsatisfied MCs.

Algorithm 2. Greedy Reverse Auction

Input:M;A; bi; Ci; dji; oji

Output: xi; pi; yji

1 L( Sortði 2 A; bi
jMi j

; ‘‘non&decr00Þ ;
2 L( L n lastðLÞ ;

U (M;
3 while L 6¼ ; ^ U 6¼ ; do

i( NextðLÞ; xi ( 1;
Vi ( Sort j 2 Mi; oji; ‘‘non-decr

00
! "

;
4 while

P

j2Mi
yjioji 1 1 ^

P

j2Mi
yjidj 1 xiCi do

j ¼ NextðViÞ;
if
P

h2A yjh ¼ 0 then
yji ( 1;
U ¼ U n fjg;

end
end

5 Refine_Assignment(fj 2Mi : yji ¼ 0g;A n L);
end

6 s( NextðLÞ;
7 foreach i 2 A : xi ¼ 1 do

pi (
bs
jMsj
jMij ¼ psjMij;

end

After selecting the winning APs opportunistically used
by the operator and having performed the assignment of
MCs to such APs, step 6 returns the critical access point
s 2 A. AP s is the first unselected AP, or the last available
AP of the sorted list L, which is removed in step 2 from

TABLE 2
Sorting and Payment Rules for the Greedy Auction

Greedy MC (G.1) Greedy Use (G.2) Greedy Max Use (G.3)

L( Sort
!

i 2 A; bi
jMi j

; ‘‘non&decr00
"

L( Sort
!

i 2 A; bi
P

j2Mi
oji

; ‘‘non&decr00
"

L( Sort i 2 A; bi
P

j2Oi
oji

; ‘‘non&decr00
# $

pi (
bs
jMsj
jMij pi (

bs

j
P

j2Ms
ojs j
j
P

j2Mi
ojij pi (

bs

j
P

j2Os
ojsj
j
P

j2Oi
ojij
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the list to guarantee the incentive compatibility property.
Eventually, AP s is used in step 7 to compute the prices
paid by the operator to the winners for offloading its
mobile network.

As we will demonstrate in the next section, Algorithm
2 implements a truthful auction. In fact, the allocation
phase satisfies the monotonicity property (recall that the
APs are sorted in non-decreasing order of their bid per
number of covered mobile customers), and there exists a
critical value which determines if the AP owners’ bid are
satisfied or not.

The proposed greedy auction implemented by
Algorithm 2 has time complexity Oðn2mÞ (with m ¼ jMj
and n ¼ jAj). Indeed, assuming that every summation has
time complexity Oð1Þ, each iteration k of the loop in the
greedy allocation phase requires m operations for step 4
and m & jA n Lj ¼ m & wk assignment attempts within the
function Refine_Assignment, where wk represents the cumu-
lative number of winners selected up to iteration k. Note
that wk has a unitary increase at each step k, and it takes
value from 0 to n ( 1. Therefore, the maximum number of
iterations due to steps 4 and 5 executed throughout loop 3

cannot be larger than nðnþ1Þ
2

, thus resulting in nðnþ1Þ
2

& m total

assignment operations.
We observe that the utilization of any sorting rule that

does not affect the monotonicity property of the allocation
phase still results in a truthful auction. Therefore, we design
two alternative versions of the greedy auction that select the
APs according to their price per channel utilization, as indi-
cated in Table 2. Indeed, considering the resource utiliza-
tion, which depends both on the traffic and the achievable
rate of the MC connection, results in better performance.
More specifically, the greedy use scheme (denoted by G.2)
ranks APs according to their price per overall channel utili-
zation, considering all MCs that can potentially be assigned
to an AP. On the contrary, the greedy max use approach (G.3)
computes the unitary price considering the subset of MCs
whose aggregated demand can be satisfied by the AP access
capacity (or equivalently, whose aggregated channel utiliza-
tion is lower than 1). In other words, the sorting and
payment rules use the larger subset Oi ¼ E 2 PðMiÞ :
P

j2E oji - 1 (PðMiÞ is the partition set of Mi). The greedy

use rule aims at selecting as winners the APs that can poten-
tially offload the highest portion of data traffic, whereas the
greedy max use scheme leases the APs that can effectively sat-
isfy the aggregated demand.

5.2 Truthfulness Analysis

Having described the main phases of the greedy reverse auc-
tion, hereafter we prove that our mechanism satisfies the
incentive compatibility property (truthfulness). We recall that
an auction mechanism is truthful if the dominant strategy
for each rational bidder i is to declare always its real private
valuation bi ¼ vi. This property guarantees that selfish bid-
ders cannot benefit from cheating, thus preventing the stra-
tegic manipulation of the marketplace.

The following lemmas (5.1 - 5.2) prove that the allocation
phase of Algorithm 2 (steps 1–6) satisfies the monotonicity
property and guarantees the existence of a critical value [23],
which provide the basis to demonstrate Theorems 5.3 and 5.4.

Lemma 5.1. If AP owner i is selected by the allocation algorithm
when it bids bi, then AP owner i is still selected if i decreases
its bid b0i, b

0
i < bi.

Proof. Let L and L0 be two sorted lists corresponding to bi
and b0i, respectively. Let us define rankði; LÞ as a mono-
tonic decreasing function of AP owner i position in the

list L. Since
b0
i

jMij
<

bi
jMij

, the sorting algorithm in the greedy

allocation phase (Algorithm 2) moves i in a better posi-
tion, i.e., rankði; L0Þ > rankði; LÞ. Therefore, the rank of i
can only increase if AP owner i submits a lower bid (i.e.,
i offers a lower price), resulting in a different order of the
set of access points that are selected as winners by the
operator to offload the traffic of its mobile customers,
which implies that if AP owner i wins by bidding bi, it is
selected even with a lower bid b0i < bi. tu

Lemma 5.2. For each AP owner i, the greedy Algorithm 2 pro-

vides the critical value ps ¼ bs
jMsj

, which determines whether

AP owner i is selected as winner of the reverse auction.

Proof. The proof is straightforward, since Algorithm 2
scans the list L of APs in non-decreasing order of their

bids per number of covered mobile customers ð bi
jMij

Þ until

the maximum amount of data traffic generated by the
mobile customers is satisfied or all but the last AP are
selected as winners. The critical value is then equal to the

ratio ps ¼ bs
jMsj

submitted by the owner of the first unse-

lected or the last AP owner s. tu

Note that if we do not exclude the last and most expen-
sive AP from the auction, an AP owner may ask a high
value for the utilization of its unexploited Internet connec-
tion, bi >> vi, being assured that its bid will be always satis-
fied. Therefore, the removal of the last AP ensures that all
participants declare their real value vi.

Theorem 5.3 (Individual Rationality of Algorithm 2). Each
AP owner i selected as winner by the Greedy Algorithm is paid
at least the price it asked for the utilization of the unexploited
capacity of its Internet connection, pi 1 bi.

Proof. To show that pi 1 bi, we need to demonstrate that the
critical value times the number of covered mobile custom-
ers paid to winner i is at least equal to its bid bi. Each

winner i is paid the critical value bs
jMsj

times the number of

mobile customers that it can cover (i.e., jMij). Recall that
the list L of APs is sorted in non-decreasing order of the

ratio bi
jMij

, therefore the relation pi ¼ bs
jMsj

jMij 1 bi holds,

since either s asked a higher price for using its AP (i.e.,
bs 1 bi) or the access network of its AP can be used to off-
load a lower traffic demand (i.e., jMsj - jMij). tu

Theorem 5.4 (Truthfulness of Algorithm 2). Algorithm 2
implements a truthful auction.

Proof.We prove the theorem by showing that no participant
to the marketplace can increase its utility by asking a
price bi different from its private valuation vi for the
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utilization of its AP. We underline that the utility of AP
owner i does not change by bidding either vi or bi, since
it is defined as uiðxÞ ¼ pi # vi. We must consider two
cases, namely (A) bi < vi (lower price), and (B) bi > vi

(higher price). For each case, we must consider all possi-
ble four outcomes, detailed in the following. Let us start
with case (A) by considering the following cases.

A.1: AP owner i wins either by bidding bi or vi. If AP
owner i wins by bidding either bi or vi, then i is ranked
in a better place in the list L when it submits bi, since the
list is sorted in non-decreasing order of the bids per num-
ber of covered mobile customers. However, this changes
only the order of the set of winners, which does not affect
the critical value ps that is still given by the following

expressions: ps ¼ bs
jMsj

. Hence, the price paid by the win-

ner does not vary, pi ¼ ps & jMij. Therefore, the utility
does not change: uiðbiÞ ¼ uiðviÞ.

A.2: AP owner i wins by bidding bi but looses with vi. If
AP owner i wins by submitting bi but looses with vi, then

there exists a critical value ps ¼ bs
jMsj

such that bi
jMij

<
bs

jMsj
< vi

jMi j
.

Due to the monotonic property of the allocation algo-
rithm, the private valuation of i is higher than the price
paid when it submits bi, i.e., bi < pi < vi. Therefore, the
utility perceived by i is negative, uiðbiÞ ¼ pi # vi < 0,
hence it is better off loosing the auction, since in this lat-
ter case its utility is null, uiðviÞ ¼ 0.

A.3: AP owner i looses by bidding bi but wins with vi. Due
to the monotonic property, this case is impossible, since
by submitting a lower price, AP owner i will be placed in
a better position of the sorted list L.

A.4: AP owner i looses either by bidding bi or vi. If AP
owner i looses by offering both bi and vi, due to the pres-
ence of cheaper access points, then its utility is always
null: uiðbiÞ ¼ uiðviÞ ¼ 0.

Similarly, for the case (B) bi > vi, we can demonstrate
that AP owner i cannot increase its utility by asking a
higher price than its private valuation for leasing its AP
to the mobile operator. tu

Since Algorithm 2 implements a truthful auction (which
means that selfish AP owners cannot benefit from manipu-
lating their bids), a mobile operator can efficiently compute
a solution for the reverse auction problem, being assured
that all AP owners reveal their true price for leasing the
available capacity of their APs.

Similar observations as those employed above can be eas-
ily formulated to prove the truthfulness of the other two
sorting and payment rules.

We observe that the truthfulness of the greedy auction
can be more easily demonstrated as in [24] under the
assumption of sufficient capacity for offloading the
whole traffic, thus ignoring capacity and covering con-
straints (6) and (7). Indeed, in this case by simply sorting
the APs in increasing order of their bids per number of

covered MCs, bi
jMij

, we get the optimal solution that mini-

mizes the overall offloading cost (i.e., the sum of the
bids of the APs selected to offload the data traffic). Fur-
thermore, to prove that the greedy allocation is truthful,
we must also show that the bid per number of covered

MCs of the first loser c, which is used as unitary price
for the winners, satisfies the VCG rules with respect to

the objective function fðx; yÞ ¼
P

i2A
bi

jMij
xi.

Let us assume without loss of generality that AP owners
bids can be sorted according to their indexes as follows:
b1

jM1j
< & & & < bk

jMkj
<

bkþ1

jMkþ1j
< & & & < bn

jMn j, and the first k out of n

APs suffice to offload thewholeMC traffic. The greedy alloca-
tion rule selects the first k APs and fixes the unitary price of

each winner as pi ¼
bkþ1

jMkþ1j
, 1 , i , k. On the other hand, we

can easily see that whenever a winner i is removed from the
AP set, we need to select also the ðk þ 1Þth AP to offload the
MCs’ connections thatwere covered by i (the solutionwithout

i contains also AP k þ 1, i.e., x#i
kþ1

¼ 1). Therefore, the unitary

price computed according to the VCG payment scheme

results pi ¼
P

k2Anfig
bk

jMkj
x#i

k #
P

k2Anfig
bk

jMkj
xk ¼

bkþ1

jMkþ1j
xk,

which is exactly the value computed by the greedy algorithm.

5.3 Economic Efficiency Analysis

In the following, we quantify theoretically the economic
efficiency gap between the greedy and optimal solutions.
To this end, we consider a simple network scenario com-
posed of one Mobile Client, A, and two Access Points
(f1; 2g). The capacities made available by the two AP own-
ers is large enough to accommodate the traffic transmitted
over the wireless access interface by the MC. However,
due to the different channel qualities, the utilization of the
two access links, which can be exploited to offload the MC
traffic, are oA1 ¼ dA1=rA1 ¼ 1=D (D is a positive parameter)
and oA2 ¼ dA2=rA2 ¼ 1, while their bids are b1 ¼ ð1 þ 6Þ (6 is
a small value larger than 0) and b2 ¼ D, respectively.

In this scenario, the allocation that minimizes the objec-
tive function fðx; yÞ is the one that selects AP 1 and the cor-
responding social welfare is SW o ¼ b1 ¼ 1þ 6. However,
the greedy algorithm selects AP 2, since b2=o2 < b1=o1, and
the social welfare is in this case equal to SW g ¼ b2 ¼ D. The

ratio SWg

SWo is therefore equal to D
1þ6, and the Price of Anarchy

tends to infinity with D:

PoA ¼
SW g

SW o
¼ lim

D!1

D

1 þ 6
¼ 1:

At the same time, we underline that the economic gap
computed considering the offloading cost, which is the most
important performance metric for the operator, is almost
null, since the cost obtained using the greedy auction is
only 6 times larger than the cost computed using the optimal
algorithm. Indeed, the Offloading Cost Ratio (OCR), which
we define as the ratio between the greedy and optimal off-
loading costs, is independent of D, and even in this limiting
case it results:

OCR ¼
pgðx; yÞ

poðx; yÞ
¼

P

i2A pg
ix

g
i

P

i2A po
ix

o
i

¼ lim
D!1

ð1 þ 6ÞD

D
¼ 1 þ 6;

where pg
i and po

i are the prices computed with the greedy
and optimal payment rules, respectively.

Note, however, that the conditions that lead to the exam-
ple discussed above are hardly met in real network scenar-
ios, since mobile operators do not handle such a small
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bandwidth granularity with their network equipment.
Indeed, an infinitesimal channel utilization corresponds to
offer an infinitesimal access bandwidth (Ci ¼ 1=1
"
P

j2Mi
djyji), which may not be realistically satisfied by

any mobile operator. As a consequence, we can bound the
PoA by simply fixing a minimum amount of access band-
width that any bidder needs to provide in order to partici-
pate to the auction.

6 NUMERICAL RESULTS

This section presents the numerical results that illustrate the
validity of the proposed approaches to implement the band-
width trading marketplace for fostering mobile data off-
loading. More specifically, we aim at evaluating the impact
of the device density and traffic load on the performance of
the mechanisms we designed for the mobile data offloading
marketplace. We first describe the experimental methodol-
ogy followed in our numerical analysis, then we analyze
and discuss the performance achieved by the algorithms
detailed in previous sections.

6.1 Experimental Methodology

For our numerical analysis, we refer to the scenarios
designed within the FP7 European Project EARTH and
described in [25]. More specifically, we extend the baseline
reference deployment scenario composed of seven cell sites,
whose Inter-Site Distance (which specifies the distance
between two sites) is fixed to 500 meters. Each macro Base
Station (BS) installed on a central site serves three sectors,
resulting in 21 sectors in total.

We vary the number of MCs and APs per sector in the
ranges ½2; 10& and ½10; 15&, respectively. Both MCs and the
APs are placed randomly in the corresponding sector. Spe-
cifically, the MCs are deployed around each BS according to
a bi-dimensional Gaussian distribution with standard devi-
ation equal to approximately 160 meters, to take into
account the proximity of MCs to the BSs. Indeed, cellular
networks are usually designed considering the distribution
of MCs; APs are instead scattered according to a uniform
distribution inside each sector.

To evaluate the number of APs that are used for offload-
ing the amount of traffic served by a BS, we consider the
two following use cases. In the first scenario, we evenly
divide the maximum bandwidth of a BS sector (42 Mbps
using 64 QAM dual-cell MIMO as suggested in [25]) among
all MCs inside that sector. Such value provides an indication
on the AP density necessary to switch off BSs (or put them
in deep sleep/idle mode). In contrast, in the second sce-
nario, we fix the network topology and vary the traffic load
of MCs to investigate the impact of heterogeneous demands
on our mechanisms. In contrast, the bids submitted by any
AP owner i, bi, are drawn from a uniform distribution with
mean value equal to five monetary units (e.g., US dollars)
and interval size twice the average, both to compare the
overall offloading cost to the installation cost of additional
BSs and evaluate the fairness of the payments in the worst
case scenario. However, we underline that these assump-
tions does not affect the main findings on the performance
of our algorithms.

The maximum achievable transmission rate of the access
links that can be established between MC j and any of its
surrounding APs i, rji, is defined according to the reception
sensitivity of the Wistron CM9 commercial wireless cards
based on Atheros chipset2. The path loss, which is necessary
to evaluate the sensitivity of the receiving node, is com-
puted according to the Friis propagation model. To model
the uncertainty related to traffic description in wireless sys-
tems caused by the contention level at the frame layer, we
consider a fixed margin to compute the effective bandwidth
necessary to satisfy MC demands and avoid throughput col-
lapse. Indeed, according to recent mathematical models [22]
for 802.11 networks, in real traffic conditions (i.e., in a non-
saturated regime, where stations’ demands are character-
ized by bursty data rates), both collision probability and
overall aggregate throughput tend to reach a stable, con-
stant value, for increasing traffic loads. In this work, we dis-
counted the access bandwidth of all APs by 55 percent,
increasing the traffic demand of all MCs by a factor equal to
2.22, which corresponds to 10 saturated stations according
to [22]. We underline that all the above assumptions do not
affect the proposed algorithms, which are general and can
be used to solve any network scenario.

In order to evaluate the performance of the solutions pro-
posed to implement the mobile data offloading market-
place, we consider the following metrics:

' Cost: defined as the sum of the prices paid by the
operator to all winners.

' Served MCs: fraction of MCs whose connections can
be completely offloaded on winning APs.

' Winners: fraction of AP owners selected as winners
among the participants to the auction.

' Fairness: we consider the Jain’s Fairness Index (JFI)
[26], defined according to Equation (12):

Jain
0
s Fairness Index ¼

ð
Pw

i¼1 riÞ
2

w +
Pw

i¼1 ri
2
; (12)

where ri represents the ratio between the paid price
and the traffic demand served by AP i, ri ¼
pi=
P

j2Mi
yji + dj, whereas w ¼

P

i2A xi represents the

number of winners. The Jain’s Fairness Index meas-
ures the spread of the price per unit of traffic paid by
the operator to its winners, and varies from 1=w (no
fairness) to 1 (perfect fairness).

For each network scenario we perform 100 independent
measurements, computing very narrow 95 percent confi-
dence intervals.

6.2 Analysis of Device Density

We first evaluate the effect of the number of MCs within
each sector on the performance of our mechanisms, in order
to evaluate rural, suburban, and urban scenarios. Specifi-
cally, we consider three different density levels, namely low,
medium and high, corresponding respectively to 2, 4, and 6

MCs within each BS sector. In all scenarios, we vary the
number of APs within each sector in the ½10; 15& range.

2. Available online at: http://www.lri.fr/~fmartignon/CM9.pdf
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We have further considered scenarios with 8 and 10 MCs
within each BS sector. However, for the sake of brevity, we
omit these results since they are very close to those observed
with 6 MCs per sector.

Figs. 3, 4, and 5 show the performance metrics of our four
mechanisms as a function of the number of APs inside a BS
sector for the low-density, mid-density, and high-density sce-
narios, respectively. The curves identified by labels “O.”,
“G.1”, “G.2” and “G.3” illustrate, respectively, the perfor-
mance metrics computed using the optimal and greedy
algorithms with the three sorting rules defined in Table 2
(i.e., G.1, APs sorted according to their bids per number of cov-
ered MCs, G.2, bids per channel utilization, and G.3, bids per
maximum channel utilization). For the sake of clarity, the cost
has been normalized with respect to the maximum value
obtained over all the three scenarios.

In particular, Figs. 3a, 4a, and 5a show the overall cost paid
by the operator to offload the data traffic of its MCs with the
proposed mechanisms. It can be observed that the greedy
use scheme (G.2) well approaches the optimal solution in all
scenarios. The slightly lower cost achieved by G.2 in Fig. 3a is
due to the additional contribution of the optimal payment
rule (11). In contrast, the optimal solution always achieves the
lowest value for the objective function, which represents the
social welfare in our auction. Interestingly, the greedy max use
approach (G.3) produces very different solutions with respect
to the greedy use scheme. Specifically, in the low-density

scenario the cost increases as a function of the APs, since the
sorting rule sets approximately the same unitary price for all
APs ignoring their positions, which instead can lead to lower
costs as illustrated by the greedy use curve. However, as long
as the MC density increases, the greedy max use scheme
approaches the cost obtained using the greedy use scheme,
since the capacity of the BS sector is spread among moreMCs
and their utilization of the spare APs capacity gets similar for
the allocation rules of the two corresponding greedy algo-
rithms. The greedy MC solution (G.1) provides similar results
to the optimal algorithm in the low-density scenario, since the
sorting rule provides higher ranks to those APs that are
selected by the optimal allocation. However, considering only
the number of covered MCs while completely ignoring their
resource utilization results in higher costs when the MC den-
sity increases, because the lower MC demand can be better
offloaded to closest APs (recall that the BS capacity is evenly
distributed amongMCs).

We further emphasize that all proposed solutions
achieve high fairness, since the JFI, which we omit for the
sake of brevity, is always higher that 0.85. In particular,
the gap between optimal and greedy JFI values is negligi-
ble (the greedy curves are almost always overlapped to the
optimal curve, and only in the worst case the JFI gap
reaches 10 percent). Therefore, the data offloading price
paid by the operator is almost independent of the AP
selected by our proposed mechanisms.

Fig. 3. Performance metrics measured in the low-density scenario (2 MCs in each of the 21 sectors).

Fig. 4. Performance metrics measured in themedium-density scenario (4 MCs in each of the 21 sectors).

Fig. 5. Performance metrics measured in the high-density scenario (6 MCs in each of the 21 sectors).
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Figs. 3b, 4b, and 5b show the fraction of served MCs
whose traffic demand can be offloaded onto WiFi APs. All
schemes satisfy approximately the same number of MCs
(all curves are practically overlapped). It can be further
observed that the higher density has a positive effect on the
number of offloaded MCs connections, as illustrated in the
mid and high-density scenarios (Figs. 4b and 5b). Indeed, the
higher the MC density within a BS sector, the lower the
amount of data traffic of each MC connection. Moreover,
the higher density increases the proximity among MCs and
APs, thus increasing the transmission rate that can be used
on the links established among these devices.

Figs. 3c, 4c, and 5c show the fraction of APs that are
selected as winners to offload the traffic from the mobile net-
work. In the low-density scenario, while all schemes offload
the same amount of data traffic, the greedy algorithms that
sort the APs according to the channel utilization select a
larger number of winners with respect to the optimal and
greedy MCs solutions. Similarly to previous metrics, by
spreading the BS capacity among a larger set of MCs we can
reduce the number of APs necessary to satisfy the same
amount of aggregated demand, thus increasing the competi-
tion among the APs that participate to the auction. As the
curves G.2 and G.3 show, when we increase the number of
MCs, the number of winners selected by the greedy use and
greedy max use solutions decreases down to 20 percent, drop-
ping from 100 percent in the low-density scenario to 60 percent
in the high-density scenario. We can finally observe that the
AP density contributes to reduce the number of winners
selected by all greedy schemes, with a gain that ranges from
10 percent to 25 percent when the number of available APs in
each sector varies from 10 to 15.

6.3 Analysis of Traffic Load

The second set of simulated scenarios, whose results are
depicted in Figs. 6, 7 and 8, aims at evaluating the effect of
the traffic load heterogeneity on the performance of our

proposed schemes. To this end, within each of the
21 sectors, we randomly place 6 MCs. The MC traffic
demand, dj, is distributed uniformly in the range
½x ! 0:4; x þ 0:4# Mbps, with x ¼ f6; 7; 8g Mbps: this corre-
sponds to three traffic load scenarios that we denote,
respectively, with underload, peak-load and overload (the
aggregated bandwidth in every sector is equal to 36, 42
and 48 Mbps). Furthermore, we vary the number of APs in
the ½5; 15# range, generating 100 device deployments and
100 different demand distributions for each network sce-
nario. Due to the high computational time, we solve the
optimal auction only for a subset of network instances.
Since the results confirm the trends and gaps obtained in
the scenarios described in Section 6.2, we only show the
curves obtained using the greedy auctions. In particular,
the greedy use algorithm (G.2) achieves the best perfor-
mance among the greedy algorithms in terms of cost paid
by the mobile operator. The offloading cost obtained using
the greedy schemes (see Figs. 6a, 7a and 8a) keeps increas-
ing as long as the APs density achieves a knee point, where
the leasing cost slightly decreases due to the higher com-
petition. We further observe that the variability of the traf-
fic demand increases the gap between the greedy use
auction (G.2) and the other approximated solutions, due to
the suboptimal allocations implemented by the different
schemes.

Figs. 6b, 7b, and 8b show the fraction of MCs that are off-
loaded from the mobile network on the leased WiFi APs.
While all greedy auctions need approximately 7 APs per
sector to offload all data connections in the underload sce-
nario, every increase of 1 Mbps of the average data traffic
demand (i.e., peak-load and overload scenarios) requires
two additional APs to satisfy all MCs.

The curves illustrated in Figs. 6c, 7c, and 8c, which repre-
sent the fraction of winners selected by the proposed auc-
tions, follow a trend similar to the overall cost paid by the
operator. Specifically, the increasing part of the curves

Fig. 6. Performance metrics measured in the underload scenario (average traffic demand equal to 6 Mbps).

Fig. 7. Performance metrics measured in the peak-load scenario (average traffic demand equal to 7 Mbps).
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obtained using the greedy algorithms is due to the low AP
density. In such cases, some APs are too far from the MCs
and cannot be used to serve the MCs data traffic, forcing the
algorithm to select all APs that permit to offload the greatest
portion of traffic. The greedy algorithms keep selecting APs
as long as their density achieves the point where the WiFi
capacity is enough to serve all MCs and additional APs are
useless. Nonetheless, we underline that, while there exists
an optimal number of APs for offloading the whole data
traffic, the higher is the number of APs, the higher is the
competition, thus increasing the economic efficiency of the
mechanism.

7 CONCLUSION

This paper proposed a new trading marketplace where
mobile operators can rent the bandwidth of Internet connec-
tions made available by third party WiFi Access Points to
offload the data traffic of their mobile customers.

The offloading problem was formulated as a combinato-
rial auction, and an innovative payment rule was designed
to guarantee both individual rationality and truthfulness
for realistic scenarios in which only part of the data traffic
can be offloaded.

In order to solve efficiently (i.e., in polynomial time) the
offloading problem for large-scale network scenarios, we
also proposed a greedy algorithm, with two alternative ver-
sions of the allocation phase, that preserves the truthfulness
property.

Numerical results demonstrate that the proposed
schemes well capture the economical and networking
essence of the problem, thus representing a promising solu-
tion to implement a trading marketplace for next-generation
access networks composed of heterogeneous systems.
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