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Abstract—Nowadays, the maintenance costs of wireless devices
represent one of the main limitations to the deployment of
Wireless Mesh Networks as a means to provide Internet access in
urban and rural areas. A promising solution to this issue is to let
the Wireless Mesh Network (WMN) operator lease its available
bandwidth to a subset of customers, forming a Wireless Mesh
Community Network, in order to increase network coverage and
the number of residential users it can serve.

In this paper we propose and analyze an innovative market-
place to allocate the available bandwidth of a WMN operator
to those customers who are willing to pay the higher price for
the requested bandwidth, which in turn can be subleased to
other residential users. We formulate the allocation mechanism
as a combinatorial truthful auction considering the key features
of wireless multi-hop networks, and further present a greedy
algorithm that finds efficient and fair allocations even for large-
scale, real scenarios, while maintaining the truthfulness property.
Numerical results show that the greedy algorithm represents
an efficient, fair and practical alternative to the combinatorial
auction mechanism.

Index Terms—Wireless Mesh Community Networks, Bandwidth
Auction, Mechanism Design, Truthfulness.

I. INTRODUCTION

Wireless Mesh Networks (WMNs) have emerged in recent

years as a promising communication paradigm towards the

cost-effective deployment of all-wireless network infrastruc-

tures [1]. Several operators have started using WMNs as a

valuable technology to provide broadband Internet access in

urban and rural areas, where the low return on investments

cannot cover all costs to deploy more expensive wired solu-

tions. With the aim of further reducing the overall maintenance

costs and maximizing the profit, WMN operators have been

fostering the deployment of Wireless Mesh Community Net-

works (WMCNs) [2]. In WMCNs, a group of independent

mesh routers owned by different individuals forms or extends

a WMN to enhance the broadband connectivity, whose avail-

ability can be shared with other users not directly involved in

the management of the community network.

In this context, we envision a marketplace scenario where

an operator may lease the bandwidth of its wireless access

network to a subset of customers in order to increase the

network coverage of its WMN and provide access to other

residential users through the customers’ mesh client devices.
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The customers1 who manage these mesh clients pay the

network operator to exploit the access bandwidth, while they

are rewarded directly by the residential users they serve.

Note that both the operator and the customers gain from this

agreement, since the former can lease the bandwidth of its

WMN, saving management and maintenance costs, while the

latter can earn money by subleasing the purchased bandwidth

to other residential users. Finally, the residential users that

would not have been covered by the WMN operator (because

of low payoffs) obtain a better Internet service. The proposed

marketplace would therefore contribute to overcome the Dig-

ital Divide problem, improving the economical efficiency of

public-private wireless partnerships like those analyzed in [3].

In order to be an attractive solution, the aforementioned

bandwidth market managed by the WMN operator needs

convincing allocation and payment mechanisms that should

act as incentives for customers to participate and subscribe to

the service. One of the main problems that might discourage a

WMN operator from developing the bandwidth marketplace is

the possibility that even few dishonest customers misbehave.

Specifically, a customer could strategically bid false offers,

thus manipulating the market as it prefers, in order to pay a

lower price or rule out honest customers. These adversarial

behaviors reduce the operator’s revenue.

Motivated by the above analysis, we present in this paper

an economically efficient2 and resilient auction-based band-

width allocation in WMNs. Our particular emphasis is on the

resilience of the proposed mechanism against any actions of

selfish customers that manipulate the bandwidth marketplace

of the network scenario described above to obtain extra benefit.

To tackle this problem, we design an optimal truthful auction

that forces each customer interested in leasing the available

bandwidth to bid its real valuation of the required bandwidth

demand.

More specifically, the approach consists in finding the opti-

mal set of customers to be accepted by the operator (auction

winners), whose traffic demands can be routed through the

WMN, and the corresponding prices they have to pay for

the leased service, which constitute the operator revenue.

The optimal allocation and the pricing together ensure the

1The customers are residential users that operate the mesh client devices.
They connect directly to the provider’s network and resell connectivity to
other residential users.

2In the rest of the paper, the term efficiency refers to the economic efficiency
when not otherwise specified.
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truthfulness (also known as incentive compatibility) of the

proposed auction scheme.

Despite the optimality and truthfulness of the developed

auction mechanism, we show that finding such optimal alloca-

tion is NP-hard. Hence, we further propose a greedy algorithm

which implements the auction and guarantees that bidding

its real valuation is the best strategy for each participating

customer. We also demonstrate theoretically that the proposed

greedy algorithm satisfies the truthfulness property. Through

extensive numerical studies, we show that the proposed greedy

algorithm achieves a performance very close to the system

optimum in a social perspective.

Existing research works, which investigate the use of auc-

tion theory to design efficient mechanisms for resource allo-

cation, do not accurately capture the main features of wireless

multi-hop networks, and do not take into account the high

computational time needed to carry out the auction. On the

contrary, our scheme selects efficiently (i.e., in polynomial

time) the winners considering both the link utilization neces-

sary to satisfy the demands of the customers that participate to

the auction, and the routing constraints of wireless multi-hop

transmission technologies.

In an effort to design an efficient marketplace for allocating

the WMN’s available bandwidth, our work makes the follow-

ing unique contributions.

• We propose and analyze an innovative marketplace for

the allocation of the WMN’s available bandwidth to those

customers who are willing to pay more for sharing the

purchased bandwidth with other residential users.

• We propose a combinatorial truthful auction that max-

imizes the revenue of the WMN operator, which is

resilient against any market manipulation and guarantees

a fair allocation of the resources.

• We design a greedy algorithm to compute efficiently

customer allocations and fair payments, which still guar-

antees that participating customers bid their real valua-

tions. The proposed algorithm consists therefore in an

alternative yet truthful auction mechanism.

• We perform a thorough numerical analysis of the pro-

posed algorithms, including large-scale, real WiFi net-

work scenarios (like the Google WiFi network [4]).

The rest of this paper is structured as follows: Section II

discusses related work. Section III presents the communication

and network models considered in our work. Section IV

formulates the combinatorial auction as an optimization model,

while Section V illustrates the greedy algorithm that we

propose to efficiently compute the solution. The incentive

compatibility property as well as the economic efficiency of

the greedy algorithm are analyzed in Section VI. Section VII

provides a numerical evaluation of the proposed framework.

Finally, conclusions are discussed in Section VIII.

II. RELATED WORK

Auction theory has been used to design efficient allocation

mechanisms in several network contexts, such as cognitive

radio networks, selfish routing, and resource allocation. Here-

after, we review the most relevant recent literature, highlight-

ing the main differences with respect to our approach.

With the upcoming generation of cognitive radio networks,

market-based auctions have been extensively studied as an

efficient mechanism to dynamically sublease the unexploited

licensed spectrum to secondary users and increase the revenue

of the spectrum owner [5], [6], [7], [8], [9], [10], [11].

Auction theory has been exploited to design innovative

traffic engineering techniques and routing protocols, both to

enhance the utilization of unused network paths and force the

collaboration of intermediate relaying nodes [12], [13], [14],

[15], [16], [17], [18], [19], [17].

Ad Hoc-VCG [12] is a routing protocol based on the VCG

(Vickrey-Clarke-Groves) auction, which guarantees that each

intermediate node is refunded at least the true cost incurred to

relay packets. The Commit algorithm [13] further develops this

approach assuring that even the source node behaves correctly.

iPass [20] adopts a similar approach, modeling the forwarding

capability of each node as a market, where an auction process

is used to determine the optimal price for the available

resources. The performance of the previous incentive-based

schemes are analytically evaluated by Jaramillo et al. in [14];

the analysis of their basic properties led to the design of DAR-

WIN, a new protocol robust to imperfect measurements and

collusion attacks. In [15], [16] the truthful pricing mechanism

proposed by Vickrey, Clarke, and Groves is used to solve a

broad class of problems concerning the non-cooperative be-

havior of intermediate nodes. Similar mechanisms are adopted

in [17], [18] to study and design innovative protocols for

multicast transmissions in non-cooperative networks, where

each node exhibits selfish behavior. Specifically, the authors

identify general properties to decide whether an incentive

compatible mechanism can be defined on the top of any

multicast protocol, and they present a solution to implement

the proposed scheme in a distributed fashion. Zhong et al.

in [21] exploit two solution concepts defined in game theory

to consider also the collusion among network devices: they

show that even if a Group Strategy-proof Equilibrium cannot

be reached at the routing level, their proposed solutions reach

Strong Nash Equilibria among network nodes, which are

robust to deviations of any component of the colluding group.

We underline that the tit-for-tat strategy as well as its

different variants such as the generous tit-for-tat (GTFT) [14]

may not be robust in a wireless environment, and they can

be exploited by adversaries to steer the system towards an

inefficient equilibrium state.

Works sharing a similar approach to the solutions described

in this paper have been recently proposed in [22], [23].

In particular, Jain et al. in [22] present a mechanism for

per-link bandwidth allocation of end-to-end paths in wired

networks, whereas Fu et al. in [23] design an auction-based

stochastic game for resource allocation of virtual operators

in wireless cellular networks. However, these works do not

accurately capture the main features of wireless multi-hop

networks like the variable transmission rate which adapts to

the channel condition and the limited capacity of the backbone

network. Furthermore, these two latter solutions do not take

into account the very large computational time needed to solve

the considered auction in realistic network scenarios.

Finally, we remark that, unlike existing works which use
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auctions as a technique to solve allocation problems, our

proposed solutions select the winners considering the resource

utilization of the requested services instead of their raw

requests, by modeling both the rate adaptation mechanism

operating at the MAC layer and the capacity limits due to the

presence of interfering links within a WMN. As we verified in

the network scenarios illustrated in Section VII, this permits to

increase the revenue of the WMN operator, since between two

competitors, who demand the same bandwidth, our schemes

select the one which requires the lowest resource utilization,

leaving room for the allocation of additional customers.

III. SYSTEM MODEL

This section presents the communication and network mod-

els considered in our work, as well as the definitions and

assumptions we adopt in the design of our auction mechanism.

Let us refer to the Wireless Mesh Network (WMN) scenario

illustrated in Figure 1, where the WMN is managed by a single

operator that leases the bandwidth made available through its

Mesh Access Points (MAPs) to a subset of customers, which

connect to the WMN though their Mesh Clients (MCs).

Fig. 1: Wireless Mesh Network scenario considered in this work.
The WMN is managed by a single operator that leases the available
bandwidth of the mesh access points (MAPs) to customer mesh
clients (MCs). Some mesh routers (MRs) act as mesh gateways
(MGWs) to provide access to the Internet.

The mechanism we propose implements the bandwidth

marketplace by allocating the available WMN capacity to a

subset of customers, which in turn may sublease it to other

residential users. Table I summarizes the basic notation used

throughout the paper.

Each Mesh Client3 i has a bandwidth demand di that he

wishes to satisfy by transmitting to one of the mesh access

points (MAPs) that cover it with their wireless signal. We

assume, without loss of generality, that the term di accounts

for the traffic demand of both the downlink and uplink,

since the wireless resource is a half-duplex channel. The

uncertainty related to traffic description in 802.11 wireless

systems can be broadly characterized by 3 parameters, namely

(1) its burstiness, (2) the packet length distribution and (3) the

3In this paper we use interchangeably the terms customers and mesh clients,
since the customers are the owners of mesh clients.

contention level at the frame layer, which, in turn, is closely

related to the collision probability.

The first two parameters are used by each MC to control all

Quality of Service requirements that may affect its valuation

by defining an equivalent flow bandwidth, as discussed in [24].

On the other hand, the contention level, which is function of

the traffic requirements of all selected bidders, is controlled

by the WMN Operator by computing the margin necessary

to guarantee the requested effective bandwidth and avoid the

throughput collapse caused by high contention on the wireless

channel, using for example the model presented in [25]. Note

that if we reconfigure the access scheme using contention-

free MAC protocols (e.g., TDMA) exploiting architectures like

those proposed in [26], such margin can in theory tend to zero.

To satisfy such demand, each buyer bids an offer bi for its
bandwidth demand to the WMN operator. This latter decides

which MCs are served, and the price that winners have to pay

to exploit the available bandwidth.

We further assume that WMN devices (i.e., MRs, MAPs,

and MGWs) are equipped with multiple radio interfaces and

the operator designed its network to minimize intra-flow

and inter-flow interference effects according to optimization

strategies like those proposed in [27], [28], [29]. Since MAPs

use orthogonal channels, the different subsets of MCs assigned

to each MAP do not interfere with each other.

We observe that the transmission rate and the channel uti-

lization required to satisfy the MC’s demand depend, clearly,

on device technologies, but in particular on the distance

between the mesh client and the mesh access point to which

it is connected; hence, the allocation mechanism has a direct

impact on the number of mesh clients that have the opportunity

to exploit the available bandwidth. Therefore, the aim of the

WMN operator is to increase its revenue by allocating the

available bandwidth of its mesh access points to those mesh

clients that are willing to pay the highest price for the channel

utilization. To this end, we design a truthful auction that,

in addition to maximize the revenue of the WMN operator,

prevents market distortion by forcing every mesh client to

declare and bid its true valuation, vi = bi.

Each mesh client i submits its bid in the form (bi, di),
where bi represents the price that the buyer i is willing to

pay for its bandwidth demand di. For each possible allocation

of MC i to MAP j ∈ M, the operator computes the

corresponding channel utilization oij as the ratio between the

required bandwidth demand di and the maximum achievable

transmission rate of the wireless link that might connect MC i

and MAP j, r
(max)
ij , according to the following equation:

oij =
di

r
(max)
ij

. (1)

Note that r
(max)
ij can be easily obtained from the MAC

layer through a scanning of the wireless channels, which is

performed periodically by all network devices. Furthermore,

our mechanism can be applied also to network scenarios with

time-varying capacity of wireless links by simply considering

the cumulative distribution of the transmission rate of any

wireless link connecting MC i and MAP j.
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TABLE I: Basic notation used in the paper.

Acronyms and Sets

MC Mesh Client

MAP Mesh Access Point (ma is the number of MAPs)
WMN DevicesMR Mesh Router

MGW Mesh Gateway

N Set of Mesh Clients (i.e., Customers), |N | = n

M Set of WMN Devices (MR, MAP, and MGW), |M| = m

MC,i Set of MRs operating as MAPs in the radio range of MC i

G ⊂ M Set of MRs that act as MGWs

L Set of wireless links among MRs

Parameters

Cj Capacity of the wired link of MGW j

cjk Capacity of the wireless link (j, k)
di Bandwidth demand of MC i

bi Bid offered by MC i for demand di
vi Real valuation of MC i for demand di
pi Price paid by MC i for demand di
ui Utility of MC i for demand di

r
(max)
ij Maximum transmission rate of the wireless link established between nodes i and j

oij Channel utilization of MAP j to satisfy the demand of MC i

Variables

xi 0-1 variable that indicates whether the demand di of MC i is satisfied

yij 0-1 variable that indicates if MC i is assigned to MAP j

fjk Flow variable which denotes the traffic flow routed on link (j, k)
fj Flow variable which denotes the traffic flow routed on wired link of MGW j

Let us denote by pi the price paid by user i when its demand

is satisfied. Then, assuming a quasi-linear utility function for

each customer i [30], we can define the utility of i, ui, as

the difference between its private valuation vi and the price

paid to exploit the bandwidth, pi, according to the following

expression:

ui =

{

vi − pi if i’s demand is satisfied

0 otherwise.
(2)

According to Equation (2), user i would obtain a positive

utility only if its whole demand di is satisfied by the operator.

Therefore, if i reports a smaller demand d′i < di, its utility

would be null, since the operator will allocate to user i exactly
d′i. Obviously, when the demand of MC i is not satisfied, its

utility is null, since both the paid price and its valuation are

null.

We focus on the practical scenario where the WMN operator

has only a limited and imperfect knowledge about the real

valuation that mesh clients are willing to pay for satisfying

their traffic demand.

Mathematically, we apply the Myerson’s work [31] and

model the operator’s uncertainty about the real valuation of

any mesh client i as a continuous distribution function Fi(x),
which satisfies the regularity property, over a finite interval

x ∈ [ai, bi], with corresponding probability density function

fi(x).
Note that the distribution describing the uncertainty of

the WMN operator can be predicted exploiting the a-priori

knowledge of the system. Indeed, we can confidently suppose

the use of an automatic system for implementing the bidding

strategy of any customer (i.e., MC owner), like in web-based

marketplaces. In this system, a customer defines its preferences

choosing appropriate lower and upper bounds on its bandwidth

demands and valuations, so that the system can automatically

bid on behalf of the customer.

The user valuation distribution modeling the operator’s un-

certainty can be assumed independent from quality parameters

of the wireless link used to satisfy the demand, like the channel

or traffic randomness, since such quality parameters can be

simply controlled by defining an equivalent flow bandwidth

as discussed in [24].

To design a revenue-maximization truthful auction, we

therefore optimize over the virtual valuation function of cus-

tomer i defined in Equation (3), which we assume to be

a monotone nondecreasing function. Note that the virtual

valuation function represents the marginal revenue obtained

by satisfying the demand of i [32].

φi(vi) = vi −
1− Fi(vi)

fi(vi)
. (3)

Since we assume independence across the cumulative dis-

tribution functions modeling uncertainty on mesh clients val-

uations and single-dimensional settings, as illustrated in [31],

[33], such an auction can be implemented by assigning the

bandwidth to the customers with the highest virtual valuations

φi, provided they are non-negative. The payment rule is: the

winners pay the smallest value bk that would result in their

winning, that is, the bid (thus the valuation vk, as it is a truthful
auction) of the first excluded customer. If the first excluded

customer has a valuation vk such that φk(vk) < 0, then the

winner pays br = φ−1(0), that is, the bid whose corresponding
virtual valuation is 0. The value br serves as the reservation

price for the auctioneer, since he does not sell anything for

bids below this value.

Finally, we underline that the problem formulation can be

extended to consider a dynamic scenario where the WMN



5

operator has the choice of reserving part of his bandwidth for

a future sale in order to maximize the profit by anticipating

the arrival of new Mesh Clients before the next auction round.

However, the analysis of the best strategies for reserving the

optimal amount of bandwidth is out of the scope of this paper.

IV. OPTIMAL AND TRUTHFUL BANDWIDTH AUCTION

This section presents the combinatorial auction mechanism

we propose to allocate the available access bandwidth of a

WMN operator, maximizing its expected revenue. We formal-

ize the optimal and truthful auction mechanism in two steps.

First, we present a Mixed Integer Linear Programming (MILP)

model which gives the optimal solution for the Optimal and

Truthful Bandwidth Allocation Problem (OTBAP). Solving

OTBAP we obtain the assignment of MCs to MAPs which

maximizes the expected revenue of the WMN operator. Then,

we describe the algorithm that, exploiting the allocation of

the MILP model, makes the auction truthful. This algorithm

computes the price paid by MCs in such a way that the optimal

strategy for each mesh client i is to bid its real valuation vi.
Let N denote the set of mesh clients (MCs), M the set of

mesh routers (MRs), and L the set of wireless links (j, k)
among MRs j and k such that the two MRs are in their

reciprocal radio range (see Table I for reference). In particular,

let us define MC,i as the set of MRs operating as MAPs that

are in the radio range of MC i and G, G ⊂ M, as the set of

MRs that act as gateways for the WMN to the wired backbone.

We can now introduce the decision variables used in our

MILP model to solve OTBAP. Binary variables xi, i ∈ N ,

indicate which MCs win the auction, i.e., the buyers whose

demands are satisfied by the allocation mechanism (xi = 1 if

the demand of MC i is satisfied, 0 otherwise). Binary variables

yij , i ∈ N , j ∈ MC,i, provide the assignment of MCs to

MAPs (yij = 1 if MC i is assigned to MAP j, 0 otherwise).

Finally, let variables fjk, (j, k) ∈ L, denote the traffic flow

routed on link (j, k) and fj , j ∈ G, the traffic flow routed by

mesh gateways towards the wired connection (note that this

last value is null for mesh routers that do not act as gateways).
Given the above definitions and notation, the Optimal and

Truthful Bandwidth Allocation Problem (OTBAP) of the com-
binatorial bandwidth auction amounts to the following mixed
mathematical program:

max
∑

i∈N

φi(bi) · xi (4)

s.t.
∑

j∈MC,i

yij = xi ∀i ∈ N (5)

∑

i∈N :
j∈MC,i

yijoij ≤ 1 ∀j ∈ M (6)

∑

i∈N :
j∈MC,i

diyij +
∑

k∈M:
(j,k)∈L

(

fkj − fjk
)

= 0 ∀j ∈ M \ G (7)

∑

i∈N :
j∈MC,i

diyij +
∑

k∈M:
(j,k)∈L

(

fkj − fjk
)

= fj ∀j ∈ G (8)

fkj + fjk ≤ cjk ∀(j, k) ∈ L (9)

fj ≤ Cj ∀j ∈ G (10)

fjk, fq ≥ 0 ∀(j, k) ∈ L, q ∈ G (11)

xi, yij ∈ {0, 1} ∀i ∈ N , j ∈ MC,i (12)

The objective function (4) maximizes the expected revenue

of the WMN operator obtained from the bandwidth auction.

Constraints (5) provide full coverage of all the mesh clients

that win the auction. More specifically, if a mesh client i wins
the bandwidth auction, then it must be associated only to one

mesh access point among the set of those that cover it. These

constraints also ensure that only the mesh clients that win the

auction can be assigned to a mesh access point. Constraints (6)

prevent the allocation of an overall bandwidth demand that

cannot be satisfied by a mesh access point.

Constraints (7) and (8) define the flow balance at node j.
The term

∑
diyij accounts for the total traffic that is assigned

to mesh access point j, while the terms
∑

fkj and
∑

fjk
represent the total incoming and outgoing traffic, respectively.

The term fj represents the traffic sent by mesh gateways to

the wired backbone.

The set of constraints (9) ensures that the total traffic

routed on a link established between two devices j and k
does not exceed its capacity, denoted by cjk, while (10)

represent the capacity constraints for the wired backbone

links, whose maximum capacity is denoted as Cj . Recall that

in multi-channel multi-radio WMNs, wireless interfaces with

directive antennas can be tuned to different channels to reduce

interference effects on the backbone link capacity.

Finally, constraints (11) ensure the positiveness of the flow

variables, while (12) ensure the integrality of the binary

decision variables.

Having defined the MILP model representing the optimal

auction, we now illustrate the algorithm that forces mesh

clients to bid their real valuation.

Algorithm 1 describes the steps performed by the WMN

operator to auction its available bandwidth. The algorithm

receives as input the parameters which describe the network

topology and mesh client bids; these latter are composed of

the required demand di and the offered value bi. It produces
as output the allocation of mesh clients to mesh access points,

yij , as well as the price pi paid by each winning mesh client,

i ∈ N : xi = 1, to exploit the required bandwidth.

The algorithm proceeds in 4 steps. In steps 1 and 2, mesh

client demands are transformed into equivalent channel utiliza-

tions, and virtual valuations are computed using both the bids

actually offered by mesh clients and the valuation distribution

functions Fi(x). Step 3 consists in solving the MILP model

to find the allocation that maximizes the expected revenue.

Algorithm 1: Optimal and Truthful Bandwidth Auction

Input : N ,M,G,L, di, bi
Output: xi, pi, yij
Compute channel utilizations oij ;1

Compute virtual bids φi(bi);2

xi ⇐ Solve the MILP model (4)-(12);3

foreach i ∈ N do4

if xi = 1 then
p̃i ⇐ maxx−i

∑

h 6=i
xhφi(bh)−maxx

∑

h 6=i
xhφi(bh);

pi ⇐ max
{

φ−1(0), φ−1(p̃i)
}

;
else

pi ⇐ 0;
end

end
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Finally, in step 4, the operator computes the prices paid by

the winners, which, according to Myerson [31], guarantees a

truthful auction. In this step, the function maxx−i
represents

the solution to the OTBAP maximization problem with the

additional constraint xi = 0 (i.e., the solution to OTBAP

without considering MC i in the auction).

We observe that the mechanism implemented by Algo-

rithm 1 satisfies the ex-post individual rationality property,

since both mesh clients and the WMN operator perceive non-

negative utility.

We next show that the optimal auction mechanism of Algo-

rithm 1 is NP-hard, which motivates our further proposition of

a greedy, yet truthful and efficient, allocation algorithm (see

Section V) with polynomial-time complexity.

Proposition IV.1 (NP-hardness of OTBAP). The optimal

auction mechanism implemented by Algorithm 1 is NP-Hard.

PROOF: We prove the proposition by showing that the

Multiple Knapsack Problem (MKP) [34] can be reduced in

polynomial time to the MILP model (4)-(12), which describes

the Optimal and Truthful Bandwidth Allocation Problem (OT-

BAP). To this end, we establish the following polynomial time

procedure to reduce any instance of the MKP to an equivalent

instance of the OTBAP:

1) For each item i with weight wi and value vi of the MKP,

we add a new MC i ∈ N with di = wi and φ(bi) = vi.
2) For each knapsack j with capacity Wj of the MKP, we

add a new MAP j ∈ M and a new MGW g ∈ G
connected through the link (j, g) ∈ L with capacity

cjg = Wj . Furthermore, we set the capacity of the MGW

wired link to Cg = Wj .

3) For each possible assignment (i, j) of item i to knap-

sack j in the MKP, we add a new channel utilization

oij = wi/Wj .

Since solving the MKP is at least as difficult as solving OT-

BAP (MKP ≤P OTBAP ) and MKP is NP-Hard, OTBAP

is NP-Hard.

V. GREEDY BANDWIDTH AUCTION

As demonstrated in the previous section, the Optimal and

Truthful Bandwidth Auction Problem is NP-Hard. Finding the

exact system optimum can be thus extremely time consuming,

especially in large-scale, real wireless network scenarios as

those analyzed in our numerical evaluation. Motivated by this

observation, in the following we present a greedy algorithm

to solve efficiently (i.e., in polynomial time) the bandwidth

auction problem while preserving the truthfulness property.

We set out by presenting the greedy algorithm and de-

scribing its main phases. In Section VI we then analyze its

complexity and formally prove that revealing the real valuation

of the available bandwidth is the best strategy for each MC

participating the auction.

Description of the Greedy Algorithm. The greedy auc-

tion is depicted in Algorithm 2. Its inputs and outputs are

exactly the same as the optimal bandwidth auction illustrated

in Algorithm 1. The algorithm is composed of two main

phases: (1) allocation phase (step 1), which determines the

winning mesh clients according to their virtual valuation per

channel utilization and (2) the payment phase (step 2), which

establishes the price paid by each winner based on the best

mesh client, c ∈ N , whose demand is not satisfied. This latter

is also referred to as critical mesh client and its virtual bid

per channel utilization as critical value (p̃c = φ(bc)
ocjc

). The

value ocjc is the lowest channel utilization among the links

that the critical mesh clients can establish with the set of its

covering MAPs to satisfy its traffic demand.

Algorithm 2: Greedy Bandwidth Auction

Input : N ,M,G,L, di, bi
Output: xi, pi, yij
(xi, yij) ⇐ Greedy Allocation Phase(di, φi(bi), oij);1

p̃c ⇐ φ(bc)
ocjc

;

foreach i ∈ N : xi = 1 do2

p̃i ⇐ p̃c ·
∑

j∈MC,i
oijyij ;

pi ⇐ max
{

φ−1(0), φ−1(p̃i)
}

;
end

Note that the truthfulness property guaranteed by the pay-

ment scheme proposed for Algorithm 1 is no longer satisfied

if the combinatorial auction is not solved to the optimality but

only approximated, as shown in [35]. For this reason, we have

modified the payment scheme of the greedy algorithm with

respect to the optimal one (Algorithm 1), so that revealing

the true valuation is still the dominant strategy for all the

customers who participate to the approximated bandwidth

allocation auction. In particular, the price paid by each winner

is now proportional to its resource utilization and the unitary

price that the critical mesh client is willing to pay.

We underline that the proposed payment and allocation

schemes implemented by the greedy algorithm guarantee ex-

post individual rationality, efficiency and truthfulness, as we

formally prove in the next section.

The greedy allocation phase of step 1 is further detailed in

Algorithm 3; it first sorts the list L of possible MC-MAP allo-

cations in non increasing order of submitted virtual valuation

per channel utilization,
φi(bi)
oij

. Then, each element of the sorted

list is allocated only if its demand, or equivalently its channel

utilization, can be satisfied by the corresponding MAP and

routed towards any mesh gateway. Thus, FeasibleSol(x̃, ỹ, d̃)
verifies if the additional bandwidth demand of MC i assigned
to MAP j can actually be routed through the WMN backbone

towards mesh gateways, without violating the link capacities.

To this end, we develop a procedure to compute in polynomial

time the maximum flow that can be routed over the wireless

backbone using the well known Push-Relabel algorithm [36].

The choice of such algorithm is motivated by its complexity,

which depends on the number of networks edges; in sparse net-

works, like optimized multi-radio and multi-channel WMNs,

results in a faster execution with respect to other algorithms

that depend only on the number of vertices.

FeasibleSol(x̃, ỹ, d̃) in Algorithm 3 computes the maxi-

mum flow that can be routed over an extended version of

the graph that represents the network topology. The node

set of the extended graph V consists of the mesh routers

set M and two fictitious nodes, a source node s and an egress
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node t, {s, t}: V = M ∪ {s, t}. The arc set E comprises

all original wireless links L and includes a new arc from

node s to each MAP that has been selected to satisfy the

demand of the winners currently selected by the algorithm:

∃(s, j) ∈ E,
∑

i∈N :j∈MC,i
xi · yij > 0. The capacity of each

arc leaving s is set to the sum of winners demands allocated

to the corresponding MAP, i.e., c(s, j) =
∑

i∈N :j∈MC,i
diyij .

If no mesh client has been allocated to a MAP, the capacity

of the corresponding fictitious arc is null.

As for the fictitious node t representing the egress point,

we create an additional arc from each Mesh Gateway (MGW)

to t with a capacity equal to the maximum bandwidth of

the wired link connecting the gateway node to the Internet:

∃(g, t) ∈ E, ∀g ∈ G. If the maximum flow from s to t
computed by FeasibleSol(x̃, ỹ, d̃) on the extended graph is

less than the sum of winners demands, the function returns

false, since the MC demand analyzed in the current iteration

cannot be satisfied. Otherwise, the MC currently analyzed by

Algorithm 3 can be selected as winner, provided that the

virtual valuation is positive (φi(bi) ≥ 0) and the available

channel utilization of MAP j is enough to satisfy its bandwidth
demand (oj−oij ≥ 0). To this end, throughout the iterations of

Algorithm 3, the total utilization of each MAP (oj) is updated
and verified in order to keep the sum of allocated demands

within the bandwidth limit of the access network formed by

the MAPs.

FeasibleSol(x̃, ỹ, d̃), which implements the Push Relabel

algorithm, has time complexity O(m4). In the worst case, the

extended graph has a number of vertices |V | = m + 2 and a

number of edges |E| = l+2m, where l represents the number

of original wireless links, since there are 2 fictitious nodes (s
and t) in addition to the m WMN devices. In a fully connected

network we have l = m2, and the relation |V |2|E| ≤ m4 +
4m3+8m2+8m holds, hence FeasibleSol(x̃, ỹ, d̃) ∈ O(m4).

The feasibility evaluation of the solution obtained by se-

lecting a new winner and performed by FeasibleSol(x̃, ỹ, d̃)
is illustrated in the example network scenario shown in

Figure 2, which illustrates the extended graph used by

FeasibleSol(x̃, ỹ, d̃) to evaluate the feasibility of the solution

obtained by selecting a new MC in the sorted list L. Black
circles represent all MCs selected as winners, while dashed

circles depict the set of MCs assigned to the same MAP, which

in turn is represented as a fictitious arc (s, j) from s to the

corresponding MAP j ∈ {3, 4, 5}, with capacity equal to the

Algorithm 3: Greedy Allocation Phase (Step 1 of Alg. 2)

Input : di, φi(bi), oij
Output: xi, yij
Initialize: oj = 1, ∀j ∈ M;

L ⇐ Sort
(

(i, j) ∈ N ×MC,i,
φi(bi)
oij

, “non-increasing”
)

;

while L 6= ∅ do
(i, j) ⇐ Next(L);
if oj − oij ≥ 0 ∧ FeasibleSol(x̃, ỹ, d̃) ∧ φi(bi) ≥ 0 then

xi ⇐ 1, yij ⇐ 1;
oj ⇐ oj − oij ;
RemoveAll(i, L);

end
end

overall bandwidth demand used by MCs inside the dashed

circle. On the other hand, the capacity of the two fictitious

arcs {(1, t); (2, t)} is equal to the maximum transmission rate

of the wired connections of nodes 1 and 2.

1 2

3 4 5

s

t

WMN

MCs

Fig. 2: Example of extended graph used by FeasibleSol(x̃, ỹ, d̃) to
verify the feasibility of the solution obtained by selecting a new MC
as winner. The black circles represent the MCs already allocated by
Algorithm 3. The capacity of each fictitious arc leaving s is equal to
the sum of the MCs demands inside the corresponding dashed circle.

The maximum flow from s to t provides a lower bound on

the maximum traffic that can be routed over the backbone.

Hence, if the sum of all winners demands is lower than or

equal to this value, the traffic can be safely transmitted over the

backbone without violating the service bandwidth agreement

with the winners.

Note that MC i might be satisfied by multiple MAPs

j ∈ MC,i; however, once i is selected as winner and its

demand assigned to the corresponding MAP, all remaining en-

tries in the list representing alternative and feasible allocations

are removed by the function RemoveAll(i, L). Therefore, the
function RemoveAll(i, L) removes from the list L all ele-

ments
φi(bi)
oij

representing the alternative allocation for MC i.

Remark. We observe that the proposed greedy mechanism

implemented by Algorithm 2 has time complexity O(nm5).
Indeed, each iteration of the loop in the greedy allocation

phase is executed at most n · m times (with m = |M| and
n = |N |), which represent the maximum number of alternative

assignments of MCs to MAPs in the worst case scenario. Since

each iteration of the loop has time complexity O(m4) (recall
that FeasibleSol(x̃, ỹ, d̃) ∈ O(m4)), Algorithm 3, and thus

Algorithm 2, terminates at most after O(nm5) steps.

We further observe that the backhaul section of a WMN

is usually designed to satisfy the maximum bandwidth of

the access network. That is, the channel assignment and

the routing are jointly optimized assuming that the devices

connected to the MAPs generate traffic at the maximum data

rate (i.e.,
∑

i∈N :
j∈MC,i

diyij = rmax
ij ∀j ∈ M).

In such case, we can speed up the computation by removing

the feasibility check performed by FeasibleSol(x̃, ỹ, d̃) in

Algorithm 3, since we already know that the traffic served
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by MAPs can be routed through the backbone. Indeed, the

complexity of the greedy algorithm would be substantially

reduced, resulting O(nm2) instead of O(nm5).
Illustrative Example. To better clarify the payment rule

implemented by Algorithm 2, let us consider the illustrative

example depicted in Figure 3, where 3 MCs request as

bandwidth demand di = 24 Mbps and submit as virtual bids

φ(b1) = φ(b2) = 24, and φ(b3) = 12 US dollars. The two

dashed trapezoids represent the areas covered by the radio

signals of the two MAPs, whereas the solid lines represent

the wireless links that may be established between MCs and

MAPs. Their transmission rates (in Mbps) are illustrated in

the same Figure, near the dashed edges. The corresponding

channel utilizations (oij) are reported in Table II.

For the sake of simplicity, we assume, as in the Remark

discussed above, that the backhaul network is designed to

satisfy the maximum bandwidth of the access network.

The list L, sorted according to the virtual bids per channel

utilizations, is defined as follows:

L = {〈(2, B), 48〉, 〈(1, A), 24〉, 〈(2, A), 24〉, 〈(3, B), 12〉}

where the element 〈(i, j), φ(bi)
oij

〉 represents the link (i, j) and
the corresponding virtual bid per channel utilization.

Algorithm 2 selects Mesh Clients 1 and 2 as winners, which

are assigned to MAPs A and B, respectively. The critical

value is the virtual bid per channel utilization of MC 3,
p̃c = p̃3 = φ(b3)

o3B
= 12. Therefore, the virtual prices paid

by the two winners are p̃1 = p̃3 · o1A = 12 < φ(b1) and

p̃2 = p̃3 · o2B = 6 < φ(b2), respectively.

A B

1 2 3

24

24 48

24

MAP

MC

Fig. 3: Illustrative scenario to clarify the payment rule of the pro-
posed greedy algorithm. Letters represent MAPs, whereas numbers
identify MCs. The two dashed trapezoids represent the areas covered
by the radio signals of the two MAPs. The number close to each
wireless link (represented as solid line), which may connect a MC
to a MAP, is its maximum transmission rate (in Mbps).

TABLE II: Channel utilizations oij of the example depicted in
Figure 3, for all possible associations of Mesh Clients i ∈ {1, 2, 3}
to Mesh Access Point j ∈ {A,B}.

1 2 3

A 1 1 -

B - 0.5 1

VI. ANALYSIS OF THE GREEDY AUCTION

In this section we analyze the key structural properties

of our greedy auction. In particular, we formally prove that

revealing the real valuation of the available bandwidth is the

best strategy for each MC participating to the auction. Then,

we analyze the economic efficiency of the greedy algorithm

evaluating the performance gap with respect to the optimal

auction.

A. Truthfulness Analysis

Having described the main phases of the greedy bandwidth

auction, hereafter we prove formally that our mechanism

satisfies the truthfulness property. We recall that an auction

mechanism is truthful if the dominant strategy for each rational

bidder is to declare always its private real valuation for

the requested demand. This property guarantees that selfish

bidders cannot benefit from cheating, preventing the strategic

manipulation of the marketplace, thus resulting in an efficient

allocation of the available resources.

In order to prove that the auction implemented by our

greedy algorithm is truthful, we have to show firstly that the

allocation rule satisfies the following properties:

1) Monotonicity of the allocation defined by the auction.

2) Existence of a critical value for each winner mesh client,

which determines if its demand is satisfied or not.

The following lemmas (VI.1 - VI.3) prove that the allocation

phase of Algorithm 2 satisfies the above properties, and

provide the basis to demonstrate in Theorem VI.1 that no

bidder can unilaterally increase its utility by submitting a bid

which is different from its private valuation.

Lemma VI.1. If the demand of mesh client i is satisfied when

it bids bi, then i’s demand is still satisfied if i increases its

bid, b′i > bi.

PROOF: Let L and L′ be two sorted lists for virtual

bids φ(bi) and φ(b′i) (corresponding to bi and b′i), respectively.
Let us define rank(i, L) a monotonic decreasing function of

the MC i position in the list L. Since
φ(b′i)
oij

> φ(bi)
oij

(recall

that φ(x) is a non-decreasing function), the sorting algorithm

in the greedy allocation phase (Algorithm 3) moves i in a best

position, i.e., rank(i, L′) > rank(i, L). Therefore, the rank

of i can only increase if it submits a higher bid, and thus

a higher virtual bid, resulting in a different order of the set

of mesh clients whose demands are satisfied, which implies

that if mesh client i is allocated by bidding bi (i.e., φ(bi)),
its demand is satisfied even with a higher bid b′i > bi (i.e.,

φ(b′i) > φ(bi)).

Lemma VI.2. For each mesh client i, the greedy algorithm 2

provides the critical value p̃c = φ(bc)
ocjc

such that i’s demand

is satisfied if i’s virtual bid per channel utilization is higher

than p̃c, whereas it is rejected if i’s virtual bid per channel

utilization is lower than p̃c.

PROOF: The proof is straightforward, since Algorithm 2

scans the list L in non-increasing order of virtual bids per

channel utilization (φ(bi)
oij

) until it cannot allocate more band-

width demands or all mesh clients are satisfied. In the former

case, the critical value is equal to the ratio
φ(bc)
ocjc

of the first

unsatisfied mesh client c, while in the latter case the critical

value is null.

Lemma VI.3. The price paid by each winner i is lower than
or equal to its submitted bid bi.
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PROOF: To show that pi ≤ bi, we need to demonstrate

that the critical value times the channel utilization charged to

winner i (i.e., the virtual price of i, p̃i) is not greater than its

virtual bid φ(bi).
Each winner i is charged the critical value p̃c times the

channel utilization (oij) of the MAP j to which it has been as-

signed to satisfy its bandwidth demand, di. If all mesh clients

can be satisfied, the critical value is zero, thus mesh clients are

not charged for their bandwidth utilization. Otherwise, MC i
pays virtually p̃i = φ(bc) ·

oij
ocjc

≤ φ(bi), since the mesh

clients list L is sorted in non-increasing order of the ratio
φ(bi)
oij

≥ φ(bc)
ocjc

, where
φ(bc)
ocjc

represents the ratio of the virtual

bid and the utilization of the critical bidder (i.e., the first looser

of the auction).

Finally, since φ(x) is a non-decreasing monotonic function,

pi = φ−1(p̃i) ≤ bi.

Theorem VI.1 (Truthfulness of Algorithm 2). Algorithm 2

implements a truthful auction.

PROOF: We prove the theorem by showing that no mesh

client can increase its utility by submitting a bid bi different

from its private valuation vi. We underline that the utility

perceived by MC i does not change by bidding either vi or bi,
since it is defined as ui(x) = vi − pi.

We must consider two cases, namely (A) φ(bi) > φ(vi) (or
equivalently, due to the nondecreasing monotonic property

of the virtual function, bi > vi), and (B) φ(bi) < φ(vi)
(or equivalently, bi < vi). For each case, we must consider

all possible four outcomes, detailed in the following and

summarized in Table III.

Let us start with case (A) by considering the following

cases.

Case A.1: user i wins either by bidding φ(bi) or φ(vi).
If i wins by bidding either φ(bi) or φ(vi), then i is ranked

in a better place in the list L when it submits φ(bi). However,
this changes only the order of the set of winners, but neither

the critical value p̃c nor the virtual price p̃i, which are

still given by the following expressions: p̃c = φ(bc)
ocjc

, and

p̃i = p̃coij . Hence the price paid by the winner does not

vary, pi = φ−1(p̃i). Therefore, the utility does not change:

ui(bi) = ui(vi).
Case A.2: user i wins by bidding φ(bi) but looses with φ(vi).
If i wins by submitting φ(bi) but it looses with φ(vi), then

there exists a critical value p̃c = φ(bc)
ocjc

such that
φ(vi)
oij

<
φ(bc)
ocjc

< φ(bi)
oij

, thus φ(vi) < p̃i < φ(bi).

Due to the monotonic property, the private valuation of i is
lower than the price that it pays when it submits φ(bi), i.e.,
vi < φ−1(p̃i) < bi. Therefore, the utility perceived by i is

negative, ui(bi) = vi − φ−1(p̃i) < 0, hence it is better off

loosing the auction, since in this latter case its utility is null,

ui(vi) = 0.
Case A.3: user i looses by bidding φ(bi) but wins with φ(vi).
Due to the monotonic property, this case is impossible, since

by submitting a higher bid, and thus a higher virtual bid, user i
will be placed in a better position of the sorted list L.
Case A.4: user i looses either by bidding φ(bi) or φ(vi).

If i looses by bidding both bi and vi, then its utility is

always null: ui(bi) = ui(vi) = 0.
Similarly, for case (B) φ(bi) < φ(vi), we can demonstrate

that mesh client i cannot increase its utility by submitting a

lower bid than its private valuation.

Table III summarizes all possible outcomes to show how

MC i cannot increase its utility by bidding differently than its

private valuation (i.e., bi 6= vi).

TABLE III: Auction outcomes and utility for MC i when it bids
untruthfully.

Case (A): bi > vi
Outcome for MC i Utility of MC i

vi bi > vi vi bi > vi
i wins i wins ui = vi − pi ui = vi − pi
i looses i wins ui = 0 ui = vi − pi < 0
i wins i looses - -

i looses i looses ui = 0 ui = 0

Case (B): bi < vi
Outcome for MC i Utility of MC i

vi bi < vi vi bi < vi
i wins i wins ui = vi − pi ui = vi − pi
i looses i wins - -

i wins i looses ui = vi − pi > 0 ui = 0
i looses i looses ui = 0 ui = 0

Since Algorithm 2 implements a truthful auction (which

means that selfish bidders cannot benefit from manipulating

their bids), a WMN operator can efficiently compute a solution

for the auction problem, being assured that all MCs reveal

the true valuation for their bandwidth demand. We emphasize

that, even though our greedy algorithm provides a slightly

sub-optimal solution with respect to the optimal allocation for

the bandwidth auction problem, according to [37], the most

important properties necessary to prevent market manipulation

are preserved by our proposal.

Finally, we also observe that the reservation price φ−1(0) =
br set by the operator limits the impact of collusion on the

revenue earned by the operator, thus discouraging the collusion

among two or more selfish bidders. Note, however, that a

complete analysis of the collusion on the performance of our

mechanism is out of the scope of this paper and is left for

future study.

B. Economic Efficiency Analysis

In this section we analyze the economic efficiency of

our greedy algorithm with respect to the optimal allocation

computed by Algorithm 1 in the worst case scenario, by

evaluating the Price of Anarchy (PoA), which is defined as

the ratio between the optimal and worst possible values of the

Social Welfare, according to Equation (13):

PoA =
SW o

SW g
=

∑

i∈N φ(bi) · x
o
i

∑

i∈N φ(bi) · x
g
i

, (13)

where xo
i and xg

i represent the allocation computed by the

optimal and greedy algorithms, respectively.

To provide better insight on the economic efficiency of our

solution, we also analyze the Revenue Ratio (RR), defined as

the ratio between the revenues computed using the optimal
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and greedy algorithms, according to Equation (14), since the

operator would seek to minimize such performance metric.

RR =

∑

i∈N pi · x
o
i

∑

i∈N pi · x
g
i

. (14)

To illustrate the economic efficiency of the greedy approach,

we consider a simple network scenario composed of one

Mesh Access Point, A, and two Mesh Clients ({1, 2}). The
capacity C of the MAP’s backhaul connection is large enough

to accommodate the traffic transmitted over the wireless

access interface. The channel utilizations of the two MCs

are o1A = d1A/r1A = 1/D (D is a positive parameter) and

o2A = d2A/r2A = 1, while their bids are b1 = (1 + ǫ) (ǫ is a

small value larger than 0) and b2 = D, respectively.

In this scenario, the allocation that maximizes the Social

Welfare is the one that selects MC 2 (SW o = b2 = D).

However, the greedy algorithm selects MC 1, since b1/o1 >
b2/o2, and the Social Welfare is in this case equal to SW g =
b2 = 1 + ǫ. The ratio SW o

SW g is therefore equal to D
1+ǫ

, and the

Price of Anarchy of the social welfare tends to infinity with D,

PoA = limD→∞
D
1+ǫ

= ∞.

Nevertheless, we underline that the revenue obtained using

the greedy algorithm approaches that obtained using the op-

timal mechanism, since the optimal revenue is only ǫ times

larger than the revenue computed using the greedy algorithm.

Indeed, the RR defined in Equation (14) is independent of D,

and even in this limiting case it results:

RR = lim
D→∞

Ro

Rg
= lim

D→∞

1 + ǫ

1
= 1 + ǫ. (15)

We further underline that our allocation mechanism can be

modified to bound the Price of Anarchy of the Social Welfare,

by simply fixing a minimum amount of bandwidth demand

for any bidder that is willing to participate to the auction. In

practice, as we illustrate in Section VII-B, the economic gap

between the optimal and greedy solutions is almost null (the

experimental Price of Anarchy we measured is, in fact, always

lower than 1.05), thus proving the economic efficiency of our

scheme.

VII. NUMERICAL RESULTS

In this section, we illustrate the numerical results obtained

solving the bandwidth allocation auction using both the op-

timal and greedy algorithms detailed in previous sections.

We first describe the results obtained in randomly generated

network topologies, then we show the performance of our

approaches using a real-life network, namely the Google Wifi

network4 analyzed in [4].

A. Random Networks

Experimental Methodology. In this set of simulations, we

consider typical WMCN topologies composed of 30, 60, 90,

and 120 WMN devices (i.e., Mesh Routers, Mesh Access

Points, and Mesh Gateways) randomly scattered over an area

of 1000 × 1000m2, similarly to [38]. The ratios between the

4Available on-line at http://tfa.rice.edu/measurements/

three different devices is fixed to 1:2 and 1:3 for MGWs:MRs

and MGWs:MAPs, respectively.

In all the topologies, we vary the number of MCs, which

participate to the bandwidth auction, from 400 to 1000. The

bandwidth demands and bids are uniformly distributed in

the range [1, 9] Mbps and [10, 30] monetary units (e.g., US

dollars), respectively.

The channel capacity of both access and backbone links is

defined according to the reception sensitivity of the Wistron

CM9 commercial wireless cards (based on Atheros chipset)5.

The path loss necessary to evaluate the sensitivity of the

receiving node is computed according to the Friis propagation

model. However, we underline that all the above assumptions

do not affect the proposed algorithms, which can be used to

solve any network scenario.

In order to gauge the performance of the proposed greedy

algorithm (Section V) with respect to the optimal solution

(Section IV), we consider the following metrics:

• Revenue: defined as the sum of the prices paid by all

winners.

• Social Welfare: defined as the sum of the winner bids,∑
i∈N bi · xi.

• Winners: this metric represents the number of winners

selected among the mesh clients that participated to the

auction. It provides an indication of the satisfaction of

the customers.

• Fairness: we consider the Jain’s Fairness Index [39],

defined according to equation (16):

Jain’s Fairness Index =
(
∑w

i=1 ρi)
2

w ·
∑w

i=1 ρi
2

(16)

where ρi represents the ratio between the paid price and

the requested bandwidth demand of the winner i, ρi =
pi/di, whereas w represents the number of winners.

The Jain’s Fairness Index therefore measures the spread of the

price paid by winners per bandwidth unit, and it varies from
1/w (no fairness among winners) to 1 (perfect fairness).

For each network scenario we performed 10 independent

measurements, computing very narrow 95% confidence inter-

vals. For the sake of clarity, the Revenue and the Social Welfare

have been normalized with respect to the maximum value

measured in the network topology composed of 120 WMN

devices (about 12500 monetary units).

Performance Evaluation. Figure 4 shows the performance

metrics measured in the network topologies composed of m =
30, 60, 90, and 120 WMN devices as a function of the number

of MCs, using the allocation mechanisms discussed in previous

sections.

The curves identified with “R.o” and “R.g” represent the

solutions obtained using Algorithms 1 (which could be com-

puted only for m = 30) and 2, respectively. The curves

“SW.o” and “SW.g” correspond to the Social Welfare. Fi-

nally, the remaining curve identified with “VCG” represents

the revenue of solutions obtained according to the classical

Vickrey-Clarke-Groves mechanism [30], which does not con-

sider the bids distribution to compute the price paid by the

5Available on-line at http://www.mi.parisdescartes.fr/∼sparis03/download/CM9.pdf
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(d) m = 120

Fig. 4: Revenue and Social Welfare measured as a function of the number of mesh clients in scenarios with m = 30, 60, 90, and 120
WMN devices.

winners. The performance gap between our mechanism and

the VCG scheme illustrates the performance increase that can

be obtained considering the additional information on the bids

distribution.

Note that, due to the high computational complexity, we

were able to solve the auction problem optimally only for the

network scenario composed of 30 WMN devices. Neverthe-

less, even in this simple scenario, the maximum computational

time we measured to solve the problem on a Pentium 4 with

3.0 Ghz and 2 GByte of RAM was approximately equal

to 40 hours. Conversely, the greedy approach takes always

less than 30 seconds to find efficient allocations and the

corresponding payments.

Figure 4(a) illustrates the revenue earned by the operator

auctioning its available bandwidth, when 30 WMN nodes

(15 MAPs, 10 MRs, and 5 MGWs) are scattered randomly

over the 1000× 1000m2 square area.

As illustrated in such Figure, the additional information

provided by the virtual bids permits to increase the operator’s

expected revenue with respect to a mechanism which exploits

only the MC bids. We can further notice that the auction

implemented by the greedy algorithm well approaches the

optimal revenue, and therefore it represents an effective and

efficient solution for the computation of the prices paid by the

MCs. In addition, the Social Welfare is always higher than the

revenue earned when using Algorithms 1 and 2. Indeed, this

value represents an ideal upper bound to the revenue, since it

can be achieved only assuming that all mesh clients behave

honestly, submitting the price they are willing to pay for their

bandwidth demands, even if it is not their best strategy. On

the contrary, we underline that our proposed solutions ensure

that all mesh clients bid truthfully their valuations, because it

is their best strategy. The achieved revenue is approximately

equal to 75% of the Social Welfare.

Greedy solutions illustrated in Figures 4(b), 4(c), and 4(d)

confirm the trends observed for the network scenario com-

posed of 30 WMN devices. Note how increasing the number

of mesh clients guarantees higher revenues. This is due to the

effect of the competition: only mesh clients bidding more will

be accepted.

Figure 5 and 6 show, respectively, the number of winners

and the Jain’s Fairness Index of ρi = pi/di obtained through

the bandwidth auction implemented by Algorithms 1 and 2 as

a function of the number of mesh clients that participate to

the auction for the bandwidth allocation. It can be observed

from Figure 5 that the greedy algorithm selects a number of

mesh clients very close to the value obtained using the optimal

allocation algorithm (see the curves identified by labels “30.o”

and “30.g”). In particular, the greedy algorithm leads to a

performance gap always lower than 10%, for instance sizes

when both algorithms can be run. The figure illustrates also the

number of winners selected in the network scenarios composed

of 60, 90, and 120 WMN devices. As expected, the higher

is the number of WMN devices, the higher is the available

network bandwidth and the greater is the number of mesh

clients satisfied by the allocation algorithm implementing the

auction.

Furthermore, Figure 6 shows that the greedy scheme com-



12

putes a solution with a slightly higher fairness than the optimal

approach. This is due to the different allocation phases imple-

mented by the two algorithms. The greedy scheme selects as

winners the MCs with the highest ratios of ρi = pi/di, even

though they do not represent the best solution in terms of

Social Welfare and Revenue (see Figure 4). Therefore, the

greedy algorithm rules out the MCs with the worst ratios

of ρi = pi/di, which would increase the variability of the

paid prices, but at the same time would permit to satisfy a

higher number of MCs, thus increasing the overall Revenue

earned by the WMN operator, as it can be observed from

Figures 4 and 5. We underline, however, that both algorithms

compute fair solutions, since the Jain’s Fairness Index of the

ratio ρi = pi/di is very close to 1. Therefore, all MCs selected

as winners pay almost the same price per bandwidth unit.
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Fig. 5: Number of winners as a function of the number of mesh
clients in scenarios with m = 30, 60, 90, and 120 WMN devices.
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Fig. 6: Comparative evaluation of the fairness (Jain’s Fairness Index
of ρi = pi/di) obtained using the optimal and the greedy algorithms
in the network scenario with m = 30 WMN devices.

B. Real-life WiFi Network

Experimental Methodology. The Google WiFi network is

an operational, large-scale, wireless multi-hop network archi-

tecture deployed in Mountain View, CA, by Google. In [4], the

authors collected coverage measurements of 168 access points

located in a 12 km2 area. In particular, the authors measured

the signal strength and the SNR (Signal to Noise Ratio) from

more than 75000 client locations. We use the 168 access point

locations as MAPs and the 75000 client positions as candidate

MCs, respectively.

The channel capacity of the wireless link that can be estab-

lished between the access point and each candidate mesh client

is defined according to the measured SNR using the reception

sensitivity thresholds of Atheros-based wireless cards.

In order to evaluate the effect of the demand and bid

distributions on the operator’s revenue, we solve the auction

using both the optimal and greedy algorithms varying the

values of the requested bandwidth demand and the submitted

bid, which are both drawn from uniform distributions. More

specifically, mesh clients bids are distributed uniformly in the

range [0, 2x] monetary units, with x ∈ {10, 20, 25, 30, 35},
while we consider two different interval sizes for the demand

distribution to simulate preference variability: large and fixed

intervals which correspond to ranges (0, 2y) Mb/s and [y −
4, y + 4] Mb/s, respectively, with y ∈ {5, 10, 15, 20, 25, 30}.

As in the randomly generated network scenarios, we mea-

sure the Revenue, the number of Winners and the Jain’s

Fairness Index of the ratio ρi = pi/di of the allocations

computed by the optimal and greedy algorithms. Furthermore,

we compute the average utilization of the access network

formed by all Access Points. For the sake of clarity, we do

not show the Social Welfare in the following figures, since

it almost overlaps the Revenue computed with the optimal

algorithm.

We underline that in this scenario we assume that the

backhaul network has been designed to satisfy the maximum

bandwidth of the access network, in order to compare the

performance of the optimal and greedy algorithms. Even with

this assumption the computational time that we measured to

solve the problem optimally on a Pentium 4 with 3.0 Ghz and

2 GByte of RAM was approximately equal to 5 hours.

Performance Evaluation. Figure 7 shows the Revenue

obtained by the optimal algorithm in the Google WiFi network

as a function of the average bid and demand submitted by the

mobile clients. The curves identified with “L.o” and “L.g”

represent the solutions obtained using Algorithms 1 and 2

in network scenarios with bandwidth demands drawn from a

uniform distribution with large interval size. On the contrary,

the curves “F.o” and “F.g” show the same performance metrics

measured with uniformly distributed bandwidth demands with

fixed interval size. For the sake of clarity, in Figure 7, we

did not report the results measured by the greedy mechanism,

since they are very close to the values obtained using the

optimal approach. Note, however, that Algorithm 2 selects a

slightly lower number of winners than Algorithm 1, which in

turn leads to a lower average utilization of the access points, as

illustrated in Figures 8(a) and 8(b). Indeed, the interval size of

the bandwidth demand has a twofold effect on the performance

of our algorithms:

• On the one hand, the higher is the demand variability,

the higher is the operator’s revenue, at the detriment of

the fairness (see Figure 8(c)). Due to the larger interval

size, there is a higher probability of having unbalanced

bandwidth demands, which lead to widely distributed

ratios of valuation per channel utilization. The operator

can therefore select those clients with the highest such

ratio, which increases its revenue, but results in a lower

overall fairness.

• On the other hand, each decrease of the variability of

the bandwidth demand produces a more fair allocation of
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Fig. 7: Optimal Revenue, (a) front and (b) rear, measured in the real-life network scenario (Google WiFi).
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(c) Jain’s Fairness Index

Fig. 8: Number of Winners, Network Utilization and Jain’s Fairness Index measured in the real-life network scenario (Google WiFi) as a
function of the requested demand. Each point is the average with respect to the bids.

the resources, at the expense of the total revenue earned

by the operator and the utilization of its network, as

illustrated in Figure 8, since in this case the operator

can only satisfy those clients who are willing to pay the

highest price per bandwidth unit.

As expected, the lower is the average demand requested

by MCs, the higher is the revenue of the operator, since this

latter can satisfy a higher number of bidders with the fixed

available capacity provided by its access points. Furthermore,

we can clearly observe from Figure 7 that the variation of the

total Revenue in not equally affected by the average demand

and the average bid. More specifically, the revenue gained by

the operator benefits more from a combined decrease of the

average demand (the y value) and its variability (the interval

size) than an increase of the average bid offered by MCs.

Therefore, the operator should leverage on policies that favor

large marketplaces formed by several MCs with low values of

average demand to reach economic efficiency and increase its

revenue.

Finally, in order to show the gap of the economic efficiency

of our greedy mechanism with respect to the optimal solution,

we experimentally computed the Price of Anarchy (PoA)

and the Revenue Ratio (R.R.) in the Google WiFi network

scenario, with bandwidth demands drawn from a uniform

distribution with large interval size (i.e., (0, 2y) Mbps with

y ∈ {5, 10, 15, 20, 25, 30}). Indeed, this scenario contains bids

per bandwidth demands that may negatively affect the PoA,

as discussed in Section VI-B.

As illustrated in Figure 9, the experimental Price of Anarchy

we measured is always lower than 1.05, thus proving the

economic efficiency of our greedy scheme.

1 1.01 1.02 1.03 1.04 1.05
0

0.2

0.4

0.6

0.8

1

C
D

F

 

 

PoA RR

Fig. 9: Cumulative Distribution Function of the experimental Price
of Anarchy (PoA) and Revenue Ratio (RR) measured in the real-
life network scenario (Google WiFi) with a large interval of the
bandwidth demand distribution.

VIII. CONCLUSION

In this paper we proposed two effective mechanisms to

allocate the available bandwidth of a WMN operator to those

customers who are willing to pay the higher price for satisfying

their bandwidth demand. We first formulated the allocation

mechanism as a combinatorial auction, which guarantees

that all customers reveal their real valuation of the required

bandwidth. Then, we proposed a greedy algorithm that finds

efficient allocations in polynomial time even for large-scale,

real network scenarios, while maintaining the truthfulness

property.

We evaluated our solutions in several large-scale network

topologies generated both randomly and based on real-life
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deployments, like the Google WiFi scenario. Numerical results

show that the greedy algorithm performs very close to the

optimal combinatorial auction, thus representing an efficient,

fair and practical alternative for solving the auction of the

proposed bandwidth marketplace.

The analysis performed using real wireless traces suggests

to design market policies that force MC owners to lower their

bandwidth requirements rather than increasing their offers to

maintain the same level of service. In addition to improving

the operator profit, this permits to enhance the overall system

satisfaction and fairness.
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