
1

Joint Operator Pricing and Network Selection Game
in Cognitive Radio Networks: Equilibrium, System

Dynamics and Price of Anarchy
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Abstract—This paper addresses the joint pricing and network
selection problem in cognitive radio networks. The problem
is formulated as a Stackelberg game where first the Primary
and Secondary operators set the network subscription price
to maximize their revenue. Then, users perform the network
selection process, deciding whether to pay more for a guaranteed
service, or use a cheaper, best-effort secondary network, where
congestion and low throughput may be experienced.

We derive optimal stable price and network selection settings.
More specifically, we use theNash equilibrium concept to charac-
terize the equilibria for the price setting game. On the other hand,
a Wardrop equilibrium is reached by users in the network selection
game, since in our model a large number of users must determine
individually the network they should connect to. Furthermore, we
study network users’ dynamics using a population game model,
and we determine its convergence properties under replicator
dynamics, a simple yet effective selection strategy.

Numerical results demonstrate that our game model captures
the main factors behind cognitive network pricing and network
selection, thus representing a promising framework for thedesign
and understanding of cognitive radio systems.

Index Terms: - Cognitive Radio Networks, Pricing, Network
Selection, Stackelberg Game, Population Game Model, Replicator
Dynamics.

I. I NTRODUCTION

Cognitive radio networks (CRNs), also referred to asxG
networks, are envisioned to deliver high bandwidth to mobile
users via heterogeneous wireless architectures and dynamic
spectrum access techniques [1], [2]. In CRNs, aPrimary (or
licensed) User (PU) has a license to operate in a certain spec-
trum band; his access is generally controlled by the Primary
Operator (PO) and should not be affected by the operations of
any other unlicensed user. On the other hand, the Secondary
Operator (SO) has no spectrum license; therefore,Secondary
Users (SUs) must implement additional functionalities to share
the licensed spectrum band without interfering with primary
users.

In this work, we consider a cognitive radio scenario which
consists of primary and secondary networks, as well as a large
set of cognitive users, and we focus on a fundamental issue
concerning such systems, i.e. whether it is better for a CR
user to act as a primary user, paying the Primary operator for
costlier, dedicated network resources with Quality of Service
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guarantees, or act as a secondary user (paying the Secondary
operator), sharing the spectrum holes left available by licensed
users and facing lower costs with degraded performance
guarantees. At the same time, we consider thepricing problem
of both Primary and Secondary operators, who compete with
each other, setting access prices to maximize their revenues.

The joint pricing and cognitive radio network selection
problem is modeled as aStackelberg(leader-follower) game,
where first the Primary and Secondary operators set their
access prices in order to maximize their revenues. In this
regard, we study both practical cases where (1) the Primary
and Secondary operators fix access prices at the same time,
and (2) the Primary operator exploits his dominant position
by playing first, anticipating the choices of the Secondary
operator. Then, network users react to the prices set by the
operators, choosing which network they should connect to,
therefore acting either like primary or secondary users.

The solution provides an insight on how rational users
will distribute among existing access solutions (higher-price
primary networks vs. lower-price secondary networks), i.e.,
the proportion of players who choose different strategies.

We adopt a fluid queue approximation approach (as in [3],
[4], [5], [6], [7]) to study the steady-state performance ofthese
users, focusing ondelay as QoS metric. Besides considering
static traffic equilibrium settings, we further formulate the
network selection process of cognitive radio users as apop-
ulation game[8], which provides a powerful framework for
characterizing the strategic interactions among large numbers
of agents, whose behavior is modeled as adynamicadjustment
process. More specifically, we study the cognitive users’
behavior according toreplicator dynamics[8], [9], since such
users adapt their choices and strategies based on the observed
network state.

We provide equilibrium and convergence properties of the
proposed game, and derive optimal stable price and network
selection settings.

More specifically, we use theNash equilibriumconcept
to characterize the equilibria of the pricing game between
a finite number of decision makers (viz., the Primary and
Secondary operators). In addition to that, we further determine
the Wardrop equilibriumfor the network selection game, in
which a large number of users must choose individually
the network they should connect to. Such equilibrium is
characterized by two properties, namelytraffic equilibrium
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(the total costs perceived by users on all used networks are
equal) andsystem optimum principle(the average delay/cost
is minimum) [10].

Numerical results obtained in different network scenarios
illustrate that our game captures the main factors behind
cognitive network pricing and selection, thus representing a
promising framework for the design and performance evalua-
tion of cognitive radio systems.

In summary, in an effort to understand the pricing and
networking selection issues that characterize CRNs, our work
makes the following contributions:

• the proposition of a novel game theoretical model where
Primary and Secondary operators set access prices, and
users select which network to connect to, based both on
the total delay and the experienced cost.

• The computation of equilibrium points for our game, as
well as relevant performance metrics, including the Price
of Anarchy and the Price of Stability.

• The analysis of a dynamic model, based on population
games, which further illustrates how players converge
to the equilibrium in a dynamic context under an eas-
ily implementable, distributed strategy (viz., replicator
dynamics), along with formal, detailed proofs of its
convergence.

The rest of this paper is organized as follows: related
work is reviewed in Section II. The network model for the
proposed joint pricing and network selection game is described
in Section III; the equilibrium points of such game, as well
as its Price of Anarchy and Price of Stability, are derived
in Sections IV and V, respectively. The dynamic network
selection model, based on population games and replicator
dynamics, is presented in Section VI, and its convergence
properties are demonstrated in Section VII. Numerical results
are discussed in Section VIII, while Section IX concludes this
work.

II. RELATED WORK

In this section, we first review the most notable works on
spectrum pricing and access in cognitive radio networks [3],
[4], [11], [12], [13], [14], [15], [16], [17], [18]. Then, we
discuss relevant works that use evolutionary games to study
the users behavior in CR as well as in heterogeneous wireless
networks [19], [20], [21], [22], [23].

In [11], the authors provide a systematic overview on
CR networking and communications, by looking at the key
functions of the physical, MAC and network layers involved
in a CR design, and by studying how these layers are crossly
related. In [3], the authors consider the decision-making
process of SUs who have the choice of either acquiring a
dedicated spectrum (paying a price) or using the primary
user band for free, and they characterize the resulting Nash
equilibrium for the single-band case. This work differs from
ours in two main aspects: 1) the CR users already arrive at
the system as secondary or primary ones; SUs have the choice
between dedicated or PU band, and 2) the users’ behavior is
studied based on queueing theory. The work in [4] considers
a CRN where multiple secondary users (SUs) contend for

spectrum usage, using random access, over available primary
user channels, focusing on SUs’ queueing delay performance.
A fluid queue approximation approach is adopted to study the
steady-state delay performance of SUs. In [12], the authors
analyze the price competition between PUs who can lease
out their unused bandwidth to secondaries in exchange for
a fee, considering bandwidth uncertainty and spatial reuse.
The problem of dynamic spectrum leasing in a secondary
market of CRNs is considered in [14], where secondary service
providers lease spectrum from spectrum brokers to provide
service to SUs.

Recent works have consideredevolutionary gamesto study
the users’ behavior in cognitive radio and heterogeneous
wireless networks [19], [20], [21], [22], [23].

In [19], the authors use evolutionary game theory to in-
vestigate the dynamics of user behavior in heterogeneous
wireless access networks (i.e., WMANs, cellular networks,
and WLANs). The evolutionary game solution is compared to
the Nash equilibrium, and a set of algorithms (i.e., population
evolution and reinforcement learning algorithms) are proposed
to implement the evolutionary network selection game model.
In [20], the dynamics of a multiple-seller, multiple-buyer
spectrum trading market is modeled as an evolutionary game,
in which PUs want to sell and SUs want to buy spectrum
opportunities. Secondary users evolve over time, buying the
spectrum opportunities that optimize their performance in
terms of transmission rate and price. In [21], the authors
propose a distributed framework for spectrum access, with and
without complete network information (i.e., channel statistics
and user selections). In the first case, an evolutionary game
approach is proposed, in which each SU compares its payoff
with the system average payoff to evolve its spectrum access
decision over time. For the incomplete information case, a
learning mechanism is proposed, in which each SU estimates
its expected throughput locally and learns to adjust its channel
selection strategy adaptively. The problem of opportunistic
spectrum access in CSMA/CA-based cognitive radio networks
is also addressed in [22] from an evolutionary game theo-
retic angle.

In our preliminary works [24], [25], we addressed the
pricing and network selection problems in cognitive radio
networks. However, in [24], we assumed that the PO and
SO useseparatefrequency bands, which greatly simplifies the
problem, and we did not study the impact of the order in which
operators set prices on the quality of the reached equilibria.
The work in [25] differs from the one presented here in that
it considered uniquely Primary operators, and a finite set of
SUs, which are characterized by elastic traffic demands that
can be transmitted over one or multiple frequency spectra.

Unlike previous works, which study the interaction between
two well-defined sets of users (primary and secondary ones)
who already performed the choice of using the primary or
the secondary network, our paper tackles a fundamental issue
in CRNs. In fact, we model the users’ decision process that
occursbefore such users enter the CRN, thus assessing the
economic interest of deploying secondary (xG) networks. Such
choice depends on the trade-off betweencostandperformance
guaranteesin such networks. At the same time, we derive
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the optimal price setting for both Primary and Secondary
operators that play before network users, in order to maximize
their revenue. We use enhanced game theoretical tools, derived
from population game theory, to model the network selection
dynamics, providing convergence conditions and equilibrium
settings.

III. N ETWORK MODEL

We now detail the network model, which is illustrated in
Figure 1: a cognitive radio wireless system which consists of
a secondary (xG) network that coexists with a primary network
at the same location and on the same spectrum band.

We consider anoverlay model(focusing on the “interference
avoidance” approach [26], [27] to cognitive radio) as in [3],
[20], [28], where Secondary Users periodically sense the
radio spectrum, intelligently detect occupancy in the differ-
ent frequency bands and then opportunistically communicate
over the spectrum holes left available by Primary Users,
thus avoiding interference with active primary users. In other
words, our model is an overlay CR where secondary users
opportunistically access primary users’ spectrum only when it
is not occupied. As in [3], we further consider perfect primary
user detection at the secondary users and zero interference
tolerance at each of the primary and secondary users.

We assume that users arrive at this system following a
Poisson process with rateλ, and the maximum achievable
transmission rate of the wireless channel (licensed to the PO
and opportunistically used by the SO) is denoted byC. The
total traffic λ admitted in the network must not exceed its
capacityC; this can be obtained, for example, using admission
control techniques, which are out of the scope of this paper.
All these assumptions are commonly adopted in several recent
works like [4], [5], [6], [7].

Each arriving user must choose whether to join the primary
network (paying a higher subscription cost) or the xG one
(which has a lower subscription cost), based on criteria to be
specified below, i.e., a combination of cost and QoS (service
time/latency).

Finally, let us denote byλP the overall transmission rate
of primary users (i.e., those who choose the primary network)
and byλS the rate of secondary users, so thatλ = λP + λS .
Table I summarizes the basic notation used in our game model.

Fig. 1. CRN scenario with a primary network and a secondary (xG) network.
Arriving users must decide whether to join the primary network, paying a
subscription fee (p1) for guaranteed QoS, or the xG network (which has a
lower subscription cost,p2 < p1, and less performance guarantees), based
on the expected cost and congestion levels.

TABLE I
BASIC NOTATION

λ Total traffic accepted in the network
C Wireless channel capacity
α Weighting parameter of delay wrt access cost
λP Total traffic transmitted by Primary Users
λS Total traffic transmitted by Secondary Users
XP Fraction of Primary Users
XS Fraction of Secondary Users
p1, p2 Price charged by the PO/SO
K Constant, velocity of convergence

We now define users’cost functionsas well as theutility
functionsof Primary and Secondary operators. We assume that
the total cost incurred by a network user is a combination of
the service time (delay, or latency) experienced in the network,
and the cost for the player to access such network.

We underline that a similar model is used in [3], where the
average cost incurred by a Secondary User (SU) consists of
two components: (1) the price (C̃) of the dedicated spectrum
band, and (2) an average delay cost (1

µ ), whereµ is the service
time. The average delay cost is weighted by a parameterα,
which represents the delay vs. monetary cost tradeoff of the
SUs. To further support our choice, another similar model
is considered by Anshelevich et al. in [29] for a different
networking context. The authors set the player’s cost for using
an edgee in the network as a combination of a cost function
ce(x) and a latency functionde(x); the goal of each user in
such game is to minimize the sum of his cost and latency.
The same model is also used in [30]. Finally, note that in [19]
the authors consider two components, namely throughput (the
allocated capacity to a player, which is obviously related to the
delay experienced by such user) and the corresponding price
(see equations (2) and (3) in [19]).

In this work, we consider a fluid queue approximation
approach, which permits to study the steady-state delay per-
formance of both PUs and SUs. To this aim, and without loss
of generality, we assume that the wireless channel is modeled
as a M|M|1 queue, with service rateC and arrival rateλ.
Recall that both the primary and secondary networks operate
on the same channel; the Primary and Secondary operators fix
the pricesp1 andp2, respectively, for accessing their services.
Therefore, the total cost perceived by primary users is given
by:

CostPU =
α

C − λP
+ p1, (1)

where parameterα weights the relative importance of the
experienced delay with respect to the access cost. Note that
primary users are affectedexclusivelyby the traffic transmitted
by primary users (λP ), and not by the traffic of secondary
users (λS), since usually, in a cognitive radio network, primary
users have strict priority over secondary users; these latter must
therefore implement spectrum sensing and spectrum handover
strategies to avoid any interference towards primary users, and
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can transmit only in the spectrum holes left unoccupied by
these ones.

As mentioned previously, we consider perfect primary user
detection at the secondary users and zero interference tolerance
at each of the primary and secondary users.

For this reason, secondary users’ performance is affected by
the whole traffic, transmitted by both primary and secondary
users; such users are characterized by the following cost
function:

CostSU =
α

C − (λP + λS)
+ p2 =

α

C − λ
+ p2. (2)

As for operators’ utilities, they correspond to the total
revenue obtained by pricing users. As a consequence, the
Primary operator’s utility function is expressed as follows:

UP = p1λP . (3)

Correspondingly, the Secondary operator’s utility function is:

US = p2λS = p2(λ− λP ). (4)

To summarize, network usersminimizethe perceived cost,
which is expressed asCostPU = α

C−λP
+p1 (see equation (1))

if they choose the primary network, andCostSU = α
C−λ +p2

(see equation (2)) if they act as secondary users. As for
Primary/Secondary operators, they try tomaximizethe total
revenue obtained by pricing primary (UP = p1λP ) or sec-
ondary users (US = p2λS), respectively. Users’ cost functions
as well as operators’ utilities are also reported in Tables II
and III, respectively.

TABLE II
PRIMARY AND SECONDARY USER’ S COST FUNCTIONS

Primary User (PU) CostPU = α
C−λP

+ p1

Secondary User (SU) CostSU = α
C−λ

+ p2

TABLE III
PRIMARY AND SECONDARY OPERATOR’ S UTILITY FUNCTIONS

Primary Operator (PO) UP = p1λP

Secondary Operator (SO) US = p2λS

IV. EQUILIBRIUM COMPUTATION

In this section, we derive the equilibrium points of our
game, namely: (i) the equilibrium traffic sent by primary and
secondary users, (ii) steady-state Primary/Secondary operator’s
utilities, as well as (iii) equilibrium prices set by the PO/SO.

We consider two practical cases: (1) both operators fix
their access priceat the same time, trying to maximize their
own revenue (Section IV-A), and (2) the PO playsbeforethe
SO, anticipating the strategy of this latter, thus exploiting his
dominant position (Section IV-B). We will refer to the first case
as theTOGETHERscenario, while the latter will be referred
to as theBEFOREscenario. Note that when the Primary and
Secondary operators play at the same time, we have a Cournot

duopoly competition between such operators. However, in the
original Cournot duopoly, production quantities (outputs) and
prices are linear, while in this work we consider a nonlinear
system which requires non-standard studies that cannot rely on
existing results. On the other hand, when the Primary operator
plays before the Secondary, anticipating his choices, we have
a Stackelberg game model between the operators.

The Nash equilibrium concept will be used for the price
setting game, since we have a finite number of decision
makers, i.e., the two network operators. More precisely, a Nash
Equilibrium is a set of players’ (here, operators’) strategies,
each of which maximizes the player’s revenue, and such that
none of the actors has an incentive to deviate unilaterally.For
this reason the corresponding network configurations are said
to be stable.

On the other hand, aWardrop equilibrium [31] is reached
by CR users in the network selection game, since in our
model a large number of users must determine individually
the network they should connect to. Such equilibrium satisfies
the two Wardrop’s principles, namely traffic equilibrium (the
total costs perceived by users on all used networks are equal)
and system optimum principle (the average delay/cost is
minimum).

Therefore, at Wardrop equilibrium, primary and secondary
users will both experience the same cost, that is,CostPU =
CostSU , or:

α

C − λP
+ p1 =

α

C − (λP + λS)
+ p2 =

α

C − λ
+ p2. (5)

This permits to compute the equilibrium traffic1 for the
primary network as a function of the prices set by both the
PO and SO:

λP =
αλ − C(C − λ)(p1 − p2)

α− (C − λ)(p1 − p2)
, (6)

with 0 ≤ λP ≤ λ. The traffic sent by secondary users,
λS , will therefore be equal toλ − λP . Note that, in order
for the equilibrium condition (5) to hold and for equilibrium
traffic λP to be comprised in the[0, λ] range,p1 − p2 must
satisfy the conditionp1 − p2 < αλ

C(C−λ) . Furthermore, since
there is a uniqueλP value which satisfies condition (5), such
value represents the unique Wardrop equilibrium point of the
network selection game.

The corresponding equilibrium utility for the PO is given
by the following expression:

UP = p1λP = p1 ·
αλ− C(C − λ)(p1 − p2)

α− (C − λ)(p1 − p2)
, (7)

while the utility of the SO will be:

US = p2λS = p2(λ − λP )

= p2λ+ p2

[ α(C − λ)

α− (C − λ)(p1 − p2)
− C

]

. (8)

1With a slight abuse of notation, we will denote equilibrium flows still
by λP and λS , since in the following we will almost exclusively refer to
equilibrium game conditions.
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Hereafter we compute equilibrium prices for both our
considered scenarios.

A. The Primary and Secondary operators fix their prices
simultaneously (TOGETHER scenario)

In this scenario, both the Primary and Secondary operators
fix their prices simultaneously, trying to maximize their own
revenue. As a consequence, to maximize the utility function
of the PO, it suffices to take the derivative ofUP with respect
to p1, imposing its equality to zero:

∂UP

∂p1
= C −

α(C − λ)[α− (C − λ)(p1 − p2)] + α(C − λ)2p1
[α− (C − λ)(p1 − p2)]2

= 0

(9)

Hence, we can express the pricep1 as a function ofp2:

p1 = p2 +
α

C − λ

{

1−
√

(C − λ)

αC
[α+ (C − λ)p2]

}

. (10)

Similarly, the Secondary operator aims at maximizing his
revenueUS ; by derivingUS with respect top2 and imposing
its equality to zero, we obtain:

∂US

∂p2
= (λ− C) +

α2(C − λ)− α(C − λ)2p1
[α− (C − λ)(p1 − p2)]2

= 0, (11)

and the expression ofp2 as a function ofp1 is given by:

p2 = p1 −
1

(C − λ)
{α−

√

α2 − α(C − λ)p1}. (12)

Finally, combining expressions (10) and (12) we obtain the
equilibrium price valuesp1 andp2, which are function ofα,
C andλ:

p1 = α
(3C2 − λ2)− (C − λ)2

√

9C−5λ
C−λ

2(2C − λ)2(C − λ)
(13)

p2 = α
C
√
9C − 5λ− (3C − 2λ)

√
C − λ

2(2C − λ)2
√
C − λ

, (14)

with p1 ≥ 0 andp2 ≥ 0.

B. The Primary operator plays before the Secondary (BE-
FORE scenario)

In this case, we have a Stackelberg game between opera-
tors, in which the Primary operator is the leader while the
Secondary operator is the follower.

The PO will therefore anticipate the choice of the SO (who
will set the pricep2 in order to maximize his utility), and will
play his best strategy, setting the optimal value forp1 taking
into account the choice onp2 operated by the SO.

To derive the equilibrium prices in such scenario, it suffices
to take the derivative ofUS with respect to the pricep2,
obtainingp2 in function of p1 (see equation (12)). We next
insert the expression ofp2 in (7), obtainingUP as a function
of p1:

UP = p1

{

C +
α(λ − C)

√

α2 − α(C − λ)p1

}

.

Deriving UP with respect to the pricep1, we obtainC +√
α(λ−c)[2α−(C−λ)p1]
2[α−(C−λ)p1]3/2

; then, imposing that such derivative is
null, we obtain the equilibrium value forp1, which has the
following expression:

p1 =
α

C − λ

{

1− (Z +
h

3
)2
}

, (15)

whereZ = (h
4
)1/3

[(√

1 + 4
27
h2+1

)2/3

+
(√

1 + 4
27
h2−1

)2/3]

,

andh = C−λ
2C .

If we combine such expression ofp1 with (12), we obtain
the equilibrium price set by the Secondary operator:

p2 =
α

C − λ
(Z +

h

3
)[1− (Z +

h

3
)]. (16)

C. Comments

Note that, in both theTOGETHERandBEFOREscenarios,
equilibrium prices are unique. In fact, if we compute the
second derivatives in both network scenarios (∂2UP

∂p1
2 and∂2US

∂p2
2 ),

they are both negative for all price values in the feasible region
p1−p2 < αλ

C(C−λ) . Hence, the maximums, as well as the Nash
equilibrium points, are unique.

Furthermore, equilibrium prices (p1 and p2) are directly
proportional to α, while equilibrium flows (λP and λS)
are independent ofα; this can be seen by substituting, in
expression (6),p1 − p2, which is proportional toα. As a
consequence, operators’ utilities grow proportionally toα. All
these trends will be illustrated in more detail in the Numerical
Results section.

Finally, primary users’ equilibrium traffic,λP , decreases
with increasingC values, while secondary users’ traffic fol-
lows an opposite trend. As for operators’ prices and utilities,
they both decrease withC, as we will quantify in Section VIII.

V. PRICE OFANARCHY AND PRICE OFSTABILITY

We now investigate the efficiency of the equilibria reached
by operators and users in our joint pricing and network
selection game, through the determination of the Price of
Anarchy (PoA) and the Price of Stability (PoS). They both
quantify the loss of efficiency as the ratio between the cost of a
specific stable outcome/equilibrium and the cost of the optimal
outcome, which could be designed by a central authority.
In particular the PoA, first introduced in [32], considers the
worst stable outcome (that with the highest cost), while the
PoS [29] considers the best stable equilibrium (that with the
lowest cost). However, we observe that in our game these two
performance metrics coincide due to the uniqueness of the
equilibrium reached by network users. For this reason, in the
following we will refer exclusively to the first performance
figure, the PoA, which has a particular importance in charac-
terizing the efficiency of distributed game formulations.

To determine the optimal system-wide solution, we define
the social welfareS as the weighted average of the delays
experienced by primary and secondary users;S is therefore a
function of the amountx of traffic sent by primary users:
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S(x) =
αx

C − x
+

α(λ− x)

C − λ
.

Note thatp1 and p2 do not appear in the social welfare’s
expression, since all the prices paid by primary/secondary
users (which represent for them adisutility or cost) correspond
to a symmetricutility or gain for the Primary/Secondary
operators, who collect this income in exchange for the network
services they offer.

To minimize this quantity, it suffices to derive with respect
to x and impose its equality to zero, thus obtaining:

dS(x)

dx
=

αC

(C − x)2
− α

C − λ
= 0,

which leads toxmin = C −
√

C(C − λ).
The optimal social welfare is therefore equal to:

S(xmin) = α
[C −

√

C(C − λ)
√

C(C − λ)
+

λ− C +
√

C(C − λ)

C − λ

]

= 2α
[

√

C

C − λ
− 1

]

. (17)

Recall that the total traffic transmitted by primary users at
the Wardrop equilibrium is given by expression (6), and the
equilibrium traffic for secondary users isλs = λ− λp.

The (average) total delay experienced by primary/secondary
users at equilibrium is therefore equal to:

TDE = α
λp

C − λp
+ α

λs

C − λ
, (18)

while the Price of Anarchy (PoA) is defined as the ratio
between the cost of the worst (here, the unique) equilibrium
and the social optimum,PoA = TDE

S(xmin)
.

Hereafter, we derive the closed-form expressions for the
PoA in both the considered scenarios (i.e., theTOGETHER
and BEFOREscenarios). To this aim, it is sufficient to use
equilibrium expressions forλP andλS in both scenarios.

A. PoA for the TOGETHER scenario (the PO and SO play
together)

The total delay of cognitive users at equilibrium (TDT
E) can

be expressed as follows:

TDT
E = α

λp

C − λp
+ α

λs

C − λ
=

αλ

C − λ
− (p1 − p2)λp

=
αC(9C − 5λ)− α(3C − 2λ)

√

(C − λ)(9C − 5λ)

(2C − λ)[(C − λ) +
√

(C − λ)(9C − 5λ)]
.

(19)

Therefore, the Price of Anarchy can be calculated as:

PoAT =
TDT

E

S(xmin)

=
C(9C − 5λ)

√
C − λ− (3C − 2λ)(C − λ)

√
9C − 5λ

2(2C − λ)[(C − λ) +
√

(C − λ)(9C − 5λ)][
√
C −

√
C − λ]

.

(20)

B. PoA for the BEFORE scenario (the PO plays before the
SO)

In this case, the total delay of cognitive users at equilibrium
(TDB

E ) can be expressed as:

TDB
E = α

λp

C − λp
+ α

λs

C − λ
=

αλ

C − λ
− (p1 − p2)λp

= α
[

− 2 +
C

C − λ
(Z +

h

3
) +

1

Z + h
3

]

, (21)

where

Z = (
h

4
)1/3

[(

√

1 +
4

27
h2+1

)2/3

+
(

√

1 +
4

27
h2−1

)2/3]

,

andh = C−λ
2C .

The Price of Anarchy is therefore equal to:

PoAB =
TDB

E

S(xmin)

=

√
C − λ

2(
√
C − λ−

√
C)

[

− 2 +
C

C − λ
(Z +

h

3
) +

1

Z + h
3

]

.

(22)

Note that both expressions (20) and (22) are independent of
α.

VI. COGNITIVE USERS’ B EHAVIOR: REPLICATOR

DYNAMICS

After having characterized thestatic, steady-state equilibria
reached by network operators and users in the joint pricing
and spectrum selection game, in this section we further focus
on modeling thedynamicbehavior of network users.

To this aim, we use population dynamics (and, in particular,
replicator dynamics) to model the behavior of users who
decide which network they should connect to, since such
dynamics models network users who adapt their choices and
strategies based on the observed state of the system (in terms
of costs and congestion, in our case).

Before introducing replicator dynamics for our network
selection game, we must first define some relevant game
theoretic concepts.

A. Introduction to Population Games and Replicator Dynam-
ics

Hereafter we briefly introduce population games and repli-
cator dynamics; for more details, the reader is referred to the
book by W. H. Sandholm [8].

1) Population Games:A population gameG, with Q non-
atomic classes of players (i.e., network users) is defined bya
mass and a strategy set for each class, and a payoff function for
each strategy. By a non-atomic population, we mean that the
contribution of each member of the population is very small;
this is the case in our game, where a large set of users compete
for CRN’s bandwidth resources. We denote the set of classes
by Q = {1, . . . , Q}, whereQ ≥ 1. The classq has massmq.
Let Sq be the set of strategies available for players of class
q, whereSq = {1, . . . , sq}. These strategies can be thought
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of as the actions that members ofq could possibly take (i.e.,
connecting to the primary or the secondary network).

During the game play, each player of classq selects a
strategy fromSq. The mass of players of classq that choose
the strategyn ∈ Sq is denoted byxq

n, where
∑

n∈Sq xq
n = mq.

We denote the vector of strategy distributions being used by
the entire population byx = {x1, . . . , xQ}, where xi =
{xi

1, . . . , x
i
si}. The vectorx can be thought of as the state

of the system.
The marginal payoff function (per mass unit) of players

of classq who play strategyn when the state of the system
is x is denoted byF q

n(x), usually referred to asfitness in
evolutionary game theory, which is assumed to be continuous
and differentiable. The total payoff of the players of classq
is therefore

∑

n∈Sq F q
n(x)x

q
n.

2) Replicator Dynamics:The replicator dynamics describes
the behavior of a large population of agents who are randomly
matched to play normal form games. It was first introduced in
biology by Taylor and Jonker [33] to model the evolution of
species, and it is also used in the economics field. Recently,
such dynamics has been applied to many networking problems,
like routing and resource allocation [34], [35].

Given xq
n, which represents the proportion of players of

class q that choose strategyn, as illustrated before, the
replicator dynamics can be expressed as follows:

ẋq
n = xq

n

[

F q
n(x)−

1

mq

∑

n∈Sq

F q
n(x)x

q
n

]

, (23)

whereẋq
n represents the derivative ofxq

n with respect to time.
In fact, the ratioẋq

n/xq
n measures the evolutionary success

(the rate of increase) of a strategyn. This ratio can be also
expressed as the difference in fitnessF q

n(x) of the strategyn
and the average fitness1mq

∑

n∈Sq F q
n(x)x

q
n of the classq.

An important concept in population games and replicator
dynamics isWardropequilibrium [31], which we introduced in
Section IV. In this context, a statêx is a Wardrop equilibrium
if for any class q ∈ Q, all strategies being used by the
members ofq yield the same marginal payoff to each member
of q, whereas the marginal payoff that would be obtained by
members ofq is lower for all strategies not used by classq.

B. Cognitive Users’ Behavior in the Network Selection Game:
Replicator Dynamics

Having reviewed the mathematical tools we will rely on,
we now focus on the cognitive radio scenario illustrated in
Section III, introducing replicator dynamics for the network
selection game. In particular, we consider a population game
G with a non-atomic set of players (q = 1), which is defined
by a strategy setdenoted byS = {sp, ss}, identical for all
players, and apayoff functionfor each strategy;sp means that
the player chooses theprimary network, andss that the player
chooses thesecondarynetwork, using the spectrum holes left
free by primary users.

Our goal is to determine the dynamic network selection
settings (XP andXS = 1−XP ), i.e., the fraction of players
that choose the primary and secondary network, respectively,
based on the equilibrium prices set by Primary and Secondary

operators. Hence, the total traffic accepted in the primary
network is equal toλP = λXP , and the one accepted in the
secondary network isλS = λXS .

The proposed replicator dynamics provides a means to
analyze how players can “learn” about their environment, and
converge towards an equilibrium choice. Replicator dynamics
is also useful to investigate the speed of convergence of
strategy adaptation to reach a stable solution in the game.
A mathematical analysis to bound such speed is provided
in Section VII. In this case, CR users need to know some
information, viz. the total cost (the service delay plus the
price charged by the PO/SO, respectively) and the size of the
populations (XP , XS) that already performed such selection,
before undertaking the best choice based on the system state.

As illustrated in Section III, the goal of each cognitive radio
user is tominimize a weighted sum of his delay (latency)
and price paid to the network operator (either primary or
secondary),α being the parameter which permits to give more
weight to delay with respect to the paid price. Hence, we can
formalize the network selection game as follows:

ẊP = KXP

[ −α

C − λXP
− p1−

−
( −αXP

C − λXP
−XP · p1 − (1−XP )(

α

C − λ
+ p2)

)]

=

= KXP (1−XP )
[

− p1 + p2 +
α

C − λ
− α

C − λXP

]

,

(24)

where ẊP represents the derivative ofXP with respect to
time.

This equation has the same structure as the replicator dy-
namics (see equation (23)): the first term (F q

n(x) ≡ −α
C−λXP

−
p1) corresponds to the total cost (the service delay plus the
price charged by the PO) perceived by users that choose to
connect to the primary network, using a M|M|1 approximation;
the second term (1mq

∑

n∈Sq F q
n(x)x

q
n ≡ −αXP

C−λXP
− XP ·

p1 − (1−XP )(
α

C−λ + p2)) represents the average cost/delay
incurred by the fractionXP of primary users as well as by
the fractionXS of secondary users (recall thatp1 andp2 are
the prices charged by the Primary and Secondary operator,
respectively).

In particular, the speed of variation ofXP is proportional to
the population sizeXP (via the proportionality coefficientK),
which models the willingness of the population to change
strategy.

A similar equation can be written for Secondary Users,
thus we can express the replicator dynamics for such SUs
as follows:

ẊS = KXS(1−XS)
[

p1 − p2 −
α

C − λ
+

α

(C − λ) + λXS

]

.

(25)

Obviously, by comparing these two expressions it can be
verified that conditionXp +Xs = 1 holds.

It can be demonstrated [8] that Wardrop equilibria are the
stationary points of equations (24) and (25). As we will show
in the next section, it can be easily proved that the unique
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non-trivial fixed point of such dynamics coincides with the
Wardrop equilibrium point of the CR users’ network selection
game already determined in Section IV.

VII. C ONVERGENCE ANALYSIS OFREPLICATOR

DYNAMICS

This section provides an in-depth analysis on the replicator
dynamics given by (24)2. To this end, we rewrite it in a
discretized version as follows:

XP (t+1) = XP (t)+kXP (t)[1−XP (t)]

[

A− 1

B −XP (t)

]

,

(26)
wherek = Kα/λ, A = λ(−p1/α + p2/α + 1

C−λ) andB =
C/λ.

The above dynamics has three fixed points, among which0
and1 are trivial fixed points corresponding to the case where
all users either act as secondary or primary users, respectively.
X∗

P = B − 1/A is the only non-trivial fixed point, which is
also the Wardrop equilibrium of the game; its expression is
equal toX∗

P = λP

λ , whereλP is the equilibrium flow already
derived for the static game in Section IV (see expression (6)).

In the subsequent analysis, we investigate the convergence
of the replicator dynamics toX∗

P . We start by establishing the
following auxiliary lemma.

Lemma 1. Under the condition thatK(A − 1
B−1 ) ≤ 1, it

holds that
• XP (t + 1) is non-decreasing w.r.t.XP (t) for XP (t) ∈

[0, X∗
P ) and non-increasing w.r.t.XP (t) for XP (t) ∈

(X∗
P , 1];

• XP (t + 1) > XP (t), ∀XP (t) < X∗
P and XP (t + 1) <

XP (t), ∀XP (t) > X∗
P .

Proof. The proof of the first part is straightforward by check-
ing the derivative∂XP (t + 1)/∂XP (t). Specifically, it can
be checked that under the condition thatK(A − 1

B−1 ) ≤ 1,
∂XP (t + 1)/∂XP (t) > 0 when XP (t) ∈ [0, X∗

P ) and
∂XP (t+1)/∂XP (t) < 0 whenXP (t) ∈ (X∗

P , 1]. The second
part follows readily from (26).

The following theorem establishes the convergence of the
replicator dynamics to the non-trivial fixed pointX∗

P .

Theorem 1. Under the condition thatK(A− 1
B−1 ) ≤ 1, the

replicator dynamics depicted in(26) converges to the non-
trivial fixed pointX∗

P for any initial state0 < XP (0) < 1.

Proof. Consider an arbitrary sequence of update steps com-
mencing from an initial vectorXP (0). We distinguish the
following two cases:

• Case 1: 0 < XP (0) ≤ X∗
P . In this case (recall that

X∗
P is a fixed point of (26)), it follows from Lemma 1

that: (1) XP (t) ≤ X∗
P , ∀t and (2)XP (0) ≤ XP (1) ≤

· · · ≤ XP (t − 1) ≤ XP (t) ≤ · · · , i.e., XP (t) is a non-
decreasing sequence. SinceXP (t) is also bounded by
X∗

P , it follows that it must converge to a limit. Since there

2Note that the same analysis can be conducted for (25).

is no fixed point other thanX∗
P in the range(0, X∗

P ], this
limit must beX∗

P .
• Case 2:X∗

P < XP (0) < 1. This case can be proved in
a similar manner. In fact (recall thatX∗

P is a fixed point
of (26)), it follows from Lemma 1 that: (1)XP (t) >
X∗

P , ∀t and (2)XP (0) ≥ XP (1) ≥ · · · ≥ XP (t − 1) ≥
XP (t) ≥ · · · , i.e., XP (t) is a non-increasing sequence.
SinceXP (t) is also bounded byX∗

P , it follows that it
must converge to a limit. Since there is no fixed point
other thanX∗

P in the range[X∗
P , 1), this limit must be

X∗
P .

Combining the above analysis, the replicator dynamics is
ensured to converge to the non-trivial fixed pointX∗

P for any
initial state0 < XP (0) < 1.

The above theorem essentially illustrates that with a con-
servative strategy (i.e., smallK), the replicator dynamics is
ensured to converge to the Wardrop equilibrium.

Remark. The above theorem establishes the sufficient con-
dition for the convergence of the replicator dynamics to the
unique non-trivial fixed point, which is also the Wardrop
equilibrium. It follows straightforwardly that under the same
condition, the equilibrium is also stable in that any deviated
point from it will be dragged back under the replicator
dynamics. In fact,X∗

P is an evolutionary stable equilibrium.
Meantime, it follows from the theorem that the two trivial fixed
points0 and1 are not stable, in the sense that any deviation
from them will drag the system toX∗

P .
It is also worth pointing out that Theorem 1 provides only

a sufficient condition for the convergence and may be too
stringent in some cases.

We further investigate the stability and the convergence
speed of the replicator dynamics in the following theorem,
following the guidelines of [36].

Theorem 2. Under the condition thatK(A− 1
B−1 ) < 1, the

non-trivial fixed pointX∗
P is exponentially stable under the

replicator dynamics depicted in(26), i.e., there exists0 ≤
k′ < 1 such that|X(t)−X∗

P | ≤ (k′)t|X(0)−X∗
P |.

Proof. We show that the replicator dynamicsXP (t) →
XP (t+ 1) in (26) is a contraction.

The contraction is defined as follows: let(X, d) be a metric
space,f : X → X is a contraction if there exists a constant
k′ ∈ [0, 1) such that∀x, y ∈ X , d(f(x), f(y)) ≤ k′d(x, y),
whered(x, y) = ||x− y|| = maxi ||xi − yi||.

To that end, note that:

d(f(x), f(y)) = ||f(x)−f(y)|| ≤

∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

∣

∣

∣

∣

·||x−y|| =

∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

∣

∣

∣

∣

d(x, y).

If the Jacobian

∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

∣

∣

∣

∣

≤ k
′, thenf is a contraction.

By some algebraic operations, we can bound the Jacobian as

||J ||∞ = max
XP (t)∈(0,1)

∣

∣

∣

∣

∂XP (t+ 1)

∂XP (t)

∣

∣

∣

∣

≤ 1−K(A−
1

B − 1
).

Hence, since the conditionK(A− 1
B−1

) < 1 holds, i.e.,||J ||∞ ≤

k′ , 1−K(A− 1
B−1

) < 1, X∗

P is exponentially stable wherek′ is
the exponential convergence speed.
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VIII. N UMERICAL RESULTS

In this section, we analyze and discuss the numerical results
obtained from solving our joint pricing and spectrum access
game model in different cognitive radio scenarios. More in
detail, we measure the sensitivity of the operators’ utilities
and prices, as well as users’ equilibrium flows and costs, to
different parameters like the total trafficλ accepted in the
network and the channel capacityC.

Before doing so, let us first consider an example of a
primary operator utility function (UP ). Figure 2 shows this
latter as a function of the pricep1 set by the Primary Operator
(the pricep2 has been fixed to the Nash equilibrium value),
with α = 1, C = 100 andλ = 10. By simply deriving and
using the second order derivative test, it can be proved that
the PO’s revenue has a global maximum, as illustrated in the
figure, since for smallp1 values the incoming primary traffic
is priced too low, resulting in a low PO revenue, while for
high p1 values few users choose the primary network, thus
diminishing its profitability.

A. Effect of the traffic accepted in the network (λ)

We first consider a CRN scenario with maximum channel
capacityC = 100 and total accepted trafficλ varying in the
[0, 100] range. The parameterα, which expresses the relative
importance of the experienced delay with respect to the access
cost, is set to 1, unless otherwise stated.

Figures 3(a) and 3(b) show the prices set at the Nash equi-
librium by the Primary (p1) and the Secondary operator (p2),
respectively, in the two considered scenarios (the PO and SO
play TOGETHER, the PO playsBEFOREthe SO, anticipating
the choices of this latter). The difference between the prices
set by the operators in these two scenarios can be better
appreciated in Figures 4(a) and 4(b) for the PO and SO,
respectively. All numerical results illustrated in Figures 3 and
4 are summarized in Table IV.

It can be observed (Figure 4(a)) that in theBEFORE
scenario, the PO sets a higher price than in theTOGETHER
scenario, until the network is overloaded (λ ≤ 80); above this
threshold, the price set by the PO in the former scenario is
lower than in the latter. As for the price set by the Secondary

0 0.5 1 1.5

x 10
−3

0

1

2

3

4

5

6
x 10

−3

p
1

U
P

Fig. 2. Primary Operator’s utility (UP ) as a function of the imposed pricep1
in the TOGETHERscenario. Pricep2 has been fixed to the Nash equilibrium
value.

operator (Figure 4(b)), it is always higher in theBEFOREthan
in the TOGETHERscenario, and such difference increases
consistently for increasingλ values. This is the reason why
the PO in theBEFOREscenario can lower his price while
still attracting the large majority of network users, as we will
show in the following.

The corresponding equilibrium traffic sent by primary (λP )
and secondary users (λS) is illustrated in Figures 5(a) and 5(b)
as a function ofλ, for both the considered scenarios.

We can observe that:
• The traffic accepted (and consequently, the overall frac-

tion of users) in the primary network,λP , always in-
creases with the offered traffic, until finally, whenλ → C,
all users choose the primary network. This is due to the
superior attractiveness of such network (in terms of the
delay experienced by users) with respect to the secondary
one, since resources are licensed to primary users and
SUs always observe a higher delay than PUs.

• Furthermore, concerningλP , in the BEFORE scenario
the PO admits (slightly) less traffic than the SO, when
λ < 80% of the total capacityC (Figure 5(a)); this is
due to the fact that the equilibrium pricep1 set by the PO
in such scenario is higher than in theTOGETHERcase
(see Figure 4(a)), which in turn makesλP decrease. In
the high traffic regime, the PO increasingly attracts more
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Fig. 3. (a) Equilibrium pricep1 set by the Primary operator and (b)
Equilibrium price p2 set by the Secondary operator, as a function of the
total trafficλ offered to the network for both theBEFOREandTOGETHER
scenarios.
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TABLE IV
EQUILIBRIUM PRICESp1 AND p2 SET BY THE PO/SO (AS WELL AS THEIR DIFFERENCE), FOR DIFFERENT VALUES OF THE TOTAL

TRAFFICλ OFFERED TO THE NETWORK FOR BOTH THEBEFOREAND TOGETHERSCENARIOS.

λ p1TOGETHER × 10−3 p1BEFORE × 10−3 p2TOGETHER × 10−3 p2BEFORE × 10−3 ∆p1 × 10−3 ∆p2 × 10−3

20 1.806 2.441 0.868 1.154 0.635 0.286
40 5.242 6.375 2.374 2.805 1.133 0.431
60 12.885 14.122 5.288 5.613 1.237 0.325
80 37.5 37.5 12.5 12.5 0 0
90 87.724 85.112 22.761 23.697 - 2.612 0.936
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Fig. 4. (a) Difference in the equilibrium pricesp1 set by the Primary
operator in theTOGETHERandBEFOREscenarios, and (b) difference in the
equilibrium pricesp2 set by the Secondary operator in the same scenarios.

traffic due to the significantly lower delay experienced
in the primary network, while the SO increasesp2 in an
effort to increase his utility in spite of the customer rush
towards the primary network (more specifically, fewer
clients choose the SO, who reacts by raising his access
price p2 in order to increase his revenue, reaction which
in turn accentuates this phenomenon).

• ConcerningλS , its derivative with respect toλ is al-
ways decreasing: it is increasingly less attractive to be
a secondary user than a primary one, since for increasing
λ values the delay tends to dominate in the total cost
perceived by the user.

We now focus our analysis on operators’ utility, which
we recall is defined as the product of the price set by the
operator and the total flow transmitted by users that choose
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Fig. 5. Equilibrium traffic sent by primary (λP ) and secondary users (λS )
as a function of the total traffic,λ, accepted in the network, for both the
TOGETHERandBEFOREscenarios.

such operator. Figures 6(a) and 6(b) show, respectively, the
difference in utilities for the Primary (∆UP ) and Secondary
operator (∆US) in the TOGETHERandBEFOREscenarios.

It can be observed that it is increasingly more convenient for
the PO to be a leader, anticipating the SO, and this is reflected
in the utility, which consistently grows for increasingλ values.
At the same time, for low and mediumλ values (λ < 0.8C),
even the SO obtains a higher utility in theBEFOREscenario.
This means that in such scenario, both operators achieve an
economic advantage at the expense of the total price paid by
cognitive radio users.

B. Effect of the channel capacity (C)

We now consider a variation of this network scenario,
doubling the channel capacityC to 200; the total traffic
admitted in the primary network is illustrated in Figure 7.
The trend is the same as already shown in Figure 5(a), and
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Fig. 6. (a) Difference in utilitiesUP of the Primary operator when he plays
BEFOREandTOGETHERwith the SO. (b) Difference in utilitiesUS of the
secondary operator in the same scenarios.

a similar behavior can be observed for the secondary traffic,
which is not reported for the sake of brevity.

On the other hand, Figure 8 shows the equilibrium traffic
sent by primary users as a function of the wireless channel
capacityC, with λ fixed to 100. It can be observed thatλP

tends toλ
2 (= 50 in this case) in theBEFOREscenario, and

to 2λ
3 (≈ 66.6) in theTOGETHERscenario3. This behavior is

3It suffices to compute the limit forC → ∞ of λP in expression (6),
substituting the equilibrium valuesp1, p2 for both the considered scenarios.
Note that such limit is independent ofα.
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Fig. 7. Equilibrium traffic sent by primary users (λP ) as a function of the total
traffic, λ, accepted in the network, for both theTOGETHERand BEFORE
scenarios. The total channel capacity isC = 200.

in line with what already observed in Figure 7, since whenλ
is consistently lower thanC, the Primary operator who plays
before the SO (BEFOREscenario) tends to admit less traffic
than this latter.

We further illustrate in Figure 9 the chosen price as well
as the utility perceived by the Primary operator, in both the
considered scenarios, for increasing values of the channel
capacityC and a total accepted trafficλ fixed to 100 (note that
the pricesp1 set by the PO, illustrated in Figure 9(a), almost
overlap in the two considered scenarios). A similar trend can
be observed for both the price and utility of the Secondary
operator (see Figure 10).

In summary, as the available capacity increases, operators
fix increasingly lower prices, achieving a lower total revenue.

The impact of C on the Price of Anarchy is further
investigated in the following subsection VIII-C.

C. Efficiency of the reached equilibria: Price of Anarchy
(PoA)

We now measure the efficiency of the equilibria reached by
the system. The Price of Anarchy (PoA), which in our game
coincides with the Price of Stability due to the uniqueness
of the equilibria reached by operators and users, is illustrated
in Figure 11 for both theTOGETHER(PoAT ) andBEFORE
scenarios (PoAB).

When both operators play together, the PoA is equal to 1
for both extreme cases (λ = 0 and λ = C). Furthermore, it
has a maximum equal to 1.0127 forλC = 2

3 , which means
that, in such scenario, the equilibrium reached by the system
is only ≈ 1.3% worse (in terms of the overall experienced
delay) with respect to the socially optimal solution. In the
BEFOREscenario, the PoA is also low, but the trend exhibited
by such performance figure differs from the previous scenario,
since the PoA tends to infinity forλ approaching the channel
capacityC. This is due to the fact that the total cost for users
at equilibrium increases significantly faster than the social
welfare, especially for highλ values.

As a consequence, such situation should be avoided by
market controllers either 1) by controlling the admitted traffic
λ, imposing that it does not exceed a predefined fraction of the
available channel capacity, or 2) by preventing theBEFORE
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Fig. 8. Equilibrium traffic sent by primary users (λP ) as a function of the
channel capacityC for both theTOGETHERand BEFOREscenarios. The
total traffic offered to the network,λ, is fixed and equal to 100.
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Fig. 9. (a) Primary operator’s pricep1 and (b) utilityUP as a function of the
channel capacityC for both theTOGETHERand BEFOREscenarios. The
total traffic offered to the network,λ, is fixed and equal to 100. Note that
pricesp1 practically overlap in the two considered scenarios.

scenario to occur, imposing antitrust policies to limit dominant
position abuse.

Figure 12 further reports the PoA as a function of the
channel capacityC for both the considered scenarios;λ
is fixed and equal to 100. It is not surprising that both
curves decrease rapidly withC, since, as already observed in
Figure 11, whenλ is consistently lower thanC, thePoA → 1
in both scenarios.

In summary, we can conclude that, apart from the limiting
case illustrated before for very high traffic loads, the quality
of the reached equilibria is indeed excellent: when the system
is loaded at less than 95%, which is a reasonable operating
region, the PoA is always less than 1.1, which means a loss
of efficiency of 10% with respect to the social optimum. The
system hence converges to a stable state which is globally very
efficient.

D. Replicator Dynamics for the Network Selection Game

We now analyze the convergence of the proposed replicator
dynamics, fixingλ = 30 andC = 100. Figure 13 illustrates
such convergence (expressed in steps needed in the replicator
dynamics) of network users to a stationary solution, for
different values of the parameterK in equation (24), namely
1, 5 and 10. More specifically, the figure reports the fraction
XP of users that choose the primary network. We consider
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Fig. 10. (a) Secondary operator’s pricep2 and (b) utility US as a function
of the channel capacityC for both theTOGETHERandBEFOREscenarios.
The total traffic offered to the network,λ, is fixed and equal to 100.
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Fig. 11. The Price of Anarchy as a function of the total trafficoffered to
the network,λ, in both theTOGETHER(PoAT ) and BEFORE (PoAB )
scenarios.

both cases where the initial fraction of such users is close to
zero (Figure 13(a)) and one (Figure 13(b)).

Note that the speed of convergence to the unique stable
equilibrium point of the dynamics (X∗

P ≈ 0.68, in such
scenario) increases for increasingK values. Furthermore,
whenp1 andp2 are equilibrium price values, we observe that
the convergence conditions demonstrated in Theorems 1 and 2
for our proposed replicator dynamics (see the previous section)
are always satisfied.
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traffic offered to the network,λ, is fixed and equal to 100.
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Fig. 13. Convergence of Primary Users to the stationary point (X∗

P ≈ 0.68).
The initial point is (a)lower or (b) higher than the equilibrium.

IX. CONCLUSION

In this paper, we tackled a fundamental problem related
to Cognitive Radio Networks, i.e., the joint pricing and
Primary/Secondary network selection process. More specif-
ically, we considered a CRN scenario which is composed
of primary/secondary networks and a set of Cognitive Radio
users who must decide whether to subscribe to the primary
network for guaranteed bandwidth or to access the secondary
network, paying a lower price at the expense of possible
service degradation (in terms of experienced delay and con-
gestion). At the same time, we studied the pricing game

between the Primary and Secondary operators, considering
two practical cases where such operators fix their access price
simultaneously, and where the PO anticipates the SO strategy,
exploiting his dominant position.

We computed optimal, stable pricing values and network
selection settings; furthermore, we studied network users’ dy-
namics using a population game model, and we determined its
convergence properties under replicator dynamics. Numerical
results demonstrate that our game model captures the main
factors behind cognitive network pricing and access network
selection, thus representing a promising framework for the
design and understanding of cognitive radio systems.

A key finding of the present study is that the advantage for
the PO to play before the SO can be significant, especially in
a high traffic regime; this has an adverse impact on customers’
choices, since in such situation the equilibria reached by
cognitive radio users drift away from the social optimum, and
the Price of Anarchy tends to infinity. It is therefore important
(e.g., for government, regulation authorities), to implement
actions that prevent or limit such dominant position abuse,
if possible.

Apart from this limiting case, which occurs exclusively for
very high traffic regimes, we observe that the quality of the
reached equilibria is excellent: when the system is loaded at
less than 95%, which seems a reasonable operating region, the
PoA is always less than 1.1 (regardless of the order in which
operators fix their price), which means a loss of efficiency of
10% with respect to the social optimum. Hence, the system is
guaranteed to converge to a stable state which is very efficient
from a social point of view.
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