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Abstract

Information Centric Networking (ICN) is a novel paradigm that aims at improving the performance of

today’s Internet by supporting caching and multicast content delivery on every network device. The main

contribution of this work is to propose a centralized strategy to stimulate third parties to jointly lease the

unused bandwidth and storage available on wireless access points in an ICN. We formulate this problem

as a combinatorial reverse auction run by a content provider willing to increase the number of users

reached by his service. We show that the optimal allocation with partial coverage problem is NP-hard,

we then provide greedy heuristics that guarantee the individual rationality and truthfulness properties, and

compare their performance numerically. We evaluate the benefits of our proposed mechanisms in terms

of the cost savings for the content provider obtained by offloading his infrastructure through the caches,

and the reduced computational time to execute the allocation algorithms. We compare the results obtained

in this centralized setting, with those that can be observed when the mobile clients autonomously choose

which access point they prefer to use, among those activated by the auction mechanism. We model this

second scenario as a congestion game, showing that it exhibits desired properties (i.e., existence and

uniqueness of a Nash Equilibrium), and comparing its social welfare with the centralized case.
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I. INTRODUCTION

The way customers use Internet nowadays has radically changed with respect to the original design

goals that had driven the development of the TCP/IP protocol stack [1]. As a matter of fact, although

Internet was initially conceived as a means to establish a point-to-point communication between a client

machine and a remote server, it is currently used mostly as a content distribution infrastructure [2].

In order to better handle this usage shift, new Information Centric Networking (ICN) design proposals

for the Future Internet are recently gaining momentum. These designs have specifically been formulated

to create new protocols centered around the concept of what the user is willing to retrieve, rather than

where the data can be found. In fact, their distinctive characteristic is that they replace at the packet level

the source and destination addresses with content names. Routing and forwarding are thus performed

according to the name of the data that has to be delivered [3].

In this paper we analyze a relevant scenario where the content provider has the simultaneous objectives

of (1) extending his mobile customer base by offering the users an ubiquitous access to the provided

content and (2) performing server offloading by exploiting the built-in caching features of ICNs.

Since the content provider should not bear the costs of the realization of a new access network, we

propose the creation of a marketplace where third party access point owners offer their unexploited

bandwidth and storage resources in exchange for economic incentives for their cooperation. However,

misbehaving access point owners may jeopardize the efficiency of the allocation mechanism by choosing

strategically to declare false valuations for the offered resources. In order to solve this issue, auction

theory provides insights for the design of tamper-proof centralized allocation mechanisms characterized

by the fact that the dominant strategy of every bidder is to declare the real valuation for the provided

resources.

The solution obtained with the reverse auction selects (1) which access points should be activated,

(2) how much the content provider should remunerate the selected access point owners and (3) it returns

the centralized solution of the mobile clients allocation to the activated access points. However, in more

realistic scenarios, mobile clients are free to choose which access point their prefer to connect to, and

therefore their local choice may be different than the one selected by the centralized algorithm. For this

reason, we complement our work by studying also the distributed mobile clients allocation problem to

the activated access points, and compare the outcome of this scenario with respect to the optimal one

selected by the centralized mechanism. Therefore, we can numerically quantify how much the distributed

selection of access points deviates from the centralized and ideal solution.
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In our vision, the user buys a digital content, and the content provider offers the connectivity to retrieve

the corresponding data. As an example, we believe that this “wireless shopping” business model can be

effectively applied to online content stores such as e-book libraries, music and video streaming services,

online magazines and newspapers as well as application stores. Some steps towards this direction have

been done by Amazon, which is providing to Kindle users the “Free 3G” mobile broadband connection

service to wirelessly browse the store, purchase and download the content [4].

The contributions of this paper are summarized as follows:

1) We design an optimal mechanism that can be used to motivate access point owners to jointly

lease their unused bandwidth capacities and cache storage, in exchange for economic incentives.

The mechanism is a reverse auction that guarantees both the individual rationality and truthfulness

properties, under partial coverage constraints for the mobile clients, while forcing the access point

owners to declare their real valuations for the provided resources.

2) We show that the proposed optimization problem is NP-hard. In order to cope with the computational

complexity, we then provide three variants of a greedy algorithm that can be used to obtain a close

to optimal solution in polynomial time, while still guaranteeing the truthfulness and individual

rationality properties.

3) To further complement the previous results, while still considering the same network architecture,

we take into account the case where the mobile clients autonomously connect to the activated access

points, modeling their behavior as a congestion game. We prove the game is weighted potential and

that the Nash Equilibrium is unique; moreover we provide a lower bound on the Price of Anarchy.

4) We provide performance comparisons of the proposed strategies. We show that all the variants of

the greedy algorithm outperform the optimal one in terms of execution time. However, this comes

at the cost of a reduced profit for the provider, due to the sub-optimality property of the solution

computed by such greedy algorithms. Furthermore, we also compute the social welfare loss, from

the optimal centralized case, with respect to the distributed scenario, where the clients autonomously

connect to the access points.

This paper is structured as follows: Sec. II describes the network architecture and motivates our

proposal. Sec. III formulates the optimal combinatorial reverse auction as an optimization model, while

Sec. IV proposes three greedy algorithms to solve the allocation problem in polynomial time. The mobile

clients’ allocation problem is described in Sec. V, and extends the analysis performed in the previous

sections by considering the distributed clients allocation to the available access points. Numerical results
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Figure 1. Network architecture. A single content provider (CP) is considered in our design. Access points (APs) are equipped

with caching storage. Mobile clients (MCs) connect to a subset of the available APs. The demand of a MC will be satisfied

either by cached content, or by retrieving the data directly from the servers of the CP using the available backhaul Internet

connection. Our mechanism determines the MCs to APs allocation that minimizes the total cost.

are discussed in Sec. VI, while in Sec. VII we survey related work. Finally, concluding remarks are

presented in Sec. VIII.

II. SYSTEM MODEL

In this section we illustrate the principles, definitions and assumptions characterizing the communication

network of our scenario. Sec. II-A describes the network architecture and discusses the benefits provided

by our allocation algorithm to the content provider, while Sec. II-B clarifies the structure of the economic

incentives to the access point owners and explains the properties enforced by the auction mechanism.

A. Advantages for the Content Provider

A graphical representation of the system model we consider in this paper is shown in Fig. 1. A single

content provider (CP) wants to lease a set of wireless access points (APs) in order to increase his customer

base by providing an ubiquitous content delivery service to mobile clients (MCs).

The core business of the provider is to distribute contents that will be accessed by the customers under

payment of a fee. The hardware infrastructure owned by the CP does not comprise the radio access
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network, since it is beyond the scope of the service it provides; however, we assume that the CP owns

a set of content distribution servers reachable through any Internet connection.

Raising the number of customers reached by the service jointly increases the remuneration of the CP

as well as the operational costs (OPEX) due to the increased load of the computational infrastructure.

An interesting feature offered by ICN that can mitigate the effects of this trade-off is universal caching:

each AP is equipped with a variable quantity of storage that is used to memorize content previously

forwarded to the destinations. For this reason, we propose that the operator leases not only the radio

access and backhaul connection capacities, but also portions of the caches available at the access points. By

exploiting the caching feature of ICN we make the content move across the network towards the locations

where most of the users are requesting it. In our system model the backhaul Internet connection of each

access point can be provided by any ISP; as a matter of fact, it will be the access point owner to choose

to participate to our proposed bandwidth and cache sharing mechanism, in a way that is independent

from the particular ISP used.

B. Economic Incentives to the Access Point Owners

Access point owners can participate to the bandwidth allocation phase by submitting to the CP the

bid [bj , sj ], where bj is the price at which the j-th AP agrees to jointly share the unexploited backhaul and

wireless bandwidth, as well as a quantity sj of cache. Our mechanism can also be applied in the scenario

where Internet Service Providers actively participate to the mechanism by providing WiFi connectivity

and storage; in this case, like AP owners, ISPs will submit their bids (i.e.: [bj , sj ]). As commonly assumed

in the literature (e.g., [5], [6]), in our case the real valuation vj of each owner is kept hidden; thus, in

the most general case, vj 6= bj .

Let pj ∈ R
+ be the price paid by the CP to lease the j-th AP. The utility function of the AP owner

is such that:

uj =











pj − vj if AP j is selected

0 otherwise.

(1)

We say that individual rationality holds if the utility of each player is always non-negative: ∀j ∈ A, uj ≥ 0.

When the access point is not selected, the owner’s utility is null since he does not incur additional costs

given by incoming traffic and, at the same time, he does not receive any economic incentive. Meanwhile,

a rational player will choose to play only if pj ≥ vj and thus uj ≥ 0.

When the CP has collected all the sealed bids of the APs, he will select a set of access points that
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should be rewarded, with the aim to maximize his overall revenue. In particular, by serving the traffic

demand di of a mobile client i ∈ M, the operator will obtain a profit P per unit of bandwidth. Moreover,

a cost C, proportional to the requests that will generate a cache miss at the access points, must also

be considered, to account for the charges experienced by the CP to serve the incoming requests with

his infrastructure. Thus, we would like to design a two step mechanism that 1) chooses which wireless

access points should be selected among those that participated to the allocation, and 2) computes the

rewards paid to the corresponding winners, in such a way that every user is forced to declare a price

equal to the true valuation of his offer.

We make the assumption that each access point is directly connected to a backhaul Internet connection,

whose capacity is known to the operator. We also assume that it is very unlikely that the AP owner declares

a false quantity of available cache storage, since this misbehavior can be easily detected and punished by

the content provider. Notwithstanding, the mechanism needs to force the AP owners to declare their real

valuations, since they may be tempted to lie in order to increase their utilities by behaving strategically.

III. OPTIMAL ALLOCATION AND PAYMENT SCHEME

This section illustrates the optimal mobile clients allocation and access point payment algorithm. We

will derive the optimal allocation rule in terms of: 1) the prices paid by the content provider (CP) to

remunerate the selected access point owners, 2) the operational cost (OPEX) faced by the CP due to the

load on his computational infrastructure, and 3) a traffic-proportional profit that the CP experiences for

serving the clients’ requests. The notation used in this paper is summarized in Table I.

We denote with M the set of mobile clients (MCs), while A is the set of access points (APs).

Each MC i ∈ M generates a traffic demand di that might be satisfied by at most one AP j ∈ A.

Due to locality constraints, the APs have a limited maximum coverage radius, that we denote with Lj

for AP j. Let li,j be the distance between MC i and AP j, and let ri,j be the maximum rate of MC i

when connected to AP j. If MC i is beyond the range of AP j, the corresponding rate will be null:

ri,j = 0, ∀i ∈ M, j ∈ A | li,j > Lj . For the sake of simplicity, hereafter we assume that the rate ri,j

refers only to the maximum possible rate between MC i, and AP j, regardless of the other MCs served

by AP j. In Sec. V we extend this result by studying the behavior of the mobile clients with respect to

the congestion they experience by connecting to the AP j.

In order to participate to the auction, AP owners are required to declare sj , the amount of storage

they will offer for caching purposes. This quantity will be used by the content provider (CP) in order to

compute the average cache hit rate for AP j, denoted by hj . If hj = 0 this means that AP j does not
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Table I

SUMMARY OF THE NOTATION USED IN THIS PAPER.

Parameters of the ILP model

M Set of mobile clients

A Set of access points

bj Bid of AP j

sj Storage space for caching offered by AP j

hj Average hit-rate for AP j

Rj Backhaul bandwidth available at AP j

Lj Maximum coverage radius of AP j

li,j Distance between MC i and AP j

ri,j Maximum Wi-Fi rate of the MC i when it is connected to AP j from distance li,j
qi,j Connectivity matrix for MC i and AP j. qi,j = 1 ⇐⇒ ri,j > 0, otherwise qi,j = 0

di Traffic demand of MC i

C Cache miss cost per unit of bandwidth, paid by the CP

P Average profit that a unit of bandwidth generates for the CP

Variables of the ILP Model

xi,j Binary variable that indicates whether MC i is assigned to AP j

yj Binary variable that indicates whether AP j is selected or not

Parameters of the Auction

vj Private valuation of AP j

pj Actual price paid by the CP to the j-th AP owner

uj Utility function of the j-th AP owner

cache any object.

Cache misses increase the load on the computational infrastructure of the CP. We denote with C

the cost per unit of bandwidth due to cache misses, while P is the profit that the CP will experience

for serving one unit of bandwidth of users’ requests. Lastly, let Rj be the bandwidth of the backhaul

connection available at AP j.

Our formulation admits partial coverage, that is, the optimal solution may not serve all the avail-

able MCs since, in some cases, this may not be the best choice for the CP. The binary variable xi,j ∈ {0, 1}

is used to represent the assignment between MC i and AP j, and is such that:

xi,j =











1, if MC i is assigned to AP j

0, otherwise.

(2)
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Furthermore, we denote with the binary variable yj the set of APs selected by the auction:

yj =











1, if AP j is selected by the auction

0, otherwise.

(3)

Given the above definitions and assumptions, the mobile clients allocation problem (MCAP) can be

formulated as follows:

max P
∑

i∈M

∑

j∈A

xi,jdi −
∑

j∈A

yjbj −
∑

i∈M

∑

j∈A

xi,jdi(1− hj)C (4)

s.t.

∑

j∈A

xi,j ≤ 1 ∀i ∈ M (5)

∑

i∈M

dixi,j
ri,j

≤ 1 ∀j ∈ A (6)

∑

i∈M

dixi,j(1− hj) ≤ Rj ∀j ∈ A (7)

xi,j ≤ yj ∀i ∈ M, j ∈ A (8)

xi,j ∈ {0, 1} ∀i ∈ M, j ∈ A (9)

yj ∈ {0, 1} ∀j ∈ A. (10)

The objective function (4) maximizes the total revenue of the content provider, which is given by: I) the

traffic-proportional profit the CP is going to obtain for serving MCs’ demand: P
∑

i∈M

∑

j∈A

xi,jdi; II) the

incentives paid to remunerate the selected access points for their storage and access bandwidth:
∑

j∈A

yjbj ;

and III) the infrastructure costs caused by cache misses:
∑

i∈M

∑

j∈A

xi,jdi(1− hj)C.

It is important to note that, as in the standard Vickrey auction [7], we optimize with respect to the user’s

provided bids bj rather than the actual price paid to the AP owners. In fact, prices will be determined as

a second stage, only after having selected the most promising APs. On top of that, the pricing rule that

we are going to use, is such that the truthfulness property is guaranteed.

In (5) we express the set of coverage constraints, which force every mobile client to be assigned to at

most one access point. Coverage is partial, because there might be cases where it is better not to serve

some MCs’ since it is not economically viable for the CP (e.g., if there is a single and very expensive AP).

Constraints (6) and (7) limit the number of MCs assigned to each AP, given that the radio access
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Algorithm 1: Optimal and Truthful Reverse Auction

Input : M,A,b, s,d, r,h,R, C, P
Output: y,p,x

1 (yj , xij) ⇐ Solve the ILP model ;

foreach j ∈ A : yj = 1 do

2 (y
′

j , x
′

ij) ⇐ Solve the ILP model without AP j ;

3 pj ⇐
∑

i∈M

∑

n∈A

(

xi,n − x
′

i,n

)

di [P − C (1− hn)]−
∑

n∈A
n6=j

(

yn − y
′

n

)

bn;

end

network and the backhaul Internet connection have a bounded capacity. Constraints (6) impose that the

total demand served by an AP does not exceed the capacity of the radio access network; in particular

the i-th MC expresses a traffic demand di and is served at a rate ri,j when connecting to AP j, thus

consuming a fraction di

ri,j
of the available wireless resources. On the other hand, constraints (7) consider

the fact that the backhaul Internet connection serves only the aggregate demand that generates a cache

miss (i.e., the portion of the MC demand that must be directly served by the CP’s servers).

Constraints (8) make sure that MCs can associate only to the APs selected by the mechanism. Finally,

the sets of constraints (9) and (10) express the integrality conditions on the decision variables.

After having defined the ILP model used to solve MCAP, we now illustrate the algorithm that forces

the AP owners to bid their real valuations. Algorithm 1 formalizes the steps that the auctioneer should

follow in order to determine the APs that should be selected as well as their payments for the provided

resources. It returns the list of selected APs y, the assignment matrix of MCs to APs x and the

corresponding payments p.

The algorithm proceeds in three steps. In Step 1, the ILP model (4)-(10) is solved and the max-

imum revenue allocation (yj , xi,j) is computed. In Step 2, the solution of the ILP model without

the j-th AP is determined, in other terms, the algorithm solves again the ILP model (4)-(10) with

the additional constraint yj = 0. Finally, Step 3 computes the optimal price for the j-th AP according

to the Vickrey-Clarke-Groves mechanism with Clarke pivot rule [7]. The optimal price represents the

“opportunity cost” that the presence of the j-th AP causes to the other bidders.

Hereafter we show that the MCAP problem is NP-hard, by a polynomial time reduction of the Knapsack

Problem (KP) to the ILP model (4)-(10).

Theorem 1. Complexity of the MCAP problem. The MCAP problem is NP-hard.

Proof. In order to prove the theorem we polynomial-time reduce the NP-hard Knapsack Problem (KP) [8]
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to MCAP.

Let I be a set of items of cardinality n = |I|; for each item i ∈ I, let vi be the value of the item and

wi be its weight. Moreover, the binary variable xi ∈ {0, 1} is set to 1 if item i ∈ I belongs to the subset

I ⊆ I, and 0 otherwise. The knapsack problem is to select a subset of items I ⊆ I, such that their total

value
∑

i∈I

xivi is maximized, and their total weight is bounded by W , that is
∑

i∈I

xiwi ≤ W .

We show that every instance of the knapsack problem can be reduced in polynomial time to an

instance of the mobile clients allocation problem (MCAP), as follows. First of all, we set |A| = 1,

whereas |M| = n. Furthermore, we force h1 = 1, b1 = 0, di =
vi

P and ri,1 = viW
Pwi

. The constructed

MCAP problem is as follows:

max P
∑

i∈M

∑

j∈A

xi,j
vi
P

−
∑

j∈A

yj0−
∑

i∈M

∑

j∈A

xi,jdi(1− 1)C (11)

s.t.

xi,1 ≤ 1 ∀i ∈ M (12)

∑

i∈M

vi

P xi,1
viW
Pwi

≤ 1 (13)

∑

i∈M

dixi,1(1− 1) ≤ R1 (14)

xi,1 ≤ y1 ∀i ∈ M (15)

xi,j ∈ {0, 1} ∀i ∈ M, j ∈ A (16)

yj ∈ {0, 1} ∀j ∈ A. (17)

The constructed instance of MCAP is equivalent to the original instance of KP, and one such construc-

tion is done in polynomial-time. Therefore, MCAP is NP-hard.

While the standard VCG scheme is known to enforce truthfulness and individual rationality, it is defined

with respect to the objective function that considers the total valuation of the players, which is given by
∑

j∈A

yjbj . On the other hand, the MCAP objective function (4) jointly considers 1) P
∑

i∈M

∑

j∈A

xi,jdi, the

content provider’s profit; 2)
∑

j∈A

yjbj , the valuation of the players, and 3)
∑

i∈M

∑

j∈A

xi,jdi(1− hj)C, the

effect of content caching.

Since the objective function we take into account is not the standard used in the VCG scheme, hereafter

we prove that our mechanism jointly enforces the individual rationality and truthfulness properties.
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Theorem 2. Individual Rationality. The payment rule satisfies the individual rationality property, i.e.:

∀j ∈ A | uj ≥ 0. (18)

Proof. Given the utility function we consider, the AP owners selected by the mechanism have a util-

ity uj = pj − vj , whereas the others experience a zero utility. Let SW (yj , xi,j) denote the value of

the social welfare (i.e.: the objective function (4)). Our payment rule for the selected APs ensures

that pj = SW (yj , xi,j)− SW (y
′

j , x
′

i,j) + bj . Therefore, when the AP owner declares his valuation truth-

fully, that is bj = vj , the utility will be non-negative uj ≥ 0, since SW (yj , xi,j) ≥ SW (y
′

j , x
′

i,j).

Theorem 3. Truthfulness. The payment rule ensures the truthfulness property, that is, a dominant strategy

for all the players is to declare bj = vj .

Proof. Let (x, y) and (x̂, ŷ) be the solutions of MCAP (4)-(10), when the AP owner declares bj = vj

and b̂j , bj 6= b̂j , respectively. Moreover, let (x−j , y−j) be the solution of (4)-(10) without considering

the AP j. The utility of j when it declares bj = vj is equal to:

u(bj) =
∑

i∈M

∑

n∈A

x−j
i,ndi [C (1− hn)− P ] +

∑

n∈A
n6=j

y−j
n bn+

+
∑

i∈M

∑

n∈A

xi,ndi [P − C (1− hn)]−
∑

n∈A

ynbn, (19)

While, when it declares b̂j 6= vj it has a utility equal to:

u(b̂j) =
∑

i∈M

∑

n∈A

x−j
i,ndi [C (1− hn)− P ] +

∑

n∈A
n6=j

y−j
n bn+

+
∑

i∈M

∑

n∈A

x̂i,ndi [P − C (1− hn)]−
∑

n∈A

ŷnbn + ŷnvj − vj . (20)

Given the objective function of MCAP, (x, y) is the solution that maximizes (4), that is (x, y) =

argmax
∑

i∈M

∑

n∈A

xi,ndi [P − C (1− hn)] −
∑

n∈A

ynbn. Moreover vj − ŷnvj ≥ 0, in fact ŷn ∈ {0, 1}.

Therefore, since:

u(bj)− u(b̂j) =
∑

i∈M

∑

n∈A

xi,ndi [P − C (1− hn)]−
∑

n∈A

ynbn−

−

{

∑

i∈M

∑

n∈A

x̂i,ndi [P − C (1− hn)]−
∑

n∈A

ŷnbn

}

+ vj − ŷnvj , (21)

we have that u(bj)− u(b̂j) ≥ 0.
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Discussion

To keep the presentation of this work as simple as possible, in our proposed formulation (4)-(10), the

time dimension is not considered. We would like to remark the fact that it is however possible to add

also this component to both the optimal allocation and payment scheme, as well as our proposed greedy

algorithms, while preserving the individual rationality and truthfulness properties.

Since our proposed formulation fosters the partial coverage of nodes, the value of the profit parameter P

has a remarkable impact on the solution of the allocation scheme. As a matter of fact, by setting P very

small, the optimal solution for the CP will be to serve no clients at all. On the other hand, if P is set large

enough, the solution will serve all the clients’ demands, given the available capacity of the networking

infrastructure. The following proposition establishes exactly this trade-off.

Proposition 1. Using the objective function (4), the model associates the highest possible number of MCs

if P satisfies:

P > max
j∈A

bj + Cmax
i∈M

di. (22)

Proof. We show that the proposition holds, by considering the worst case: a scenario where the most

expensive AP is selected, even though it does not provide any storage.

Let j ∈ A be the access point that made the highest possible bid, and let hj = 0 be the cache hit-rate

that we get at AP j. Let i ∈ M be the mobile client that generates the highest traffic demand among

all the others (i.e., argmax
i∈M

di). In the most expensive case, the CP activates j only to serve the demand

of i incurring a cost Cmax = max
j∈A

bj + Cmax
i∈M

di. Thus, by setting P > Cmax we ensure that if the

network has enough spare capacity, the optimal allocation rule will serve this request, since this choice

will certainly lead to an improvement in the value of the objective function.

Despite its high computational cost, the VCG mechanism, which we extend in this paper, assures

truthfulness, individual rationality, and social welfare maximization, which are three essential economic

properties in the design of robust auctions.

Truthfulness guarantees that the dominant strategy for any bidder is to declare its private valuation vj for

its storage space and access capacity. Therefore, the content provider can be sure of renting the cheapest

APs among those that participate to the reverse auction. In contrast, in untruthful auctions bidders can

manipulate the market in order to obtain higher outcomes at the expense of the content provider and

other honest bidders, which might be excluded by the set of winners.
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Individual rationality guarantees non-negative utilities for bidders that bid truthfully. Specifically, any

AP owner that is selected by the content provider to store a portion of its data receives an amount of

money at least equal to its bid, whereas any AP owner who loses the auction does not pay anything

to the content provider. This property provides an incentive to participate to the reverse auction, thus

maximizing the number of possible bidders.

In any auction design, the central technical problem lies in satisfying the social-efficiency, truthfulness

and complexity. It is widely regarded that these properties cannot be achieved simultaneously. VCG, for

example, ensures social-efficiency and truthfulness but at the price of exponential complexity. Other non-

VCG truthful auctions (if there exists any, of which we are not aware), may ensure truthfulness but sacrifice

social-efficiency or involve exponential computational complexity (unless we take into account stochastic

auctions). Motivated by this observation, a challenging problem in auction design, as addressed in our

work, is thus how to ensure truthfulness with reasonable social efficiency and complexity. Meanwhile,

the designed auction mechanism should also integrate specific constraints posed by the target applications

(e.g., spectrum reuse in spectrum auction design, joint band and cache leasing in our problem).

In our reverse auction settings, social welfare maximization guarantees to select the cheapest APs as

winners and to minimize the content provider expenses given that all bidders bid truthfully. The overall

expenses of the content provider can eventually be higher than the social welfare, since a portion of

the social welfare is used as an incentive for the participation of bidders by implementing an individual

rational reverse auction. Note however that, according to the revenue equivalence principle, first and

second price auction yield the same expenses in expectation.

In fact, the revenue equivalence principle states that for any two Bayesian-Nash incentive compatible

(BNIC) mechanisms, implementing the same social choice function, where the valuation of the players

is drawn from a convex (or path-connected) set, if the expected payment of player i (averaged on all

the private valuations of the other players) is the same for both mechanisms, then it is the same for

every private valuation of the players [7]. Thus, for any Bayesian-Nash incentive compatible (truthful)

mechanisms, the expected revenue will be the same, forcing to change the social choice function to

eventually reduce the overall expected “cost” perceived by the auctioneer.

IV. GREEDY ALGORITHMS

The computational complexity of the MCAP problem is such that, as the number of MCs |M|

and APs |A| increases, the completion time of the optimal allocation (i.e., Algorithm 1) raises exponen-

tially. In order to find an allocation strategy that can effectively scale up to large network instances, this
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Algorithm 2: Greedy Cache and Bandwidth Auction

Input : M,A,b, s,d, r,h,R, C, P
Output: y,p,x

1 (y,x, c) ⇐ Greedy Allocation(M,A, bj , sj , di, rij , hj , Rj , C, P );

foreach j ∈ A : yj = 1 do

2 pj ⇐
bc

|Mc|
|Mj | ;

end

Algorithm 3: Greedy Allocation (Step 1 of Alg. 2)

Input : M,A,b, s,d, r,h,R, C, P
Output: y,x, c

1 A ⇐ {j ∈ A : P − C (1− hj) ≥ 0} ;

2 L ⇐ Sort
(

j ∈ A,
bj

|Mj |
, “non-decreasing”

)

;

while ∃i ∈ M :
∑

j∈A

xi,j < 1 do

j ⇐ Next(L); yj ⇐ 1;

3 Vj ⇐ Sort
(

k ∈ Mj ,
dk

rkj
, “non-decreasing”

)

;

foreach k ∈ Vj do

xkj ⇐ 1;

4 if ¬Is Feasible Solution(M,A,x,y,b, s,d, r,h,R, j) then xkj ⇐ 0 ;

end

end

5 c ⇐ Next(L) ;

6 foreach j ∈ Reverse(L) do

if
∑

i∈M

xij = 0 then yj ⇐ 0 ; c ⇐ j ;

else break;

end

section provides a computationally efficient, polynomial-time algorithm with three alternative strategies,

that still guarantees truthfulness and individual rationality. We begin by describing the greedy MC

alternative, while we will talk about the other greedy strategies at the end of the section.

Let kj = bj
|Mj |

be the ratio between the bid of the j-th AP (bj) and the number of MCs that it

can potentially serve, |Mj |, given the radio access coverage constraints only. The quantity kj can be

interpreted as the price per mobile client that should be paid to the j-th AP if it served all the MCs in its

range. Let c be the index of the critical access point, which is defined as the first AP that has not been

selected by the mechanism. The input values shared by the algorithms (i.e., M,A,b, s,d, r,h,R, C, P ),

are the same parameters we used to characterize the optimal allocation problem as in Table I.

In the same way as in the optimal auction, the greedy algorithm (Algorithm 2) is characterized by the

following two phases: 1) the allocation phase, which selects the APs characterized by the lowest kj =
bj

|Mj |
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Algorithm 4: Is Feasible Solution (Step 4 of Alg. 3)

Input : M,A,x,y,b, s,d, r,h,R, j
Output: c

1 c1 ⇐
∑

∀j∈A

xi,j ≤ 1 ;

2 c2 ⇐
∑

∀i∈M

dixi,j

ri,j
≤ 1 ;

3 c3 ⇐
∑

∀i∈M

dixi,j(1− hj) ≤ Rj ;

c ⇐ c1 ∧ c2 ∧ c3;

until the demands of MCs are satisfied (Step 1, Alg. 2) , and 2) the payment phase, which determines

the price paid to the selected APs, given the characteristics of the critical access point c (Step 2, Alg. 2).

The greedy allocation of MCs to APs, as well as the identification of the critical access point c,

are performed by Algorithm 3. The allocation procedure (Alg. 3) starts by removing the non-profitable

APs (Step 1), and sorts the APs in non-decreasing order according to the corresponding kj values (Step 2).

This is done with the aim of selecting the “most promising” APs in terms of the declared price per number

of reachable mobile clients. We then iteratively allocate to the APs the largest number of unassigned

mobile clients by choosing those which have lower capacity demand di

rij
(Step 3), while still preserving

the feasibility of the solution (Step 4). Before completing the execution of Alg. 3, in Steps 5 and 6 we

set the value of the critical access point, which is the first AP that has not been allocated any MC by

the algorithm (the first looser).

Finally, Algorithm 4 checks if the solution is feasible, by determining whether the constraints of

the ILP model hold. In detail, Alg. 4 checks in Step 1 if each MC is assigned to at most one AP, as

imposed by constraints (5); Step 2 checks whether the available Wi-Fi bandwidth is not saturated, as

in constraints (6), and lastly Step 3 checks if the backhaul connection can accommodate the allocated

traffic, as in constraints (7).

Alg. 2 implements a truthful auction since 1) the allocation phase respects the monotonicity property

as the APs are sorted in non-increasing order of their bids per number of covered mobile customers, and

2) there exists a critical value which determines whether the AP has been selected or not. As demonstrated

in [7] the previous two conditions ensure the truthfulness of the greedy algorithm.

By jointly substituting Step 2 of Alg. 2 and Step 2 of Alg. 3, as detailed in Table II, we can change

the optimization strategy of the greedy algorithm; in particular, we propose the following three variants:

1) Greedy MC (G.m.);

2) Greedy cache (G.c.);
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Table II

SUMMARY OF THE 3 PROPOSED VARIANTS FOR THE GREEDY ALGORITHM

Greedy

Variant
Step 2, Alg. 2 Step 2, Alg. 3

MC

(G.m.)
pj ⇐

bc
|Mc|

|Mj | L ⇐ Sort
(

j ∈ A, bj
|Mj |

, “non-decr”
)

Cache

(G.c.)
pj ⇐

bc
hc
hj L ⇐ Sort

(

j ∈ A, bj
hj
, “non-decr”

)

Backhaul

(G.b.)
pj ⇐

bc
Rc

Rj L ⇐ Sort
(

j ∈ A, bj
Rj

, “non-decr”
)

3) Greedy backhaul (G.b.).

As discussed previously, the greedy MC (G.m.) alternative gives higher priority to the APs that can

potentially serve more MCs, due to their space location. On the other hand, the greedy cache (G.c.)

selects the APs that are leasing larger caching storage; lastly, the greedy backhaul (G.b.) chooses the APs

with a faster backhaul Internet connection. Table II summarizes these three variants, which will be

compared numerically in Sec. VI. Finally, we observe that all the variants we propose do not modify the

monotonicity property of the allocation phase; therefore, it is straightforward to show that truthfulness

and individual rationality still hold.

A. Greedy Algorithm Analysis

In this section we analyze the greedy algorithm: we discuss its computational complexity, then we

compare its efficiency with the optimum, in terms of both Social Welfare maximization and auction

payments. In particular, we show that under the same conditions that make the greedy select a solution

that leads to an inefficient Social Welfare, such solution will still be economically competitive in terms

of auction payments.

First of all, we observe that assuming the number of mobile clients is much larger than the access points

involved in the allocation (i.e.: |M| ≫ |A|), then the worst-case complexity of the greedy algorithm is

quadratic with the number of MCs (i.e.: O(|M|2)).

To show the efficiency of the solution computed by the greedy, we focus, for the sake of simplicity,

on the Greedy backhaul (G.b.) variant of the algorithm, even though the same key conclusions can be

obtained also for the other formulations. We consider an instance where two access points A = {1, 2}

(AP1 and AP2) can serve a mobile client (MC). To keep the presentation simple, we assume that the

content catalog can be entirely cached in both nodes, leading to a hit-rate of 100% (i.e.: h1 = h2 = 1),
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while the profit per unit of demand is P (with P ≫ 1). Let the mobile client’s demand be d1 = 1 and

the rates on the wireless links be r1,1 = r1,2 = 1. Assume that the APs’ bids are b1 = 1 + ǫ (ǫ > 0 and

close to zero) and b2 = D (with D > 1), while the AP’s available backhaul bandwidth is R1 = 1
D and

R2 = 1.

In this scenario, the optimal allocation forces the MC to connect to AP1 since its bid is lower than

the one of AP2, and the social welfare (4) is SW o = P − (1+ ǫ). On the other hand, if we consider the

greedy algorithm, it forces the MC to connect to the AP2 (since b2
R2

< b1
R1

), leading to a social welfare

of SW g = P −D. We can therefore observe that the Social Welfare Ratio (SWRatio = SW g

SW o ) between

the greedy and the optimal solution tends to −∞ when the bid D is very large:

SWRatio =
SW g

SW o
= lim

D→+∞

P −D

P − (1 + ǫ)
= −∞. (23)

Therefore, as shown in this scenario, the greedy algorithm can reach very unfavorable solutions in terms

of Social Welfare. In other words, the greedy scheme does not guarantee the maximization of the social

welfare. Instead, it might lead to a transfer of utility from the content provider to the AP owner.

At the same time, if we focus on the actual payments that both the allocation mechanisms select, we

observe that the greedy algorithm leads to a close to optimum solution. In order to perform one such

analysis, we take into account the Offloading Cost Ratio (OCR), which we define as the ratio between

the actual payment of the greedy algorithm and the one of the optimal allocation:

OCR =
pg(x, y)

po(x, y)
=

∑

j∈A

pgj
∑

j∈A

poj
= lim

D→+∞

(1 + ǫ)D

D
= (1 + ǫ), (24)

where pgj and poj denote the price paid by AP j according to the greedy and the optimal algorithm,

respectively. In other words, the metric that mostly interests network operators (i.e.: the OCR, or the

overall payment they need to make in order to reserve the resources they booked) is such that the

payment required by the greedy algorithm is only infinitesimally larger than the one computed for the

optimal allocation, even though in terms of social welfare, the solution obtained with the greedy algorithm

is not efficient.

It is important to note that the conditions we imposed in the example above are hardly met in a real

scenario, since operators do not provide backhaul bandwidth with such a small granularity. Indeed, when

D → +∞, the available backhaul bandwidth for AP 1 tends to zero (R1 =
1
∞ = 0+), which can hardly

be satisfied by any network operator. Therefore, a consequence of this observation is that we can bound

the SWRatio by fixing the minimum amount of bandwidth any access point owner should provide in
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Figure 2. Network Selection Game Architecture. The architecture we consider in the Network Selection Game is very similar

to the one we took into consideration in the previous Sections II-IV. However, while previously we assumed that both the

access point activation and the mobile clients association to the access point were optimally chosen by a centralized entity, in

the network selection game, we instead consider the case when mobile clients autonomously select (and compete) which access

point they prefer to use.

order to participate to the mechanism.

V. NETWORK SELECTION GAME

Our proposed optimal allocation strategy and the corresponding heuristic algorithms are formulated for

a centralized setting in which the content provider (CP) optimally allocates the mobile clients (MCs) to

the access points (APs). However, in a real scenario, MC owners typically choose autonomously which

access point their devices should connect to. At the same time, each user’s choice will influence the

others: as a matter of fact, by changing the AP at which a given MC is connected, the MC owner is

indeed affecting the quality of the wireless channel perceived by the other users.

In this scenario, game theory is the natural tool used to model the players’ mutual interaction (e.g.,

[9], [10]). In particular, in this section we consider the same network architecture analyzed so far, but we

extend our analysis by taking into account the fully distributed case where mobile clients autonomously

choose which access point they prefer to use. Fig. 2 shows the architecture we take into consideration in

this section of the manuscript. We model this practical scenario as a non-cooperative network selection

game in which the players (i.e., the MCs) interact with each other by selfishly selecting the access
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network (i.e., the AP) that minimizes their cost. We chose to provide this analysis in our paper in order

to 1) derive the performance loss that the non-cooperative, distributed allocation causes, compared to the

centralized global optimum and 2) complement our contribution by considering also the case when MCs

autonomously select to which AP they should connect.

In this scenario, a mobile client i ∈ M can be served by multiple APs in its current location.

Different APs will likely provide different utilities to the players, and, at the same time, the utility

will be a function of the other players’ choices. In such distributed setting, all the MCs that can be

served by at least one AP will connect to the wireless infrastructure. On the other hand, all the mobile

clients that are not covered by the signal of an activated access point will not participate to the network

selection game.

For the sake of simplicity, hereafter we denote with A the set of activated access points, and with M the

set of mobile clients that can be reached by at least one AP. The quality metric that we consider relevant

for the MCs is the congestion level experienced while connecting to a specific AP. In particular, due to

the well known 802.11 anomaly [11], we assume that the rate experienced by all the MCs connected

to an AP j ∈ A is the same and it is equal to rj = min
i∈M|li,j≤Lj

ri,j , that is the rate of the farthest

MC potentially served by the AP. We therefore define the cost function of player i ∈ M as follows:

ci(x) =
∑

∀k∈M,∀j∈A

xi,j ·xk,j

rj
.

Let S = x be a strategy profile. The choice of player i ∈ M is represented with xi, while the one

of the other players is x−i. In particular, the binary variable xi,j = 1 if and only if MC i is connected

to AP j. The solution concept we adopt is the pure strategy Nash Equilibrium (NE): a strategy profile S

in which there is no player that can improve its utility by unilaterally deviating from his choice.

In this section we prove that the network selection game is weighted potential, and therefore by letting

players play the best response dynamics, one Nash equilibrium will be reached. Furthermore, we also

prove that there exists only one such Nash Equilibrium.

The rationale behind the following proofs is as follows: consider the mobile client i ∈ M, and assume

that it is currently connected to the AP j ∈ A. The cost (i.e., the congestion) perceived by such mobile

client is ci(x) =
∑

∀k∈M,∀j∈A

xi,j ·xk,j

rj
=
∑

i∈M

xi,j

rj
. A Nash Equilibrium is a strategy profile such that if

MC i migrates to another AP k 6= j, it should observe a higher cost (i.e.: 1
rk

+
∑

i∈M

xi,k

rk
>
∑

i∈M

xi,j

rj
,

∀k ∈ M, k 6= i).

Hereafter we show that the network selection game is weighted potential, and therefore the distributed

solution obtained with the best response dynamics converges to a NE [12].
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Proposition 2. Weighted Potential: Our proposed network selection game is weighted potential with

potential function Φ(x) =
∑

k∈M

∑

j∈A

∑

i∈M

xk,jxi,j

rj
+
∑

j∈A

1
rj

∑

i∈M

xi,j .

Proof. To prove that our proposed game is weighted potential, we must show that, given the strategy

space S there is a potential function Φ : S → R and a vector w ∈ R
|M|
+ such that ∀x−i ∈ S−i, ∀xi,x

′
i ∈ Si

it holds that

Φ(xi,x−i)− Φ(x′
i,x−i) = wi(ui(xi,x−i)− ui(x

′
i,x−i)) (25)

Consider the AP i ∈ A. Let xi,j =











1 if j = h

0 otherwise

, while x′
i,j =











1 if j = q

0 otherwise

.

In other words, xi states that MC i is connected to AP h, whereas x′
i states that MC i is connected

to AP q. Let ni,j =
∑

w∈M\{i}

xw,j be the number of MCs, excluding i, connected to AP j. Then we have:

ui(xi,x−i)− ui(x
′
i,x−i) =

rq + rqni,h − rh − rhni,q

rhrq
. (26)

Moreover, considering the potential function we obtain:

Φ(xi,x−i)− Φ(x′
i,x−i) =

(ni,h + 1)2 + (ni,h + 1)

rh
+

(ni,q)
2 + ni,q

rq

−
(ni,h)

2 + ni,h

rh
−

(ni,q + 1)2 + (ni,q + 1)

rq
=

= 2(
rq + rqni,h − rh − rhni,q

rhrq
), (27)

and therefore the game is weighted potential since it is sufficient to set ∀i ∈ A, wi = 2.

The existence of a Nash Equilibrium is guaranteed by the previous Proposition; we now formally

prove that there exists only one Nash Equilibrium. In particular, the following Theorem proves that in

our proposed network selection game, Nash Equilibria are “essentially unique” [7], meaning that all

equilibrium configurations have the same overall cost.

Theorem 4. Uniqueness of the Nash Equilibrium: Our proposed network selection game has an

essentially unique Nash Equilibrium.

Proof. Let nj =
∑

k∈M

xi,j be the number of users simultaneously connected to the AP j ∈ A; for the

sake of clarity, we can then rewrite the potential function as follows:
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Φ(x) =
∑

k∈M

∑

j∈A

∑

i∈M

xk,jxi,j
rj

+
∑

j∈A

1

rj

∑

i∈M

xi,j =
∑

j∈A

n2
j

rj
+
∑

j∈A

nj

rj
= Φ(n). (28)

By the definition of the potential function itself [7], Nash Equilibria can be computed by solving the

optimization problem: minΦ(n), subject to
∑

j∈A

nj = |A|. One such optimization problem is a convex

Mixed-Integer Non-Linear Program, in fact, the continuous relaxation of the objective function is convex.

For this class of problems, a local optimal solution is also equal to the global optimum [13], [14], thus

the Nash Equilibrium is essentially unique.

The Price of Anarchy (PoA) is the ratio between the worst Nash Equilibrium and the centralized

optimal solution. On the other hand, the Price of Stability (PoS) is the ratio between the best NE and the

centralized optimal solution. Since we proved uniqueness of Nash Equilibrium, in our proposed network

selection game PoA = PoS. Hereafter we show that a lower bound for the PoA is 4
3 .

Proposition 3. Lower bound on the PoA. The Price of Anarchy in our proposed network selection

game is PoA ≥ 4
3 .

Proof. Consider a network scenario with 2 access points and 2 mobile clients, and assume that the first

AP has a rate of r1 = 1, while the second has a rate of r2 = 2 + ǫ, for a small ǫ > 0.

The centralized optimal solution is obtained when each MC connects to one of the available APs and,

in this scenario, the overall congestion is CongOPT = 1 + 1
2+ǫ .

On the other hand, the Nash Equilibrium is obtained when both the MCs connect to the AP with

the higher rate. As a matter of fact, in this configuration, each MC experiences a congestion equal to

2
2+ǫ < 1, where 1 is the congestion the MC would experience if it migrated to the other access point. In

the NE configuration, the overall congestion is given by CongNE = 22/(2 + ǫ).

Therefore, since the Price of Anarchy is PoA = 4/(2+ǫ)
1+ 1

2+ǫ

, a lower bound for it is PoA ≥ 4/3, obtained

when ǫ → 0+.

To provide further evidence that the previous bound is very tight, we numerically computed values for

the PoA.

For each access point j ∈ A, we denote with nj ∈ Z the number of mobile clients connected to j in

the optimal solution. The number of MCs connected to j in the Nash Equilibrium is given by nj +mj ,
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where the variable mj ∈ Z is used to characterize the NE allocation, and represents the difference in the

number of MCs connected to AP j at equilibrium. To find the PoA, regardless of the specific scenario,

we need also consider the rate of the j-th access point rj ∈ R as a decision variable, the only parameter

that we need to bound is the number of access points |A|.

We then formulate the Mixed-Integer Non-Linear Optimization model provided hereafter:

max

∑

j∈A

(nj+mj)2

rj

∑

j∈A

n2
j

rj

(29)

subject to:

∑

j∈A

n2

j

rj
≤
∑

j∈A

(nj +mj)
2

rj
(30)

∑

j∈A

mj = 0 (31)

(nj +mj)

rj
≤

(ni +mi + 1)

ri
∀i, j ∈ A, i 6= j (32)

nj +mj ≥ 0 ∀j ∈ A (33)

nj ≥ 1 ∀j ∈ A (34)

rj ≥ 1 ∀j ∈ A (35)

nj ,mj ∈ Z ∀j ∈ A (36)

rj ∈ R ∀n ∈ A (37)

The objective function (29) computes the Price of Anarchy.

Constraint (30) enforces the optimality condition: the overall congestion in the optimal allocation
∑

j∈A

n2
j

rj

should be smaller or at most equal to the one experienced at equilibrium
∑

j∈A

(nj+mj)2

rj
. Constraint (31)

makes sure that the overall number of mobile clients does not change while evaluating the Nash Equi-

librium.

The Nash Equilibrium conditions are imposed in (32). In fact, by definition of the Nash Equilibrium,

the congestion
(nj+mj)

rj
experienced at equilibrium by the mobile clients connected to the access point

j ∈ A, should be lower than the congestion they would experience if they migrated to another access

point i 6= j, which is given by
(ni+mi+1)

ri
.
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In (33) we make sure that at equilibrium the number of mobile clients connected to each access point

is non-negative. We assign at least one mobile client to each AP in the optimal solution, as enforced in

(34). In (35) we set the minimum rate to be equal to 1; finally, integrality constraints are set in (36),

whereas the rate is going to be continuous, as in (37).

We used the Bonmin solver [14] to numerically find solutions of this optimization problem. We

numerically confirm that the Price of Anarchy is PoA = 4/3 (i.e., the bound we provided for the

PoA is tight), for each number of access points up to 50.

VI. NUMERICAL RESULTS

In this section, we analyze and discuss the numerical results obtained solving our proposed models

and heuristics in realistic, large-size network scenarios. More specifically, we first illustrate (Sec. VI-A)

the experimental methodology used to evaluate the proposed algorithms, and then (Sec. VI-B) we discuss

the obtained results.

A. Methodology

Unless stated otherwise, simulations are conducted by uniformly distributing 60 access points (APs)

in a 300 × 300 m2 grid, while the locations of 100 mobile clients (MCs) are selected as a bi-variate

Gaussian distribution centered on uniformly chosen APs. The bids of the APs are selected uniformly in

the [7, 15] USD range, whereas the demands of every MC are generated in the range [0.5, 3] Mbit/s. We set

the traffic-proportional cache miss cost C to 5 USD per Mbit/s, and we consider different profit values P ,

in the set {5, 10, 15, 20, 25} USD per Mbit/s. We performed 20 runs for every scenario, computing the

narrow 95% confidence intervals reported in each figure.

We assume that the radio access network is composed of 802.11a wireless access points. Due to the path

attenuation, the received power is a function of the distance li,j between the mobile client (MC) i ∈ M

and an access point (AP) j ∈ A, and is given by:

Pr = Ptgtgr

(

λ

4π

)2

l−η
i,j = Ptgtgr

(

c

4πf

)2

l−η
i,j , (38)

where Pt is the transmission power, gt and gr are the transmission and reception gains, respectively, f

is the frequency, c is the speed of light and η is the path loss exponent. The path loss is hence given by:

PLdB = 10log10

(

Pr

Pt

)

= 10
(

log10 (gtgr) + 2log10

( c

4π

)

− log10
(

f2lηi,j
)

)

.

(39)
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We assume that APs are equipped with the Atheros AR5413 chipset, and we will refer to the cor-

responding data sheet [15], to obtain the parameters characterizing the radio specification. In addition

to that, we assume that gains are both unitary, the frequency is 5.25 GHz and the path loss exponent

is 3. Given (39), we can compute the transmission rate by comparing the path loss value to the receiver

sensitivity provided in Table III.

The Zipf discrete distribution is used to characterize the object popularity, since it was shown that it is

an adequate model for it [16], [17], [18]. In particular, the Zipf model partitions the objects in N groups

according to their popularity rank. Let α be the popularity exponent of the distribution, the Zipf probability

mass function (PMF) and cumulative density function (CDF) for the n-th popularity rank are defined as:

P (X = n) =
1/nα

∑N
i=1

(1/iα)
, (40)

F (n) =

n
∑

i=1

P (n) =

∑n
i=1

(1/iα)
∑N

i=1
(1/iα)

. (41)

As frequently done in the literature (e.g: [19], [20], [21]) we work under the assumptions of the

“Independent Reference Model” (IRM), according to which successive content requests are independent

identically distributed (i.i.d.), where the popularity class of an object is a discrete random variable X ,

with probability mass function P (X). We assume that cache replacement is performed according to the

“Least frequently used” (LFU) policy, since under the IRM assumption, LFU is known to maximize the

hit rate [19].

Let Cj be the rank of the least popular cached objects at the j-th AP. Since popularity classes are

sorted in decreasing order, Cj can be computed as follows:

Cj =

⌊

Cache size at AP j

Average object size

⌋

. (42)

Let q(n) be the request rate of the objects belonging to the n-th popularity class. We can then define

the hit rate hj for AP j as:

hj =

∑

1≤n≤Cj
q(n)

∑

1≤n≤N q(n)
, (43)

which is the ratio between the requests for objects belonging to the Cj most popular classes that have

Table III

RECEIVER SENSITIVITY OF THE ATHEROS AR5413 CHIPSET

Path Loss (dB) -72 -73 -77 -81 -84 -86 -88 -90

Rate (Mbit/s) 54 48 36 24 18 12 9 6
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been stored in the caches and the requests for all the available objects.

Finally, we define the normalized cache size, N , as the ratio between the average cache size and the

size of all the objects:

N =
Avg. cache size

Objects cardinality · Average object size
. (44)

For each AP, we chose the backhaul Internet bandwidth uniformly in the set {1; 6; 8; 20; 100}Mbit/s,

while the size of the leased caching storage was uniformly selected in the range [10, 100]Gbytes.

We consider objects having an average size of 100 Mbytes, while we take into account two catalog

cardinalities equal to 104 and 106 objects, in line with what Fricker et al. have identified for the User

Generated Content (UGC) scenario in [19]. However, for similar values of N , similar trends can be

observed either by changing the object catalog size, or by increasing the amount of caching storage that

is leased.

In the following experiments we set the Zipf α exponent to 0.9, in line with [19]. Even though better

results can be observed with higher α values, due to the higher skewness of the request distribution, we

cautiously consider this more adverse case. Since we assume that the object cardinality can either be 104

or 106, the normalized cache sizes N are thus equal to 0.0512 and 0.0005 respectively, meaning that

caches can store up to 5.12% of the entire catalog, when 104 objects are considered, while only 0.05% of

the objects can be cached, while considering a larger catalog of 106 objects. Results for N = 0.0051 were

also generated, but for the sake of brevity will be omitted here since they are in between the two extremes.

Regarding the three variants of the algorithms presented in Table II, we denote the greedy MC, cache

and backhaul with G.m., G.c. and G.b., respectively.

B. Performance Analysis

Unless otherwise specified, the figures illustrated in this section are related to a network scenario

with 60 mobile clients (MCs) and 60 access points (APs), with a profit P = 10USD per Mbit/s.

Social Welfare. The social welfare metric (SW ) is the objective function of the ILP model (4), and

has a monetary currency (USD) as unit of measurement. The value of such metric is portrayed in Fig. 3.

In particular, Fig. 3a and 3b show the SW trend as a function of the number of APs, for a content catalog

of 106 (N = 0.0005) and 104 objects (N = 0.0512), respectively. Fig. 3c and 3d consider the number

of MCs, while in Fig. 3e and 3f we show the SW as a function of the CP’s profit per unit of bandwidth.

The SW has an increasing trend with respect to the number of access points |A|, the number of mobile

clients |M|, and the average profit of the content provider P ; in fact, when the number of APs, MCs,

or the profit increase, the allocation algorithm chooses to accommodate more traffic demands since it
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Opt. G.m. G.c. G.b.

(a) N = 0.0005, |M| = 60, P = 10USD Fun. of |A|
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(b) N = 0.0512, |M| = 60, P = 10USD Fun. of |A|
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(c) N = 0.0005, |A| = 60, P = 10USD Fun. of |M|
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(d) N = 0.0512, |A| = 60, P = 10USD Fun. of |M|
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(e) N = 0.0005, |M| = 60, |A| = 60 Fun. of P
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Opt. G.m. G.c. G.b.

(f) N = 0.0512, |M| = 60, |A| = 60 Fun. of P

Figure 3. Social Welfare, The plots show the value obtained for the Social Welfare (SW ) metric, comparing the value obtained

with the optimal allocation algorithm and the three greedy heuristics. In particular, in Fig. 3a and 3b we show the trend of

the SW as a function of the number of APs, for a catalog of 10
6 (N = 0.0005) and 10

4 (N = 0.0512) objects, respectively.

Fig. 3c and 3d consider the number of MCs, whereas Fig. 3e and 3f are functions of the profit.

improves the value of the SW metric. We also note that, while the SW has a linear trend in the number

of MCs (as in Fig. 3c-3d), or the profit (as in Fig. 3e-3f), it exhibits instead a logarithmic trend in the

number of APs (as in Fig. 3a-3b). This behavior is caused by the fact that the number of MCs is fixed

to 60, thus having more than 10 APs only marginally improves the SW metric. On the other hand,

having |A| < 10 significantly penalizes the performance of the system because the network infrastructure

does not have enough capacity to serve all the clients’ demands.

Another interesting observation that can be deduced by comparing Fig. 3a and 3b is that having a larger
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(a) N = 0.0005, |M| = 60, P = 10USD - LC

10 20 30 40 50 60
10

1

10
2

10
3

10
4

L
e
a
s
in

g
 C

o
s
t 
[U

S
D

]

Num. of APs [#]

 

 

Opt. G.m. G.c. G.b.

(b) N = 0.0512, |M| = 60, P = 10USD - LC

Figure 4. Leasing Cost, The figures show the Leasing Cost (LC), as a function of the number of APs. In Fig. 4a the normalized

cache size was set to N = 0.0005, whereas in Fig. 4b it was set to N = 0.0521.

normalized cache size of N = 0.0521 (104 objects) can lead to significant improvements on the SW

which is 27% higher than for N = 0.0005 (106 objects), when considering 60 APs. Similar gains can

be observed comparing Fig. 3c with Fig. 3d, whereas considering Fig. 3e and 3f, we can conclude that

the higher the profit per unit of bandwidth, the lower the gain of having a larger N . In particular, in

this latter case, when the profit is 25USD per Mbit/s, the gain for N = 0.0512 is only 9% with respect

to N = 0.0005.

Finally, comparing the values obtained for the optimal allocation algorithm and our proposed heuristics,

we observe in Fig. 3e-3f that, when considering the SW as a function of the profit, the heuristics

compute a close-to-optimal value for the objective function, losing, in the worst case, only 16% of SW .

In particular, the greedy backhaul (G.b.) allocation algorithm seems to perform slightly better than the

other two, efficiently computing a solution on average less than 10% lower than the optimum. Similar

conclusions regarding the greedy heuristics can be derived from Fig. 3a-3f.

Leasing Cost. The leasing cost metric (LC) is defined as the total cost sustained by the content

provider (CP) to lease the subset of access points selected by the mechanism, and is equal to LC =
∑

j∈A

yjpj .

The trend of LC as a function of the number of access points is shown in Fig. 4a for a normalized cache

size of N = 0.0005 (106 objects) and in Fig. 4b for N = 0.0512 (104 objects). It is important to stress

the fact that the price the content provider pays to the access point (AP) owners is not the amount that

was bid, but it is computed in a way as to make sure that both the optimal algorithm and the heuristics

enforce the individual rationality and truthfulness properties.

By comparing Fig. 4a and 4b, we observe that the normalized cache size N only partially affects the LC

metric. Moreover, when the number of APs is large, the optimal allocation algorithm outperforms the
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(a) N = 0.0005, |M| = 60, P = 10USD - f
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(b) N = 0.0512, |M| = 60, P = 10USD - f

Figure 5. Jain’s Fairness Index, Fig. 5a shows Jain’s Fairness Index f for N = 0.0005, as a function of the number of APs,

whereas in Fig. 5b we portrait the result for N = 0.0512.

heuristics, paying the AP owners 52% less than the greedy cache (G.c.) solution, and up to 95% less

compared to the greedy backhaul (G.b.) with N = 0.0521.

As we will discuss in the following for the Unserved Requests (UR) metric, when the number of APs

is smaller than 10, not all the MC’s requests can be served by the available network capacity, and the

local maximum that is observed for the optimal allocation algorithm when the number of APs is around 9

is caused exactly by this reason. As a matter of fact, in this scenario, by removing one of the few APs

deployed, the overall traffic request that the network can serve will be significantly reduced, making

the SW decrease sharply. In other words, the role of every single AP that is selected by the allocation

mechanism is crucial, and therefore the price the allocation procedure pays is much larger. On the other

hand, when the number of APs increases, the role of every single AP is much less critical and the payment

they receive is accordingly much lower.

Jain’s Fairness Index. The Jain’s Fairness Index (f ) is defined according to [22] as:

f =

(

∑

∀j∈A

ρj

)2

(

∑

∀j∈A

yj

)

·
∑

∀j∈A

ρ2j

where ρj = yjpj
∑

∀i∈M

xi,jdi
is the ratio between the price paid to lease AP j and the overall demand it is

serving. The performance of the optimal and greedy allocation algorithms with respect to the f metric

is depicted in Fig. 5, where in 5a we set the normalized cache size N = 0.0005 (106 objects), whereas

in 5b, N = 0.0512 (104 objects).

By comparing the two figures, we can state that the greedy heuristics have a similar trend with respect
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(a) N = 0.0005, |M| = 60, P = 10USD - t
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Opt. G.m. G.c. G.b.

(b) N = 0.0512, |M| = 60, P = 10USD - t

Figure 6. Completion Time, The completion time t metric is shown as a function of the number of APs. In Fig. 6a we report

the results for N = 0.0005, whereas Fig. 6b refers to N = 0.0512.

to the fairness metric, which is rather insensitive to the normalized cache size. As a matter of fact, in both

Fig. 5a and 5b we observe that the heuristics generate a solution that is on average 62% fair, when the

number of AP is |A| = 60. At the same time, the optimal allocation algorithm leads to worse solutions in

terms of the fairness metric, especially when having a larger cache. In fact, in this latter case, as shown

in Fig. 5b, the fairness of the optimal allocation algorithm stabilizes at 40% when 60 APs are considered.

Completion Time. The effect of the completion time (t) is shown in Fig. 6. As usual, Fig. 6a refers

to N = 0.0005 (106 objects) while Fig. 6b is for N = 0.0512 (104 objects). First of all, by comparing

Fig. 6a with 6b, we can conclude that the size of the catalog, and therefore the average AP’s hit-rate has

a negligible impact on the observed completion time. On top of that, the optimal allocation algorithm

requires much more time than the one spent using our proposed heuristics, which are all characterized

by practically the same computing time.

The time trend of the optimal allocation algorithm not only has a local maximum when the number of

access points |A| is equal to 9, but it also exhibits large confidence intervals when |A| < 10. The reason

for both these behaviors lies in the fact that when there are few access points (APs), the allocation will

not serve all the clients’ demands, since the spare network capacity is not sufficient to do so. Moreover,

the choice of which AP should be used becomes critical, and more time is required by the algorithm in

order to explore the combinatorial state space of the solutions.

Saved Bandwidth, Unserved Requests, Hit Rate. Hereafter we jointly discuss the results we obtained

for the SB, UR and h̄ metrics. In particular, the Bandwidth Saved for Caching (SB) is defined as the total

amount of traffic directly served by the caches, measured in Mbit/s and equal to SB =
∑

∀i∈M
∀j∈A

xi,jdihj .

The UR metric is instead the Fraction of Unserved Requests, which is the fraction of the mobile
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(a) N = 0.0005, |M| = 60, P = 10USD - SB
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(b) N = 0.0512, |M| = 60, P = 10USD - SB
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(c) N = 0.0005, |M| = 60, P = 10USD - UR
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(d) N = 0.0512, |M| = 60, P = 10USD - UR

Figure 7. Saved Bandwidth, Unserved Requests, Fig. 7a and 7b show the Saved Bandwidth metric as a function of the number

of APs, for N = 0.0005 and N = 0.0521, respectively. The trend of the fraction of Unserved Requests is instead depicted in

Fig. 7c and 7d.

clients’ traffic demands that are not accommodated according to the allocation algorithm, and is equal

to UR =

∑

∀i∈M

(

1−max
∀j∈A

xi,j

)

di

∑

∀i∈M
di

. Finally, the Average Hit Rate h̄ is defined as the ratio between the content

served by the caches and the sum of all the served clients’ demands, and is equal to h̄ = SB
∑

∀i∈M
∀j∈A

xi,jdi
.

The Saved Bandwidth (SB) trend, shown in Fig. 7a and 7b is logarithmic in the number of APs

deployed. However, the average hit rate h̄ observed is constant in the number of access points and equal

to 41% with a normalized cache size of N = 0.0005 and 78% when N = 0.0521, for both the optimal

allocation algorithm as well as the heuristics. The constant value for h̄ and the logarithmic trend for

SB are caused by the fact that our proposed formulation admits partial coverage, that is, not all the

requests of the mobile clients (MCs) are served by the network. In particular, as Fig. 7c and 7d show,

when N = 0.0005, 10 APs can serve up to 84% of the overall demand (using the optimal algorithm),

while 96% is reached when N = 0.0521. Since the bottleneck in our system model is the backhaul

internet connection of every access point, deploying some caching storage in the system makes the

network accommodate more traffic. On top of that, 40 APs are necessary to make all the client’s requests
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(b) N = 0.0521, |M| = 60, P = 10USD Fun. of |A|

Figure 8. Social Welfare - Network Selection Game, The figures show a comparison of the Social Welfare (SW ) obtained in

the centralized (Opt.) and the distributed scenario (Nash Equilibrium, NE), in particular they show the performance loss due to

the distributed allocation of the mobile clients. Fig. 8a represents the scenario with an object catalog of 10
6 (N = 0.0005),

while Fig. 8b refers to the case where the object catalog contains 10
4 objects (N = 0.0521), varying the number of APs.

be served with N = 0.0005 (106 objects), whereas 30 APs are sufficient if we consider N = 0.0521

(104 objects). In terms of the unserved requests, the greedy backhaul very well approaches the results

observed for the optimal solution, whereas the other two heuristic algorithms serve on average 18% less

traffic demands, when N = 0.0521 and |A| = 60.

As we have already commented for the SW , LC and t metric, the threshold of 10 APs clearly

marks two different operating zones: when a large amount of traffic requests cannot be served by the

networking infrastructure, this has a major impact on the multiple metrics characterizing the overall

system performance.

Social Welfare - Network Selection Game. Fig. 3 reports the SW when the allocation is performed

in the centralized setting, both optimally and using our proposed heuristic. Instead, in Fig. 8, we consider

the distributed case and we show the SW when MCs reach the unique Nash Equilibrium of the network

selection game we presented in Sec. V. By comparing the value of the centralized optimal SW in Fig.

8a and 8b, we can state that in the distributed scenario we lose1 up to 65% SW when N = 0.0005 (106

objects), and 60% when N = 0.0512 (104 objects), compared to the optimum (obtained with the ILP

model (4)-(10)).

For the sake of brevity, we omit the results regarding the convergence speed of the best response

dynamics for the network selection game. Indeed, in all the considered scenarios the game always reaches

the equilibrium in less than 10 iterations.

1Please note that this evaluation is done with respect to the social welfare SW, whereas in Sec. V we computed the Price of

Anarchy with respect to the network congestion only.
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VII. RELATED WORK

In this section, we survey related works. In particular Sec. VII-A reviews the ICN design principles;

Sec. VII-B presents relevant incentive mechanisms for communication networks, while Sec. VII-C surveys

proposals for mobile data offloading through WiFi.

A. Information Centric Network Solutions

Information Centric Networks have been designed with the ambitious goal to provide a new networking

paradigm that could better accommodate new performance, security, mobility and scalability requirements

imposed on the Internet by its users. Several architectures for ICNs have been proposed in the literature

and in ongoing research projects: DONA [23], CONET [24], PURSUIT [25], and NDN/CCN [26].

For the sake of simplicity, we specifically design our proposal for NDN/CCN (Named Data Networking,

Content-Centric Networking), since a widely used and open implementation of this model is available

[27]. Additionally, to the best of our knowledge, it is the proposal that has received most of the attention

from the scientific community. However, we would like to point out the fact that our model can also

be adapted to other ICN designs in a straightforward way, since the only requirement that needs to be

enforced is the possibility to implement content caching on an access point.

Addressing the content rather than the location has the main advantage of improving the performance by

making universal in-network caching, as well as multicast delivery, easily implementable in the network

architecture [28]. On top of that, also clients mobility will enjoy positive benefits, as described by Tyson

et al. in [29]. For this reason, it becomes vital to understand the effect of in-network caching in order

to study the behavior of an ICN. In particular, in [19], Fricker et al. propose a model to compute the

hit rate for a single and two-layer cache hierarchy, given a Zipf content popularity distribution. In [30],

Psaras et al. studied the caching performance for a tree-like CCN topology, by means of representing the

state of every router using Markov chains. Rosensweig et al. present in [31] a multi-cache approximation

algorithm for a network of caches using the LRU replacement policy, that can be used to study the

performance of general-topology cache networks.

Rather than merely studying the cache hit rate, in this work we consider the economic benefits that

the content provider can experience. In particular, with our proposal the content provider will be able to

jointly increase the number of mobile clients reached by his service, while opportunistically exploiting

content caching to reduce the load on his infrastructure.
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B. Incentive Mechanisms in Communication Networks

Incentive mechanisms and auction theory have been used to design efficient allocation mechanisms in

several network contexts. In particular, as described in [32], they are extremely appealing to model, for

example, the problem of leasing underutilized spectrum to secondary users, tackled in cognitive radio

networks (e.g: [33], [34], [35]).

Vickrey auctions are used in [32] to make the cognitive radio users compete to acquire the radio

resources; incentives are paid to the primary users for sharing their licensed spectrum. In [36] Jia et al.

formulate a revenue maximization auction mechanism for a primary license holder, using the Vickrey-

Clarke-Groves (VCG) mechanism. In [37] the authors propose to use a knapsack-based auction model to

foster the dynamic spectrum allocation to secondary wireless service providers to maximize revenue and

spectrum usage. Dynamic spectrum leasing is also the focus of [38], where secondary service providers

lease spectrum from brokers to provide network connectivity to secondary users. Besides these classical

scenarios, auctions are becoming an even more interesting tool to model bandwidth allocation. Dai et al.

in [39] present a collaborative caching auction system for wireless video streaming based on the VCG

mechanism. Their proposal fosters the cooperation between cache servers by ensuring that every bidder

declares his real private valuation for the auctioned resource, thus ensuring the truthfulness property.

In [40] Liu et al. propose a distributed power-allocation algorithm for wireless networks to let users

collaboratively choose the transmission power they use. The work is presented as an auction mecha-

nism, and the authors compute the optimal allocation strategy, although nor individual rationality nor

truthfulness are analyzed or discussed. Finding a truthful mechanism with approximate social-welfare or

revenue is instead the focus of [41], where the authors consider the dynamic spectrum access for both

spatial and temporal dimensions. In a similar context, Wu et al. design in [42] an auction mechanism that

ensures Pareto-optimal relay power allocation, competitive fairness among users, and convergence on the

distributed implementation. Lastly, Mukherjee presents in [43] a work where a truthful, Pareto-optimal

auction mechanism is proposed to handle energy management from a battery shared among multiple

users.

Meanwhile, the migration to the novel paradigm of ICN will greatly modify the nature of economic

interactions between different parties at the network-wide scale. In particular, Rajahalme et al. have

thoroughly described in [44] the changes that will likely incur at the inter-domain point of view, when

updating the infrastructure from a TCP/IP network to ICN. Pham et al. have modeled in [45] the economic

interactions between the different actors of an Information Centric Network, using the framework of game
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theory. Game theory is also used in [46] to propose an incentive scheme to foster cache cooperation and

users’ collaboration for multimedia streaming purposes. In particular, the authors tackle the problem as

a resource allocation game in both the cooperative as well as the non-cooperative settings.

Unlike the surveyed literature, our approach is to tackle the mechanism design problem, while jointly

taking into account the available bandwidth as well as the storage space offered by every access point

owner. Given the fact that we study the performance of this mechanism for an ICN, the availability of

caches not only reduces the backhaul capacity used at every access point, but it is also beneficial to the

content provider himself, since it offloads its infrastructure.

C. Mobile Data Offloading Through WiFi

Mobile data offloading through WiFi networks is frequently envisioned in the literature as an efficient

technique to serve the ever increasing bandwidth requirements expressed by end-users with mobile

devices. In particular, Lee et al. show in [47] that nowadays, WiFi connections offload up to 65% of

the total mobile data traffic, mostly thanks to the broadband connectivity provided by residential access

points.

The scenario in which access point owners offer their unexploited wireless connectivity to other users

has attracted the attention of several companies such as FON [48], Wisher [49] and also Skype WiFi [50],

[51]. While Skype WiFi is mostly targeting hotspots in public places such as hotels, restaurants, train

stations and airports, FON and Wisher also consider residential users. Access point owners that choose

to provide wireless connectivity usually gain the privilege of using the wireless connection provided by

other users in the community, but sometimes they will be also remunerated for sharing their physical

resources.

Security must be guaranteed for the practical application of WiFi sharing. Leroy et al. design in [52]

SWISH, a mechanism used to guarantee the safe and secure operation of WiFi sharing. SWISH not

only ensures anonymity of the visiting users, but can also enforce accounting for commercial purposes,

while letting regulatory organizations check what type of actions roaming users perform when they are

connected to access points owned by other users.

By applying on a global scale the WiFi sharing model, one can also envision the realization of Public

Access WiFi Networks (PAWS). A feasibility study for PAWS is presented in [53]. The key findings

discovered by the authors show that many domestic broadband connections have enough spare capacity

to share the available WiFi connectivity; furthermore they also found out that one such type of service

is going to be exploited in many different ways by users, and its adoption will likely be very relevant.
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Similar conclusions were also envisioned by Landa-Torres et al. in [54], where the authors focus instead

on the network planning problem, to maximize the overall signal coverage, under a budget-constrained

condition.

Lastly, the problem of incentive mechanisms to remunerate AP owners is presented in [55], [56]. The

focus of [55] is to consider the scenario in which mobile user equipments behave as wireless access

point and provide network connectivity through 3G/4G connections. While in [56], the authors formulate

a double auction for a fixed network.

The surveyed literature shows that there is a clear need to consider the scenario where many access point

owners lease their unexploited physical resources through WiFi. However, the novelty of our contribution

is to consider a system model that focuses on the content distribution problem. In particular we consider

the case in which AP owners jointly offer network connectivity as well as caching storage. We strongly

believe that adequate incentives should be provided to AP owners in exchange of the resources they

lease, moreover the presence of the distributed caches will benefit both roaming users, as well as the

AP owners, by reducing the congestion on the backhaul Internet connection, and improving the QoE.

Our belief is supported by the effort that equipment manufacturers and mobile operators are investing

on the analysis of caching at different layers of the network infrastructure as a means to meet the tight

constraints of 5G networks [57], [58].

VIII. CONCLUSION

This paper proposed a novel mechanism for Information Centric Networks to stimulate wireless access

point owners to jointly lease their unused bandwidth and storage space to a content provider, under the

partial coverage constraints. By jointly leasing the spare bandwidth and caching storage offered by access

points owners, the content provider can increase the number of mobile clients reached by his service,

while offloading his distribution infrastructure by replicating the provided contents closer to the users’

location.

We provided an algorithm to determine the optimal allocation of mobile clients to access points that

ensures the individual rationality as well as the truthfulness properties by forcing the AP owners to bid

the real valuation for the offered resources. We showed that the optimal allocation problem is NP-hard,

and provided three efficient alternatives of a greedy algorithm that compute a sub-optimal solution of the

problem in polynomial time, while still guaranteeing the individual rationality as well as the truthfulness

properties.

We extended our contribution by comparing the result of the centralized allocation to the distributed
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case where the mobile clients are free to autonomously select the access point they prefer to use, taking

into account real channel properties and the MAC behavior of the 802.11 technology. Specifically, we

modeled the interactions between different users as a non-cooperative network selection game, considering

as utility function the achievable throughput in loaded conditions. Furthermore, we proved that the game

exhibits desirable properties: 1) existence and convergence to the pure Nash equilibrium, since it is

weighted potential; 2) uniqueness of one such Nash equilibrium and, 3) we also provide a lower bound

on the price of anarchy.

Finally, numerical results demonstrated that the performance of the greedy algorithms well approaches

the results obtained by the optimal solution. In particular, in the worst case we considered, the heuristics

computed a solution whose social welfare was only 16% lower than the optimal counterpart, while being

several order of magnitudes faster that the optimal allocation algorithm.
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