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Abstract—The timing channel is a logical communication
channel in which information is encoded in the timing between
events. Recently, the use of the timing channel has been proposed
as a countermeasure to reactive jamming attacks performed by
an energy-constrained malicious node. In fact, whilst a jammer
is able to disrupt the information contained in the attacked
packets, timing information cannot be jammed and, therefore,
timing channels can be exploited to deliver information to the
receiver even on a jammed channel.

Since the nodes under attack and the jammer have conflicting
interests, their interactions can be modeled by means of game
theory. Accordingly, in this paper a game-theoretic model of
the interactions between nodes exploiting the timing channel
to achieve resilience to jamming attacks and a jammer is
derived and analyzed. More specifically, the Nash equilibrium
is studied in the terms of existence, uniqueness, and convergence
under best response dynamics. Furthermore, the case in which
the communication nodes set their strategy and the jammer
reacts accordingly is modeled and analyzed as a Stackelberg
game, by considering both perfect and imperfect knowledge of
the jammer’s utility function. Extensive numerical results are
presented, showing the impact of network parameters on the
system performance.

Index Terms—Anti-jamming, Timing Channel, Game-
Theoretic Models, Nash Equilibrium.

I. INTRODUCTION

A timing channel is a communication channel which ex-
ploits silence intervals between consecutive transmissions to
encode information [1]. Recently, use of timing channels has
been proposed in the wireless domain to support low rate,
energy efficient communications [2, 3] as well as covert and
resilient communications [4, 5].

In this paper we focus on the resilience of timing channels
to jamming attacks [6, 7]. In general, these attacks can com-
pletely disrupt communications when the jammer continuously
emits a high power disturbing signal, i.e., when continuous
jamming is performed. However, continuous jamming is very
costly in terms of energy consumption for the jammer [8–
10]. This is the reason why in most scenarios characterized
by energy constraints for the jammer, e.g., when the jammer
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is battery powered, non continuous jamming such as reactive
jamming is considered. In this case the jammer continuously
listens over the wireless channel and begins the transmission of
a high power disturbing signal as soon as it detects an ongoing
transmission activity. Effectiveness of reactive jamming has
been demonstrated and its energy cost analyzed in [6, 10–12].

Timing channels are more - although not totally [4] -
immune from reactive jamming attacks. In fact, the interfering
signal begins its disturbing action against the communication
only after identifying an ongoing transmission, and thus after
the timing information has been decoded by the receiver.
In [4], for example, a timing channel-based communication
scheme has been proposed to counteract jamming by estab-
lishing a low-rate physical layer on top of the traditional
physical/link layers using detection and timing of failed packet
receptions at the receiver. In [5], instead, the energy cost of
jamming the timing channel and the resulting trade-offs have
been analyzed.

In this paper we analyze the interactions between the
jammer and the node whose transmissions are under attack,
which we call target node. Specifically, we assume that the
target node wants to maximize the amount of information
that can be transmitted per unit of time by means of the
timing channel1, whereas, the jammer wants to minimize such
amount of information while reducing the energy expenditure2.
As the target node and the jammer have conflicting interests,
we develop a game theoretical framework that models their
interactions. We investigate both the case in which these
two adversaries play their strategies simultaneously, and the
situation when the target node (the leader) anticipates the
actions of the jammer (the follower). To this purpose, we study
both the Nash Equilibria (NEs) and Stackelberg Equilibria
(SEs) of our proposed games.

The main contributions of this paper can be therefore
summarized as follows: 1) we model the interactions be-
tween a jammer and a target node as a jamming game; 2)
we prove the existence, uniqueness and convergence to the
Nash equilibrium (NE) under best response dynamics; 3) we
prove the existence and uniqueness of the equilibrium of the

1Note that in this context energy is not a concern for the target node,
since by exploiting the timing channel, a significant reduction in the energy
consumption can be obtained as demonstrated in [2].

2Up to now, despite the wide literature in this context, a universal model
describing how jammers and target nodes behave in real adversarial scenarios
is missing. Therefore, in our study we tried to propose a high-level model
that describes rational and realistic behavior of each player, by considering
several elements that are related to hardware parameters and the energy/power
concerns.
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Stackelberg game where the target node plays as a leader and
the jammer reacts consequently; 4) we investigate in this latter
Stackelberg scenario the impact on the achievable performance
of imperfect knowledge of the jammer’s utility function; 5)
we conduct an extensive numerical analysis which shows that
our proposed models well capture the main factors behind the
utilisation of timing channels, thus representing a promising
framework for the design and understanding of such systems.

Accordingly, the rest of this paper is organized as follows.
Related work is presented in Section II. In Section III the
proposed jamming game model is presented. A theoretical
study of the existence and uniqueness of the NE as well as
of the convergence of the game to that equilibrium under best
response dynamics is derived in Section IV. Existence and
uniqueness of the SE are discussed in Section V, together
with some considerations relevant to imperfect knowledge
scenarios. Then, numerical results are illustrated in Section
VI. Finally, in Section VII conclusions are drawn.

II. RELATED WORK

Wireless networks are especially prone to several attacks
due to the shared and broadcast nature of the wireless medium.
One of the most critical attacks is jamming [6, 7]. Jamming
attacks can partially or totally disrupt ongoing communica-
tions, and proper solutions have been proposed in various
application scenarios [6, 9, 10]. Continuous jamming attacks
can be really expensive for the jammer in terms of energy
consumption as the transmission of jamming signals needs a
significant, and constant, amount of power. To reduce energy
consumption while achieving a high jamming effectiveness, re-
active jamming is frequently used [5, 11–13]. In [12] and [13]
the feasibility and detectability of jamming attacks in wireless
networks are analyzed. In these papers above, methodologies
to detect jamming attacks are illustrated; it is also shown that it
is possible to identify which kind of jamming attack is ongoing
by looking at the signal strength and other relevant network
parameters, such as bit and packet errors. In [11] Wilhelm
et al. investigate the feasibility of reactive jamming attacks
by providing a real implementation of a reactive jammer in a
software-defined radio environment where a reactive jammer
prototype is implemented on a USRP2 platform and network
users are implemented on MICAz motes. Authors show that
reactive jamming attacks are feasible and efficient, and that
low reaction times can be achieved; then, they highlight the
need to investigate proper countermeasures against reactive
jamming attacks.

Several solutions against reactive jamming have been pro-
posed that exploit different techniques, such as frequency
hopping [14, 15], power control [16] and unjammed bits [17]
(see [6, 7] for surveys). However, such solutions usually rely
on users’ cooperation and coordination, which might not be
guaranteed in a jammed environment. In fact, the reactive
jammer can totally disrupt each transmitted packet and,
consequently, no information can be decoded and then used
to this purpose.

Timing channels have been frequently exploited to support
covert low rate [1], energy efficient [2, 3] and undetectable

communications [18]. Also, they have been proposed as anti-
jamming solutions [4, 5]. More specifically, in [4] Xu et al.
propose an anti-jamming timing channel that exploits inter-
arrival times between jammed packets to encode information
to be transmitted, showing how timing channels are suitable
to guarantee low rate communications even though a reactive
jammer is disrupting transmitted packets. Actually, in [4] two
constraining assumptions are made, that is, i) to perform an
attack, the jammer first has to recognize the preamble of a
packet, and ii) the jamming signal is transmitted as long as
the jammer senses activity on the channel.

In [5] an analysis of energy consumption and effectiveness
of a reactive jammer attack against timing channels is pre-
sented. Moreover, it is shown how a trade-off between energy
consumption and jamming effectiveness can be sought. It is
also demonstrated that continuous jamming can be very costly
in terms of energy consumption.

Since the jammer and the target node(s) have opposite
interests and the actions of the ones depend on those of the
others, game theory is a valid tool to study such scenarios
[15, 16, 19, 20]. An anti-jamming stochastic game in cognitive
radio networks is proposed in [15], where authors provide
learning mechanisms for users to counteract jamming attacks;
also, it is shown that users can exploit frequency hopping to
avoid jamming attacks by taking hopping decisions depending
on the channel state. Often the jammer has to adapt its attack
depending on network operations; hence, in literature it is
frequently assumed that the jammer plays as a follower after
the leader, i.e. the target node, has manifested its strategy.
Such a scenario can be modeled as a Stackelberg game. For
example, in [16] a Stackelberg game is proposed to model the
interactions between target nodes and a smart jammer that is
able to vary its transmission power to maximize its own utility
function. In [19] Altman et al. analyze a game where both the
target node and the jammer have energy constraints. Finally,
as specifically relevant to our work, we mention the study
carried out by Sengupta et al. [20] on a power control game
modeling a network of nodes exploiting the timing channel,
which maximize SINR and throughput by properly setting
the transmission power level and the silence duration. In [20]
however, although game theory is applied to timing channel
networks, jamming issues are not considered.

As compared to the solutions proposed so far in the liter-
ature, our paper is the first together with [21] by Anand et
al. to develop a game-theoretical model of the interactions
between the jammer and a target node exploiting the timing
channel. The main differences between our work and [21] can
be summarized as follows:
• in [21] the target node focuses on deploying camouflaging

resources (e.g., the number of auxiliary communications
assisting the covert communication) to hide the under-
lying timing channel. In our work, instead, the target
node establishes a timing channel that exploits the silence
period between the end of an attack and the beginning of a
subsequent packet transmission to counteract an ongoing
jamming attack;

• in [21], only the Nash Equilibrium (NE) is studied,
whereas in our work we study both the NE and SE
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(Stackelberg Equilibrum). Furthermore, we compare the
achievable performance of each player, and find that the
SE dominates the NE (i.e., both players improve their
achieved utilities), thus allowing each player to improve
its own utility;

• in our work, the target node is able to transmit covert
information even if the jammer has successfully disrupted
all the bits contained in a packet. On the other hand,
the authors in [21] assume that the jamming attack is
successful if the Signal-to-Interference ratio (SIR) of the
attacked node measured at the receiver side is higher than
the one of the target node. In our approach, instead, we do
not make any assumption on the SIR as, by exploiting our
proposed timing channel implementation, it is possible
to transmit some information even when the jammer has
successfully corrupted each packet.

In addition, we only assume that the jammer is aware of
timing channel communications ongoing between the target
node and the perspective receiver, whereas we relax the two
assumptions in [4]. Specifically, we assume that i) to start
an attack the jammer has only to detect a possible ongoing
transmission activity (e.g., the power on the monitored channel
exceeds a given threshold), and ii) the transmission of the
jamming signal does not necessarily stops when the packet
transmission by the target node ends, that is, the jammer is
able to introduce some transmission delay in timing channel
communications by extending its jamming signal duration.

III. GAME MODEL

Let us consider the scenario where two wireless nodes,
a transmitter and a receiver, want to communicate, while a
malicious node aims at disrupting their communication. To
this purpose, we assume that the malicious node executes
a reactive jamming attack on the wireless channel. In the
following we refer to the malicious node as the jammer, J ,
and the transmitting node under attack as the target node, T .

The jammer senses the wireless channel continuously. Upon
detecting a possible transmission activity performed by T , J
starts emitting a jamming signal. As shown in Fig. 1, we
denote as TAJ the duration of the time interval between the
beginning of the packet transmission and the beginning of
the jamming signal emission. The duration of the interference
signal emission that jams the transmission of the j-th packet
can be modeled as a continuous random variable, which we
call Yj . To maximize the uncertainty on the value of Yj , we
assume that it is exponentially distributed with mean value y.

We assume that when no attack is performed the target
node communicates with the receiver by applying traditional
transmissions schemes; on the other hand, when it realizes
to be under attack, it exploits the timing channel to transmit
part of (or all) the information3. The latter is encoded in the
duration of the interval between the instant when the jammer
J terminates the emission of the jamming signal and the

3Attack detection can be achieved by the target node either by means of
explicit notification messages sent back to T by the receiver or by infer-
ence after missing reception of ACK messages. Details on attack detection
operations are however out of the scope of this paper.
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Fig. 1: Interactions between the jammer and the target node.

beginning of the transmission of the next packet. Hence, it
is possible to consider a discrete time axis and refer to each
timing channel utilization by means of an integer index j.
The silence period duration scheduled after the transmission
of the j-th packet and the corresponding jamming signal can
be modeled as a continuous random variable, Xj , uniformly
distributed4 in the range [0, x]. The amount of information
transmitted per each use of the timing channel depends on
the value of x and the precision ∆ of the clocks of the
communicating nodes as shown in [2]. In our model we
assume that the parameters ∆ and TAJ which are hardware
dependent are known a-priori to both the target node and
the jammer, whereas the strategies x and y are estimated by
means of a training phase. This is consistent with the complete
information assumption which is common in game theoretic
frameworks.

To model the interactions between the target node and the
jammer we propose a jamming game framework, defined by a
3-tuple G = (N ,S,U), where N is the set of players, S is the
strategy set, and U is the utility set. The set N is composed
by the target node T and the jammer J , while the strategy set
is S = ST × SJ , where ST and SJ are the set of strategies
of the target node and the jammer, respectively.

In our model we assume that the jammer is energy-
constrained, e.g., it is battery-powered; hence, its choice of
y (i.e., the average duration of the signal emission that jams
the packet transmission) stems from a trade-off between two
requirements, i.e., i) reduce the amount of information that
the target node T can transmit to the perspective receiver,
and ii) keep the energy consumption as low as possible.
Observe that requirement i) would result in the selection of
a high value for y, whereas requirement ii) would result in
a low value for y. On the other hand, the target node has
to properly choose the value of x (i.e., the maximum silence
period duration scheduled following the transmission of the
j − th packet and the subsequent jamming signal) in order to
maximize the achievable capacity C(x, y), i.e., the amount of
information that can be sent by means of the timing channel,
while minimizing its energy consumption. Therefore, it is
reasonable to consider that the values of x and y represent the
strategies for the target node T and the jammer J , respectively.
Accordingly, the set of strategies for both players, ST and SJ ,
can be defined as the set of all the feasible strategies x and y,
respectively.

4The uniform distribution assumption is due to the fact that, as well known,
this distribution maximizes the entropy, given the range in which the random
variable is defined.
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The utility set of the game is defined as U = (UT ,UJ ),
where UT and UJ are the utility functions of the target node
and the jammer, respectively. As already said, the target node
aims at maximizing its own achievable capacity, C(x, y) while
also minimizing its energy consumption. The jammer, on its
side, aims at reducing the capacity achieved by the target
node by generating interference signals, whose duration is y
(in average), while keeping its own energy consumption low.
Accordingly, the utility functions UT (x, y) and UJ(x, y) to be
maximized are defined as follows:{

UT (x, y) = +C(x, y)− cT∗ · TP · PT
UJ(x, y) = −C(x, y)− cT · y · P

(1)

where PT and PJ are the transmission power of the target
node and the jammer, respectively, TP is the duration of
a transmitted packet in seconds, cT∗ and cT are positive
transmission costs expressed in [bit/(s · J)] which weight the
two contributions in the utility functions and therefore, in
the following will be referred to as weight parameters. Note
that while the energy consumption of the jammer varies as a
function of the strategy y of the jammer itself, on the contrary
the energy consumption of the target node during a cycle
only depends on the duration TP of the packet and not on
the strategy. Furthermore, a low value of cT means that the
jammer considers its jamming effectiveness more important
than its energy consumption, while a high cT value indicates
that the jammer is energy-constrained and, as a consequence,
it prefers to save energy rather than reducing the capacity of
the target node. We observe that cT = 0 models the case of
continuous jamming without any energy constraint, which is
of limited interested and out of the scope of this paper, since
we focus on studying the trade-off between the achievable
capacity and the consumed energy.

Let us now calculate the capacity C(x, y) which appears in
the utility function (1). To this purpose, we denote the interval
between two consecutive transmissions executed by T as a
cycle. The expected duration of a cycle is

tCycle = TAJ + y + x/2 (2)

The capacity C(x, y) can be derived as the expected value
of the information transferred during a cycle, cCycle(x, y),
divided by the expected duration of a cycle, tCycle. It is easy
to show that cCycle(x, y) is approximately

cCycle = log2 (x/∆) (3)

Note that at each timing channel utilization the target node T
is expected to transmit at least one bit; then, from eq. (3) it
follows that x ≥ 2∆.

Eqs. (2) and (3) can be exploited to calculate the capacity
C(x, y), i.e.,

C(x, y) =
log2 (x/∆)

TAJ + y + x/2
(4)

Hereafter we illustrate a simple numerical example that
refers to the same realistic scenarios addressed in [11]. The
considered parameter settings are reported in Table I. It is
also assumed that both the target node and the jammer trans-
mit their respective signals by using the maximum allowed

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

1

2

3

4

5

6

7

8
x 10

4

Maximum silence period duration, x [sec]

U
T
(x

,y
)

 

 
y=4.0 10

−5
 sec

y=1.9 10
−4

 sec

y=3.9 10
−4

 sec

Fig. 2: Utility function of the target node (UT (x, y) ) as a function
of x for different values of the average jamming signal duration y
(cT∗ · P = 2 · 106).
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Fig. 3: Utility function of the target node (UT (x, y) ) as a function
of x for different values of the product cT∗ · P (y = 2.8 · 10−4s).

transmitting power, i.e., PT = PJ = P .
Fig. 2 shows the utility function of the target node T as a

function of x, for different values of y.
We note that UT (x, y) increases when x increases until

it reaches a threshold after which the utility function starts
decreasing. This is due to the fact that, when x is higher
than such a threshold, the silence duration is large enough to
cause an increase in the transmission delay and, consequently,
a decrease in the transmission capacity. This is a well known
result in timing channel communications [22]. In Fig. 2 we
also note that the achievable performance noticeably depends
on the jamming signal duration y. In fact, when y increases,
the capacity of the target node decreases as the jamming
attack forces the transmitter in delaying its timing channel
communications by increasing x. Figure 3 shows the impact
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Name Value Unit
TAJ 15 µs
∆ 1 µs
P 2 W
TP 50 µs

TABLE I: Parameter settings used in our simulations.
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Fig. 4: Utility function of the jammer (UJ(x, y)) as a function of
y for different values of the maximum silence period duration x
(cT · P = 2 · 106).

of the energy consumption on the utility achieved by the target
node. As expected, the higher the product cT ·P is, the lower
the achieved utility is. Note that, as the energy consumption
in any cycle is constant and does not depend on either x or y,
the energy cost of the target node UT (x, y) would only result
in a slight shift in the utility function of the target node.

Fig. 4 shows instead the utility function of the jammer
UJ(x, y) vs. y for different values of x.

Note that for high values of y the utility function UJ(x, y)
does not practically depend on x. This is because high y
values imply C(x, y) ≈ 0 regardless of the specific value of x.
Such a behavior is evident in Fig. 4. We observe that for high
values of y the capacity achieved by the target node C(x, y)
is negligible and, thus, the utility function of the jammer can
be approximated as UJ(x, y) ' −cT · y · P . In other words,
the utility of the jammer decreases linearly with y. To this
purpose, in Fig. 5 we show the utility of the jammer UJ(x, y)
for different values of the product cT ·P . It is evident that, as
expected, when the cost of transmitting the interference signal
at the jammer is high (i.e., cT · P is high) the utility function
UJ(x, y) decreases rapidly and linearly.

IV. NASH EQUILIBRIUM ANALYSIS

In this Section we solve the game described in Section III,
and we find the Nash Equilibrium points (NEs), in which
both players achieve their highest utility given the strategy
profile of the opponent. In the following we also provide
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Fig. 5: Utility function of the jammer (UJ(x, y)) as a function of y
for different values of the product cT · P (x = 5 · 10−4s).

proofs of the existence, uniqueness and convergence to the
Nash Equilibrium under best response dynamics.

Let us recall the definition of Nash equilibrium:

Definition 1. A strategy profile (x∗, y∗) ∈ S is a Nash
Equilibrium (NE) if ∀(x′, y′) ∈ S

UT (x∗, y∗) > UT (x′, y∗)

UJ(x∗, y∗) > UJ(x∗, y′)

that is, (x∗, y∗) is a strategy profile where no player has
incentive to deviate unilaterally.

One possible way to study the NE and its properties is to
look at the best response functions (BRs). A best response
function is a function that maximizes the utility function of a
player, given the opponents’ strategy profile. Let bT (y) be the
BR of the target node and bJ(x) the BR of the jammer. These
functions can be characterized as follows:

bT (y) = arg max
x∈ST

UT (x, y)

bJ(x) = arg max
y∈SJ

UJ (x, y)

In our model it is possible to analytically derive the closed
form of the above BRs by analyzing the first derivatives of
UT (x, y) and UJ (x, y), and imposing that ∂

∂xUT (x, y) = 0
and ∂

∂yUJ (x, y) = 0.
It is easy to see that ∂

∂xUT (x, y) = 0 leads to

1

x
− 1

2
log
( x

∆

) 1

TAJ + y + x
2

= 0 (5)

Eq. (5) can be rewritten as follows:

2(TAJ + y)

e∆
=

x

e∆
· log

x

e∆
(6)

Note that eq. (6) is in the form β = α logα, and, by exploiting
the definition of Lambert W-function, say W (z), which, for
any complex z, satisfies z = W (z)eW (z), it has solution α =
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(xNE, yNE) =


(

∆e
1
2W ( 8

η∆2 )
, ∆

2 [ 1
2W ( 8

η∆2 )− 1]e
1
2W ( 8

η∆2 ) − TAJ
)

if cT < c̃T(
∆eW ( 2T

e∆ )+1, 0
)

otherwise
(7)

eW (β).
Therefore, eq. (6) can also be rewritten as

x = ∆e
W

(
2(TAJ+y)

e∆

)
+1

which is, by definition, bT (y).
In order to derive the closed form of bJ(x) we first solve

∂
∂yUJ (x, y) = 0. It can be easily proven that ∂

∂yUJ (x, y) = 0
leads to

log
( x

∆

)
= η

(
TAJ +

x

2
+ y
)2

which can be rewritten as follows:

bJ(x) =

√
log( x∆ )

η
− TAJ −

x

2

where η = cT · P · log 2.
Therefore, we can write

bT (y) = ∆eψ(y)+1 (8)

bJ(x) =

{
χ(x), if χ(x) > 0

0, if χ(x) < 0
(9)

where

ψ(y) = W

(
2[TAJ + y]

e∆

)
, χ(x) =

√
log( x∆ )

η
−TAJ−

x

2
(10)

Note that the best response of the jammer bJ(x) depends
on the value of the weight parameter cT . Also, it can be
shown that there exists a critical value of the weight parameter,
say c

(max)
T , such that bJ(x) < 0 ∀x ∈ ST , ∀cT ≥ c

(max)
T .

In fact, since the function χ(x) is strictly decreasing in
cT , limcT→+∞ χ(x) < 0 and limcT→0 χ(x) = +∞, the
intermediate value theorem ensures the existence of c(max)

T . By
looking at the first derivative of the χ(x) function in eq. (10),
it can be shown that c(max)

T = 1
P log(2)

1
2∆(∆+T ) . Therefore,

if cT ≥ c
(max)
T the only possible strategy of the jammer is

bJ(x) = 0, and then, as the strategy set of the jammer (SJ )
is a singleton, the game has a trivial outcome.

A. Existence of the Nash Equilibrium

It is well known that the intersection points between bT (y)
and bJ(x) are the NEs of the game. Therefore, to demonstrate
the existence of at least one NE, it suffices to prove that bT (y)
and bJ(x) have one or more intersection points. In other words,
it is sufficient to find one or more pairs (x∗, y∗) ∈ S such that

(bT (y∗), bJ(x∗)) = (x∗, y∗) (11)

To this aim, in the following we provide some structural
properties of the utility functions, UT (x, y) and UJ (x, y), that
will be useful in solving eq. (11).

Lemma 1. For the utility functions UT (x, y) and UJ (x, y),
the following properties hold 5:
• UT (x, y) is strictly concave for x ∈ [2∆, x′] and is

monotonically decreasing for x > x′ where x′ = bT (y)
• UJ (x, y) is strictly concave ∀y ∈ SJ .

Theorem 1 (NE existence). The game G admits at least an
NE.

Proof: If we limit the strategy of the target node to
[2∆, x′], it follows from Lemma 1 that there exists at least
an NE since both the utility functions are concave in the
restraint strategy set [23]. However, this does not still prove the
existence of the NE in the non-restraint strategy set ST . Let
(x∗, y∗) denote the NE with a restraint strategy set [2∆, x′];
we can easily observe that (x∗, y∗) is also the NE of the
jamming game with non-restraint strategy set. To show this,
recall Lemma 1 that states that UT (x, y) is monotonically
decreasing for x > x′. The transmitter has thus no incentive
to deviate from (x∗, y∗) and the jammer has no incentive to
deviate from it either. Therefore, (x∗, y∗) is the NE of the
jamming game.

B. Uniqueness of the Nash Equilibrium
After proving the NE existence in Theorem 1, let us prove

the uniqueness of the NE, that is, there is only one strategy
profile such that no player has incentive to deviate unilaterally.

Theorem 2 (NE uniqueness). The game G admits a unique
NE that can be expressed as given in eq. (7), where η =
cT · P · log 2 and

c̃T =
4

∆2P log 2
e−2[W ( 2T

e∆ )+1]/(W (
2T

e∆
) + 1) (12)

The proof consists in exploiting formal and structural
properties of the best response functions to show that their
intersection is unique, that is, eq. (11) admits a unique solution.
For a detailed proof see Appendix A

C. Convergence to the Nash Equilibrium
We now analyze the convergence of the game to the NE

when players follow Best Response Dynamics (BRD). In
BRD the game starts from any initial point (x(0), y(0)) ∈ S
and, at each successive step, each player plays its strategy
by following its best response function. Thereby, at the i-
th iteration the strategy profile (x(i), y(i)) can be formally
expressed by the following BRD iterative algorithm:{

x(i) = bT (y(i−1))

y(i) = bJ(x(i−1))

5The proof of Lemma 1 which is straightforward (although quite long),
consists in calculating the first and second derivatives of the utility functions
and studying them.
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Let b(x, y) = (bT (y), bJ(x))T be the best response vector
and Jb be the Jacobian of b(x, y) defined as follows

Jb =

 ∂
∂xbT (y) ∂

∂y bT (y)

∂
∂xbJ(x) ∂

∂y bJ(x)

 =

[
0 ∂

∂y bT (y)
∂
∂xbJ(x) 0

]
(13)

It has been demonstrated [24] that, if the Jacobian infinity
matrix norm ||Jb||∞ < 1, the BRD always converges to the
unique NE. In the following we prove the following theorem:

Theorem 3 (NE convergence - sufficient condition). The
relationship

cT >
1

9∆2 log 2P

1(
W ( 2TAJ

e∆ ) + 1
)
e2(W (

2TAJ
e∆ )+1)

(14)

is a sufficient condition for the game G to converge to
the NE. Furthermore, it converges to the NE in at most
logJmaxb

ε
||s1−s0|| iterations for any ε, where Jmaxb = max Jb

and si = (xi, yi).

To demonstrate the theorem,

1) we prove that the relationship

max
x∈ST

(
1

ηx2 log( x∆ )

)
< 9 (15)

is a sufficient condition for the BRD to converge to the
NE in at most logJmaxb

ε
||s1−s0|| iterations. This is the

focus of Lemma 2;
2) we define a game G′ and demonstrate that G converges to
G′ in two iterations at most. This is the focus of Lemma
3;

3) we demonstrate that the condition in eq. (14) is a suf-
ficient condition for G′ to satisfy eq. (15) and converge
to the same NE of G. This is the focus of Lemma 4.

Lemma 2. The BRD converges to the unique NE from any
(x(0), y(0)) ∈ S if maxx∈ST

(
1

ηx2 log( x∆ )

)
< 9 in at most

logJmaxb

ε
||s1−s0|| iterations.

The proof is based on showing that the above relationship
is a sufficient condition for the Jacobian infinity matrix norm
||Jb||∞ to be always lower than 1, and thus, according to
[24], convergence of the BRD follows. We refer the reader to
Appendix B for a detailed proof of Lemma 2.

Let us now observe that bJ(x) is lower-bounded as it is
non-negative (bJ(x) > 0) and, since it is concave, it has a
maximum, say yM , for x̂ = ∆e

1
2W ( 2

η∆2 ), and thus it is upper-
bounded (bJ(x) 6 yM = bJ(x̂)). Also, it is easy to prove that
bT (y) is a non-negative strictly increasing function, hence, it
is lower-bounded by xm = bT (0). We can thus define a new
strategy set S ′ = ST ′ × SJ ′ = [xm, xM ] × [0, yM ], where
S ′ ⊂ S and xM = bT (yM ), which is relevant in the following
lemma:

Lemma 3. Given any starting point (x(0), y(0)) ∈ S, the
BRD is bounded in S ′ in at most two iterations. That is,
(x(i), y(i)) ∈ S ′ for i = 2, 3, ...,+∞.

Proof: Let S(1) be the strategy set at the first iteration.
From eqs. (8) and (9) we have that bJ(x) is lower and

upper-bounded by y = 0 and y = yM , respectively, thus
y(1) ∈ [0, yM ]. Furthermore, as bT (x) is lower-bounded by
x = xm and y(0) ∈ SJ = [0,+∞[, it follows that x(1) ∈
[xm,+∞). Hence, we have that S(1) = ST (1) × SJ (1) =
[xm,+∞) × [0, yM ], S(1) ⊂ S. Due to the boundedness of
y(1) which assumes values in SJ (1), it can be shown that at
the second iteration x(2) ∈ [xm, xM ] while y(2) ∈ [0, yM ],
thus, we have that (x(2), y(2)) ∈ S ′. We can extend the same
reasoning to the j-th iteration (∀j = 3, 4, ...,∞) to obtain that
(x(j−1), y(j−1)) ∈ S ′. Therefore, it follows that (x(j), y(j)) is
still in S ′, which concludes the proof.

Lemma 4 (NE convergence). If the parameter cT satisfies the
condition:

cT > c′T =
1

9∆2 log 2P

1(
W ( 2TAJ

e∆ ) + 1
)
e2(W (

2TAJ
e∆ )+1)

(16)
then G′ converges to the NE of G.

Proof: Since the function on the left-hand side of eq.
(15) is non-negative and strictly decreasing, and the minimum

value of ST is xm = ∆e
W

(
2TAJ
e∆

)
+1, then

max
x∈ST

(
1

ηx2 log( x∆ )

)
=

1

ηx2
m log(xm∆ )

(17)

It is easy to show that if eq. (16) holds, then

1

ηx2
m log(xm∆ )

< 9

and therefore, recalling eq. (17), eq. (15) holds. From Lemma
2 we thus obtain that G′ converges to its NE.

We still need to demonstrate that G and G′ converge to
the same equilibrium point. To this purpose it is sufficient
to prove that the equilibrium point of G is in S ′. Theorem
2 guarantees that the game G admits a unique equilibrium,
which has to be in S. Let (xNE, yNE) be the NE, i.e., the
unique intersection point between bT (y) and bJ(x). As bJ(x)
takes values in [0, yM ] it follows that yNE ∈ [0, yM ]; therefore,
xNE = bT (yNE) ∈ [xm, xM ]. It follows that (xNE, yNE) ∈ S ′,
which concludes the proof.

V. STACKELBERG GAME

In a Stackelberg game one of the players acts as the leader
by anticipating the best response of the follower. In our
scenario, the jammer plays its strategy when a communication
from the target node is detected on the monitored channel;
thus, it is natural to assume that the target node acts as the
leader followed by the jammer. Obviously, given the strategy
of the target node x, the jammer will play the strategy that
maximizes its utility, that is, its best response bJ(x)6. This
hierarchical structure of the game allows the leader to achieve
a utility which is at least equal to the utility achieved in the
ordinary game G at the NE, if we assume perfect knowledge,
that is, the target node is completely aware of the utility
function of the jammer and its parameters, and thus it is able
to evaluate bJ(x). Whereas, if some parameters in the utility

6In the following, given that the value of cT∗ does not impact on the game,
for worth of simplicity we assume that cT∗ = 0.
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UT (x, bJ(x)) =


√
cTP log2(

x

∆
)− cT∗ · TP · PT if χ(x) > 0 (18a)

log2(
x

∆
)/(TAJ +

x

2
)− cT∗ · TP · PT if χ(x) 6 0 (18b)

function of the jammer are unknown at the target node, i.e.,
the imperfect knowledge case, the above result is no more
guaranteed as it is impossible to evaluate the exact form of
bJ(x). In this section we analyze the Stackelberg game and
provide useful results about its equilibrium points, referred to
as Stackelberg Equilibria (SEs).

Definition 2. A strategy profile (x∗, y∗) ∈ S is a Stackelberg
Equilibrium (SE) if y∗ ∈ SJ NE(x) and

x∗ = arg max
x′
UT (x′, y∗)

where SJ NE(x) is the set of NE for the follower when the
leader plays its strategy x.

In the following we will prove that, in the case of perfect
knowledge, there is a unique SE for any value of the weight
parameter cT , and we demonstrate that the target node can
inhibit the jammer under the perfect knowledge assumption.
Next, we will investigate the implications of imperfect knowl-
edge on the game outcome.

A. Perfect Knowledge

Under the perfect knowledge assumption, the target node
selects x in such a way that UT (x, bJ(x)) is maximized,
where UT (x, bJ(x)) is calculated in eqs. (18a) and (18b) by
replacing expression (9) in eqs. (4) and (1). By analyzing
the first derivative of χ(x), it can be shown that χ(x) has
a maximum in x̂ = ∆e

1
2W ( 2

η∆2 ) and, consequently, χ(x) is
strictly decreasing for x > x̂ and strictly increasing for x < x̂.

In the following we show that for any value of cT there
exists a unique Stackelberg Equilibrium, and this is when the
jammer does not jam the timing channel7. Furthermore, we
show that the leader can improve its utility at the Stackelberg
equilibrium if and only if cT < c̃T .

Theorem 4. For any value of the parameter cT , the Stackel-
berg game GT has a unique equilibrium.

Proof: First, we prove that the game admits a unique
equilibrium for cT ≥ c(max)

T . Recall that cT ≥ c(max)
T implies

bJ(x) = 0; therefore, SJ is singleton and the unique feasible
strategy for the jammer at the SE is ySE = 0. In fact, due
to the high cost associated to the emission of the jamming
signal, the jammer is inhibited ∀x ∈ ST . Hence, it can be
easily proved that the strategy profile at the SE is (xSE, ySE) =

(∆eW (
2TAJ
e∆ )+1, 0), that is, at the SE the target node selects

the strategy that maximizes the capacity of the non-jammed
timing channel (where indeed ySE = 0).

7In this case the jammer is expected to transmit the interference signal for
a short time interval only because this suffices to disrupt communications, as
occurs in traditional communication channels.

Instead, if cT < c
(max)
T , from eq. (10) we have that χ(x̂) >

0. Thus, for the intermediate value theorem there exist x1 < x̂
and x2 > x̂ such that χ(x1) = χ(x2) = 0, as shown in Fig.
6.

Let us denote ST 1 = {x ∈ [2∆, x1]}, ST 2 = {x ∈
[x1, x2]}, ST 3 = {ST r (ST 1 ∪ ST 2)}, and x′ =

∆eW (
2TAJ
e∆ )+1. It can be easily proved that x′ maximizes

eq. (18b) and, since χ(x′) > 0, it follows that x′ ∈ ST 2.
Therefore, the utility function of the target node as defined in
eq. (18b) increases for x < x′ and decreases for x > x′. The
latter is fundamental to prove the theorem; in fact, as shown in
Fig. 6, for x ∈ ST 1 the utility of the target node is defined by
eq. (18b) and strictly increases as x increases; therefore, we
have that in ST 1 the maximum utility is achieved in x1. On
the contrary, in ST 2 the utility is defined by eq. (18a), which is
a strictly increasing function that achieves its maximum value
for x = x2. Finally, for x ∈ ST 3 we have that the utility of the
transmitter defined by eq. (18b) strictly decreases as x > x′;
hence, the maximum value is achieved for x = x2.

Since UT (x, bJ(x)) < UT (x2, bJ(x2)) with x 6= x2, it
follows that, to maximize its own utility, the target node must
play the unique strategy x = x2. Note that χ(x2) = 0 by
definition, thus from eq. (9) we have that the strategy of the
jammer at the equilibrium is ySE = 0. Therefore, xSE = x2 is
the strategy of the target node at the SE, and we can identify
the unique SE as (xSE, ySE) = (x2, 0), which concludes the
proof.

Let us remark that the above Theorem also highlights an
insightful side-effect: at the Stackelberg equilibrium, pursuing
the goal of inhibiting the jammer makes the target node prefer
to increase transmission delay rather than reduce its achievable
capacity.

Let us also note that, although an analytical closed form for
xSE cannot be easily derived, its value can be determined by
means of numerical search algorithms such as the bisection
search algorithm. Obviously, such algorithms will not give
the exact value of xSE; in fact, they will return an inter-
val [xm, xM ] small as desired, containing the solution, i.e.,
xSE ∈ [xm, xM ], and eventually the target node will select
the minimum or the maximum value of the interval which
gives the highest utility function. Let ε(xm, xM ) denote the
loss in the utility of the target node due to the fact that it
cannot determine the exact value of xSE. Given that the utility
function is continuous and that its derivative is upperbounded
by umax =

√
cT · P/(4∆ log 2) in [x1, xSE], it is possible to

show that selecting the interval size in such a way that

xM − xm ≤ ε∗/umax (19)

the loss in the utility of the target node, ε(xm, xM ), is lower
than ε∗. In other terms, by using numerical search algorithms
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Fig. 6: Graphical representation of χ(x) and UT (x, bJ(x)) in the
Stackelberg game. The solid line is the actual utility of the target
node in each strategy subset.

such as the bisection search algorithm, the target node can
make the loss in its utility as small as desired.

In the following we provide an approximation x′SE that can
be helpful from a practical point of view. Let us assume that(
TAJ + x

2

)
≈ x

2 , therefore, eq. (10) can be rewritten as follows

log( x∆ )

log(2)cTP
=
(x

2

)2

(20)

By means of simple manipulations it can be easily shown that
eq. (20) admits the following solution:

x′SE = ∆e
− 1

2W

(
− log(2)cT P∆2

2

)
(21)

In Section VI we will provide numerical results that show how
much the approximation in eq. (21) affects the outcome of the
Stackelberg game.

Theorem 5. In the Stackelberg game the target node improves
its utility as compared to the NE if and only if 0 < cT < c̃T .

Proof: Let us start with the proof of the sufficient
condition implied by the Theorem 5. According to eqs. (7)
and (18a), proving that UT (xSE, bJ(xSE)) > UT (xNE, yNE) is
equivalent to showing that√

cTP log2(
xSE

∆
) >

1

log 2

2

∆
e
− 1

2W ( 8
η∆2 )

that is
1

2
W (

8

η∆2
) < log(

xSE

∆
)

This only holds if xSE > ∆e
1
2W ( 8

η∆2 )
= xNE. Recall that if

0 < cT < c̃T , the NE is an interior NE, that is, χ(xNE) > 0.
Therefore, as χ(xSE) = 0, it must hold that xNE < xSE,
which proves the sufficiency condition. As for the necessary
condition, we have to show that, if cT > c̃T , no improvement

can be achieved by the target node. In fact, if cT > c̃T it
is straightforward to prove that the NE and the SE coincide,
and thus, the utilities of the target node at the SE and NE are
equal.

B. Imperfect knowledge

We now investigate the implications of imperfect knowledge
on the weight parameter cT in eq. (1). In Theorem 4 we proved
that the optimal strategy in the Stackelberg game is xSE such
that χ(xSE) = 0. According to eq. (10) the value of cT is
needed to evaluate xSE. However, it is reasonable to assume
that in realistic scenarios the value of cT is not available at
the target node, while instead, only statistical information on
the distribution of cT is likely known. Let us denote as fcT (ξ)
the probability density function (pdf) of the random variable
representing the weight parameter cT . We also denote as g(ξ)
the function returning the strategy of the target node at the SE,
xSE, when the weight parameter for the jammer is cT = ξ.

The resulting utility function of the target node Uξ
T =

UT (g(ξ), bJ(g(ξ)) can be calculated as

Uξ
T =


√
cTP log2

(
g(ξ)

∆

)
if ξ > cT (22a)

log2

(
g(ξ)

∆

)
/

(
TAJ +

g(ξ)

2

)
if ξ ≤ cT (22b)

Let us refer to E{Uξ
T } as the expected value of the utility

function of the target node. Assuming that fcT (ξ) is a contin-
uous function, it follows that

E{Uξ
T } =

∫ +∞

−∞
UT (ξ|cT = α)fcT (α)dα =

=

∫ ξ

−∞
UT (ξ|cT = α)fcT (α)dα+

∫ +∞

ξ

UT (ξ|cT = α)fcT (α)dα

From eqs. (22a) and (22b) we have

E{Uξ
T } =

∫ ξ

−∞

√
αP log2(

g(ξ)

∆
)fcT (α)dα+

+

∫ +∞

ξ

log2( g(ξ)∆ )

(TAJ + g(ξ)
2 )

fcT (α)dα =

=

√
P log2(

g(ξ)

∆
)

∫ ξ

−∞

√
αfcT (α)dα+

+
log2( g(ξ)∆ )

(TAJ + g(ξ)
2 )

∫ +∞

ξ

fcT (α)dα (23)

By exploiting the relationship in eq. (10), eq. (23) can be
rewritten as

E{Uξ
T } = P

(
TAJ +

g(ξ)

2

)√
ξ

[∫ ξ

−∞

√
αfcT (α)dα+

+
√
ξ

∫ +∞

ξ

fcT (α)dα

]
(24)

Note that the target node has first to find ξ∗ =
arg maxξ E{Uξ

T }, and then, the optimal strategy is evaluated
as xSE (ξ∗) such that χ (xSE(ξ∗)) = 0.
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In the following we analyze the especially relevant case
when the random variable ξ is uniformly distributed in a closed
interval8, that is, the pdf of ξ is defined as

fcT (ξ) =

{
1

ξmax−ξmin if ξ ∈ [ξmin, ξmax]

0 otherwise
(25)

By substituting eq. (25) in eq. (24), we obtain the following
expression

E{Uξ
T } = P

(
TAJ + g(ξ)

2

)
ξmax − ξmin

[
ξξmax −

1

3
ξ2 − 2

3
ξ

1
2 ξ

3
2
min

]
(26)

In order to maximize the expected utility we study the first
derivative of eq. (26), which leads to:

W
(
−P log(2)∆2

2 ξ
)

1 +W
(
−P log(2)∆2

2 ξ
) (ξmax − 1

3
ξ − 2

3

ξ
3
2
min√
ξ

)
=

=2ξmax −
4

3
ξ − 2

3

ξ
3
2
min√
ξ

(27)

The solution of eq. (27), say ξopt, is the value of ξ that
maximizes the expected utility of the target node. Regrettably,
ξopt can be evaluated only numerically. Thus, in the aim
of providing practical methods to choose ξ, in the next
section we will discuss some analytical results that show how
ξ = ξmax well approximates ξopt. In fact, if we assume
W
(
−P log(2)∆2

2 ξ
)
/
[
1 +W

(
−P log(2)∆2

2 ξ
)]
≈ 1, then, eq.

(27) can be reformulated as

ξmax −
1

3
ξ = 2ξmax −

4

3
ξ

whose solution is ξ = ξmax. Furthermore, we will show that
the above approximation guarantees high efficiency at the SE
even if the uncertainty on the actual value of cT is high, as in
the case of a uniform distribution.

VI. NUMERICAL RESULTS

In this section we apply the theoretical framework de-
veloped in the previous sections to numerically analyze the
equilibrium properties for both the ordinary and Stackelberg
games. As introduced in Section III, the settings of the relevant
parameters are those in Table I.

A. Ordinary Game

In Fig. 7 we show the best response functions of both the
target node and the jammer for different values of the weight
parameter cT . As already said, the NE is the intersection point
between the best response functions. As expected, the best
response of the target node does not depend on the value of
cT , while this is not true for the best response of the jammer.
Note that for high cT values the jammer reduces its jamming
signal duration y, and the strategy of the target node consists
in reducing the maximum silence duration x.

8Note that the uniform distribution represents the worst case, as it is the
distribution that maximizes the uncertainty on the actual value of cT , given
that a minimum and a maximum values are given.
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Fig. 7: Best response functions for both the target node and the
jammer.

Figs. 8(a) and 8(b) illustrate the strategy of the players
at the NE as a function of cT for different values of the
transmitting power P . Note that, as cT increases, the target
node decreases the maximum silence duration and the jammer
reduces the jamming signal duration as well. In fact, upon
increasing cT the jammer acts in an energy preserving fashion
and this causes a decrease in y. Such a behavior allows
the target node to behave more aggressively by reducing the
maximum silence duration x. Furthermore, upon increasing P ,
the strategies x and y decrease as higher P values force the
jammer to reduce the jamming signal duration and, thus, the
energy consumption. Also, the target node can reduce x, thus
increasing its achieved capacity.

Figs. 9(a) and 9(b) illustrate how the BRD evolves at each
iteration for different values of the weight cT . Since we
proved that the game converges to the NE, Figs. 9(a) and 9(b)
show how, as expected, the players’ strategies converge to the
strategy set S ′ in 2 iterations (as discussed in Lemma 3) and
to the NE in at most 7 iterations9. It is also shown that an
increase in the value of cT causes a decrease in the strategies
of both players due to the aggressive behavior of the jammer.

B. Stackelberg Game

We now turn to the analysis of the Stackelberg game,
where the target node anticipates the jammer’s reaction. In this
regard, Fig. 10 compares the utilities achieved by each player
at the NE and SE. Note that, as proven in Theorem 5, the utility
achieved by the target node at the SE is higher than, or at least
equal to, the utility achieved at the NE. Moreover, at the SE
the utility is higher than at the NE for the jammer as well. In
fact, the target node increases the maximum silence duration
x, that is, it increases transmission delay, and inhibits the
jammer. Accordingly, the jammer stops its disrupting attack,
and thus, it saves energy; as a result, its utility increases when

9Note that, although we proved that the convergence to the NE is guaranteed
only if cT < c̃T , in our simulations the game always converges to the NE in
a few iterations, independently of the value of cT .
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Fig. 8: a) Strategy of the target node at the NE as a function of the weight parameter cT for different values of the transmitting power P
b) Strategy of the jammer at the NE as a function of the weight parameter cT for different values of the transmitting power P .
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Fig. 9: a) Strategy of the target node at each iteration b) Strategy of the jammer at each iteration.

compared to that at the Nash Equilibrium. We further observe
that, as expected, for high values of cT , the improvement in
the achieved utility becomes negligible, as already proven in
Theorem 5.

Figs. 11(a) and 11(b) illustrate the strategy at the equilib-
rium points of the target node and the jammer as a function of
the parameter cT , and show how the strategies of both players
decrease as cT increases. In fact, high values of the weight
parameter cT suggest a conservative behavior of the jammer
at the NE (e.g. the jammer is more energy constrained), so that
the jammer prefers to decrease the duration of the jamming
signal y in order to reduce its energy consumption. Instead,
as proven in Theorem 4, at the SE the target node forces
the jammer in stopping its jamming attack, thus, ySE = 0.
Furthermore, for high values of the parameter cT , the strategy

x of the target node consists in choosing low silence duration
at both the NE and SE. This is because by increasing cT
the strategy of the jammer consists in reducing the duration
of the jamming signal. Hence, the target node decreases the
maximum duration of the silence intervals x, that is, T reduces
the transmission delays while achieving a higher transmission
capacity. Note that when the value of cT approaches c̃T , the
NE and SE become equal.

Under the perfect knowledge assumption, at the SE the
strategy of the target node, xSE, coincides with the solution of
χ(x) = 0, which can also be approximated to x′SE as given in
eq. (21). Accordingly, in Fig. 12(a) we compare the utilities
of the target node at the SE, in its exact and approximated
strategies xSE and x′SE, respectively. Fig. 12(b) shows that the
approximation accuracy of x′SE, defined as the ratio between
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Fig. 11: a) Strategy of the target node T at NE and SE as a function of the weight parameter cT b) Strategy of the jammer J at NE and
SE as a function of the weight parameter cT .
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Fig. 12: Impact of the approximation x′SE in eq. (21) on the Stackelberg game outcome as a function of the weight parameter cT (cT ·P =
2 · 106).

UT (x′SE, bJ(x′SE)) and UT (xSE, bJ(xSE)), strongly depends
on the value of cT . As shown in Fig. 12(c), the error introduced
by the approximation

(
TAJ + xSE

2

)
≈ x′SE

2 is low when low
values of cT are considered, because, in this case, the strategy
of T at the SE, xSE, consists in choosing larger silence
durations, and thus xSE

2 � TAJ . On the contrary, when cT
is high, there is no need for the target node to choose high
xSE values, thus the above approximation introduces a non-
negligible error on the estimate of x′SE. Note that, although
the approximation is affected by errors, Fig. 12(b) shows that
the approximation accuracy is still high (i.e. larger than 82%).

To evaluate the impact of imperfect knowledge on the utility
of the target node, let us now define the equilibrium efficiency
e(ξ) as follows:

e(ξ) =
Uξ
T

UcT
T

(28)

Fig. 13 illustrates the equilibrium efficiency of the target
node as a function of cT for different choices of ξ. More in
detail, we considered ξ ∈ {ξopt, ξmean, ξmax, ξmin }, where

ξmean = (ξmax + ξmin)/2, ξmin = 105 and ξmax = 109.
Note that in our simulations ξmin = 105 and ξmax = 109

are realistic setting assumptions. In fact, lower values of ξmin
or higher values of ξmax lead to unbalanced settings as one
of the terms in eq. (1) will always dominate the other. The
most important result is that the equilibrium efficiency when
ξ ∈ {ξopt, ξmean, ξmax} is always higher than 75%, while
the case ξ = ξmin achieves a very low equilibrium efficiency
(and thus, it is not reported in Fig. 13). As demonstrated in
Section V-B, Fig. 13 shows that ξmax well approximates ξopt,
i.e., e(ξopt) ' e(ξmax). Therefore, from a practical point of
view, if the computation of ξopt is not feasible (e.g., high
computational cost and low hardware capabilities) it is still
possible to achieve a high equilibrium efficiency by choosing
ξ = ξmax.

Finally, in Fig. 14 we compare the utility functions of the
target node and the jammer obtained at the NE and SE with
what is obtained in the cases the two players select their
strategies without considering the strategies of each other.
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More specifically we will consider the two following cases:

• Case A: The target node selects its strategy x in such a
way that its capacity is maximized without considering
that the jammer will try to disrupt the communication in
the timing channel as well. In other terms, the target node
will assume that y ≈ 0.

• Case B: The jammer selects its strategy y assuming that
the target node is not aware that it (the jammer itself)
is trying to disrupt the communication in the timing
channel. In other terms, the jammer will assume that
x ≈ bT (0).

When compared to the NE and SE cases the utility function
of the target node will decrease in Case A and increase in
Case B. The viceversa holds for the utility function of the
jammer. We observe that the gap between the utility functions

Name Value Unit
TAJ 15 µs
∆ 1 µs
P 2 W
TP 20 µs
cT 8 · 109 bit/(sec · J)
cT∗ 106 bit/(sec · J)

TABLE II: Parameter settings used in our simulations.

obtained in Cases A and B compared to the NE and SE
decrease when the cost cT increases. This is because when
the cost cT increases the jammer becomes more concerned
about the energy consumption and therefore the value yNE

becomes smaller. Accordingly, the assumptions considered
in Cases A and B become accurate and consequently the
behavior approaches what is obtained when each player takes
the strategy of the opponent into account.
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Fig. 14: Comparison between the utility of the target node and the
jammer when they work at the NE, at the SE and what is obtained
in Case A and B.

C. Simulation results

To assess the accuracy of the theoretical results derived
in the previous sections, we implemented a simulator that
shows how players’ behavior dynamically evolves and how
players choose their strategies. In the simulations we assume
that each player chooses its own initial strategy randomly.
Then, players update their strategies each 10 cycles during
which each player estimates the opponent’s strategy. Players
update their strategies according to the BRD discussed in
Section IV-C. The simulation parameter setup is summarized
in Table II. Note that we chose cT > cmaxT so that NE is
on the border, i.e., the strategy of the jammer at the NE is
y∗ = 0. In Fig. 15 we show an example of the simulation
results that illustrates how players dynamically change their
strategies depending on the opponent’s one. The figure shows
that after three iterations, players reach the NE, that is, due
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to the high energy cost, the jammer stops its attack while the
target node chooses its strategy according to its best response
function,i.e., x∗ = bT (0).

VII. CONCLUSIONS

In this paper we have proposed a game-theoretic model
of the interactions between a jammer and a communication
node that exploits a timing channel to improve resilience to
jamming attacks. Structural properties of the utility functions
of the two players have been analyzed and exploited to prove
the existence and uniqueness of the Nash Equilibrium. The
convergence of the game to the Nash Equilibrium has been
studied and proved by analyzing the best response dynamics.
Furthermore, as the reactive jammer is assumed to start
transmitting its interference signal only after detecting activity
of the node under attack, a Stackelberg game has been properly
investigated, and proofs on the existence and uniqueness of
the Stackelberg Equilibrium has been provided. Finally, the
case of imperfect knowledge about the parameter cT has
been also discussed. Numerical results, derived in several real
network settings, show that our proposed models well capture
the main factors behind the utilisation of timing channels,
thus representing a promising framework for the design and
understanding of such systems.
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VIII. APPENDICES

APPENDIX A. PROOF OF THEOREM 2
Proof: In order to prove the theorem we have to solve eq. (11), that is,

find a pair (x, y) which solves the following system of equations:{
y = χ(∆eψ(y)+1)

x = ∆eψ(y)+1 (29)
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By exploiting the Lambert W-function definition and the relationship
z/W (z) = eW (z), where z =

[
2(TAJ+y)

e∆

]
, it can be proven that the

above system leads to

(y + TAJ )2 =
1

η
·
ψ2(y)

ψ(y) + 1
(30)

Given that the first derivative of the Lambert W-function is defined as

W ′(z) =
W (z)

z(W (z) + 1)
(31)

eq. (30) can also be rewritten as

e
W

(
2(TAJ+y)

e∆

)
=

1

η
·

2

∆e
·W ′

(
2(TAJ + y)

e∆

)
(32)

Note that the function on the left-hand side is strictly increasing, while the one
on the right-hand side is strictly decreasing. These structural properties imply
that the two functions have no more than one intersection point. Therefore,
the game admits a unique NE.

Now we focus on finding a closed form for the unique NE.
To this purpose, eq. (32) can be reformulated as

e
2W

(
2(TAJ+y)

e∆

)
(W

(
2(TAJ + y)

e∆

)
+ 1) =

1

η

(
2

e∆

)2

which, by exploiting the relation z = W (z)eW (z), can be rewritten as
follows:

W

(
2(TAJ + y)

e∆

)
=

1

2
W

(
8

η∆2

)
− 1 (33)

It is easy to prove that eq. (33) has the following solution

y∗ =
∆

2

(
1

2
W

(
8

η∆2

)
− 1

)
e

1
2
W

(
8

η∆2

)
− TAJ (34)

By substituting eq. (34) in eq. (8) we obtain x∗ = ∆e
1
2
W ( 8

η∆2 )
. As the

point (x∗, y∗) has been obtained as the intersection between the best response
functions in eqs. (8) and (9), it follows that (xNE, yNE) = (x∗, y∗) is the
unique NE.

Finally, we prove that the NE (xNE, yNE) is an interior NE. An interior
NE happens when it is not on the border of the strategy set; therefore, we

aim at proving that xNE > 2∆ and yNE > 0. As xNE = ∆e
1
2
W ( 8

η∆2 )
,

proving that xNE is not on the border is trivial; from eq. (34) it can also be
easily proven that the condition yNE > 0 implies 0 < cT < c̃T , where c̃T
is given in eq. (12); therefore, an interior NE exists only if 0 < cT < c̃T .
Theorem 1 states that an NE must exist for any given weight parameter cT .
Since we already proved that an interior NE exists only if 0 < cT < c̃T , we
can deduce that the NE is on the border if cT > c̃T .

From eq. (9) we know that for cT > c̃T the best response function of
the jammer, bJ (x), is continuous, and it is upper-bounded by bJ (x̂) where

x̂ = ∆e
1
2
W ( 2

η∆2 )
, and lower-bounded by 0; thus, as the NE has to be at

the border, it follows that the only feasible solution is yNE = 0. Hence, from
eqs. (8) and (9), it is easy to derive closed form solutions on the border NE,

(xNE, yNE) =

(
∆eW (

2TAJ
e∆

)+1, 0

)
, which concludes the proof.

APPENDIX B. PROOF OF LEMMA 2

Proof: To prove the Lemma, it will be shown that the condition in eq.
(15) implies that the Jacobian matrix norm ||Jb||∞ in eq. (13) is lower than
1. In fact, the condition ||Jb||∞ < 1 leads to:

max

(∣∣∣∣ ∂∂y bT (y)

∣∣∣∣ , ∣∣∣∣ ∂∂xbJ (x)

∣∣∣∣) < 1

Note that
∣∣∣ ∂∂y bT (y)

∣∣∣ can be calculated as∣∣∣ ∂∂y bT (y)
∣∣∣ = 2

W (
2(TAJ+y)

e∆
)+1

The above function is non-negative and strictly decreasing, thus it achieves
its maximum value when y = 0. Accordingly, it is sufficient to show that

max
y∈SJ

(
2

W (
2(TAJ+y)

e∆
) + 1

)
< 1 , ∀y ≥ 0

or, equivalently, that

max
y∈SJ

(
2

W (
2(TAJ+y)

e∆
) + 1

)
=

2

W ( 2TAJ
e∆

) + 1
< 1 , ∀y ≥ 0

which is indeed satisfied for all values of y in the strategy set; therefore,∣∣∣ ∂∂y bT (y)
∣∣∣ < 1,∀y ∈ SJ .

Concerning the condition
∣∣∣ ∂∂x bJ (x)

∣∣∣ < 1, by deriving bJ (x), it follows
that ∣∣∣∣∣∣∣

1

2

 1

x
√
η log x

∆

− 1


∣∣∣∣∣∣∣ < 1 (35)

The expression on the right-hand side of eq. (35) is a non-negative strictly
decreasing function, so again eq. (35) results in

max
x∈ST


∣∣∣∣∣∣∣
1

2

 1

x
√
η log

(
x
∆

) − 1


∣∣∣∣∣∣∣
 < 1 (36)

Note that eq. (36) can be rewritten in the form given in eq. (15) and ||Jb||∞ =
||Jb|| as Jb is diagonal. Let si = (xi, yi), it then follows that

||si+1 − si|| ≤ ||Jmaxb || · ||si − si−1|| ≤ · · · ≤ ||Jmaxb ||i||s1 − s0||

where ||Jmaxb || = max Jb. The above equation indicates that given any
ε > 0, after at most logJmaxb

ε
||s1−s0|| iterations, the game converges to the

NE as ||si+1 − si|| ≤ ε which thus concludes the proof.


