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10 Points in Dimension 4 not Projectively Equivalent to the Vertices of a
Convex Polytope

DAVID FORGE, M ICHEL LAS VERGNAS† AND PETER SCHUCHERT

Using oriented matroids, and with the help of a computer, we have found a set of 10 points inR
4

not projectively equivalent to the vertices of a convex polytope. This result confirms a conjecture of
Larman [6] in dimension 4.
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PROBLEM (McMullen [6]). Determine the largest integern = f (d) such that for any given
n points in general position inRd there is an admissible projective transformation mapping
these points onto the vertices of a convex polytope.

Here admissible means that none of then points is sent to infinity by the projective trans-
formation.

For dimension two and three the numbersf (d) are known: f (2) = 5 and f (3) = 7. For
d ≥ 2, Larman has established in [6] the bounds 2d+ 1≤ f (d) ≤ (d+ 1)2, and conjectured
that f (d) = 2d + 1. The upper bound has been improved tof (d) ≤ (d + 1)(d + 2)/2
by Las Vergnas [7], as a corollary of Redei’s theorem for tournaments. Recently, Ramı́rez
Alfonśın [8] has proven the linear upper boundf (d) ≤ 5d/2+ 1, by a construction using
Lawrence oriented matroids (unions of rank 1 oriented matroids).

In the context of oriented matroids the problem can be conveniently restated in terms of
hyperplanes. We refer the reader to [1] for information regarding oriented matroid theory.
As easily seen, the oriented matroids of the images of a given configuration of points by
admissible projective tranformations are all the acyclic reorientations of the oriented matroid
defined by the affine dependencies of the configuration. The dual of a configuration of points
is an arrangement of hyperplanes, and the regions defined by this arrangement are in 1–1
correspondence with the acyclic reorientations of the oriented matroid. We say that a region
which meets all hyperplanes in dimensiond − 1 is complete. It is almost immediate to verify
that a region is complete if and only if all corresponding admissible projective transformations
maps the givenn points onto the set of vertices of convex polytopes (note that these convex
polytopes necessarily have the same oriented matroid).

Hence the McMullen problem is equivalent to:determine the largest integer n= f (d) such
that any arrangement of n hyperplanes in general position inR

d contains a complete region.
The same problem for general oriented matroids has been considered by Cordovil and

Da Silva [4]: determine the largest integer n= g(r ) such that any uniform rank r oriented
matroid M with n elements has a complete region.A region(or tope) of an oriented matroid is
a region determined by the pseudohyperplanes of its topological representation. The regions
of an oriented matroid are in 1–1 correspondence with its maximal covectors, and a region
is complete if and only if changing the sign of any element in the corresponding maximal
covector produces another maximal covector. Obviouslyg(r ) ≤ f (r + 1). Cordovil and Da
Silva have shown in [4] that 2r − 1≤ g(r ), generalizing Larman’s lower bound.

In this paper, we construct uniform rank 5 oriented matroids on 10 elements without com-
plete region, hence,g(5) = 9. One of these oriented matroids has a realization inR4, hence
f (4) = 9.
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As a preliminary step for the rank 5 case, using a computer, we have gone through the
complete list of all 2628 reorientation classes of uniform rank 4 oriented matroids on eight
elements, as per the work of Bokowski and Richter-Gebert [2].

PROPOSITION1. There are precisely114non-isomorphic reorientation classes of uniform
rank 4 oriented matroids on eight elements without complete region. One such reorientation
class has only mutants without complete region. Two of them are not realizable.

The unique realizable uniform rank 4 oriented matroid on eight elements without complete
region, such that all its mutants are also without complete region, has the following base
signature (or chirotope):

+++++++++++++++++++++−−−−+−−−−−−−−++++

−+−−−−−+−−−−−−−−++−−−−−−−−++++++

THEOREM 2. There is a set of10points ofR4 in general position such that:

• there is no admissible projective transformation mapping these points onto the vertices
of a convex polytope, or, equivalently,
• the corresponding uniform oriented matroid has no complete region.

The theorem means thatf (4) = g(5) = 9.

PROOF. Using a computer, it can be checked that the oriented matroid of affine dependen-
cies of the following 10 points ofR4 has no complete region.

1 0.7702 0.2217 −6.3645 0
2 0.7426 0.2284 −6.3977 0
3 0.6 1.01 −5.44 0
4 1.75 7.07 −0.45 0
5 −2 2 2 1
6 2 −2 2 1
7 2 2 −2 1
8 −2 −2 −2 1
9 −2.44 −2.13 1.4 1.71

10 0.35 1.77 −0.38 1.011 2

The signature of the 252 bases of this uniform rank 5 oriented matroid on 10 elements is:

++++++−−+−−−+−−+++−−−−−−−−−+−−+++−−−−+−−++

+−−−+−−−+−+++−+−−+−−−−−++++−−+−+++−−+−++++

−−−++++++++−−−−−++++−−−+++++++−−−++++−−−+−

+++++−−−−−++++−+−++−−−++++++−−−++++++++−−−

−+++++−−−+++++++−−−++++−−−+−++++−−−−+++++−

−−+++++++−−−++++−−−+−+++−−−++++−−−−+−−+−+−

Its face lattice is that of a stacked 4-cross-polytope with 19 facets (we recall that astacked
polytope is obtained by the addition of new vertices building shallow pyramids over facets):

1234 1238 1247 1278 1346 1368 1467 1678 2345 2358
2457 2578 3456 3568 4567 5679 5689 5789 6789
The point 9 is stacked on the 4-cross-polytope by the vertices 1, . . . ,8 and the point 10

lies inside the convex hull of the points 5, 6, 7, 8 and 9. The vertices 5, 6, 7 and 8 form a
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regular tetrahedron. The computer program provides the number of regions adjacent to each
of the 256 regions of the oriented matroid: there are 16 with five neighbours, 57 with six
neighbours, 72 with seven neighbours, 65 with eight neighbours, 46 with nine neighbours and
0 with 10 neighbours.

We now explain how we arrived to our example. Since a list of all reorientation classes of
uniform rank 5 oriented matroids on 10 elements does not exist we cannot use exhaustion as
in the rank 4 case.

We start with the list of 135 reorientation classes of uniform rank 5 oriented matroids on
eight elements [2, 3]. From this list we can generate the 3501 non-isomorphic matroid poly-
topes of rank 5 with eight vertices. The face lattices of these matroid polytopes are the 37
3-spheres with eight vertices described by Grünbaum and Sreedharan [5].

For any such matroid polytopeP and any disjoint pair of facetsf1, f2 of its face lattice
we generate a partial uniform rank 5 oriented matroidM on 10 elements as follows. The
face lattice ofM is a stacked 3-sphere where the vertex 9 is stacked onf1 in the 3-sphere
P. The element 10 ofM is an interior element with a special relationship to some of its
combinatorial hyperplanes. The facetsf1 and f2 each have four elements. LetH31 resp.H13
be a combinatorial hyperplane with three elements off1 and 1 of f2 resp. three elements of
f2 and one off1. Then the element 10 lies on the same side ofH31 as the element off1 \ H31
and on the same side ofH13 as the element off2 \ H13. In this way we can construct 18
872 partial oriented matroids. Starting from these partial oriented matroids, we generate 1112
uniform rank 5 oriented matroids on 10 elements without complete region. They lie in 414
reorientation classes. If we build the mutants of these oriented matroids, we come up to 465
non-isomorphic reorientation classes of oriented matroids without complete region. None of
them has all its mutants without complete region.

THEOREM 3. There are at least465non-isomorphic reorientation classes of uniform rank5
oriented matroids on10elements without complete region.
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