
KIDS: an iterative algorithm to organize
relational knowledge

Isabelle Bournaud1, Mélanie Courtine2 and Jean-Daniel Zucker2

1 LRI, Bat. 490 Université Paris-Sud, Av. du Général de Gaulle,
F-91405 Orsay Cedex, France

Isabelle.Bournaud@lri.fr
2 LIP6, Université Paris VI, 4, place Jussieu

F-75252 Paris Cedex 05, France
{Melanie.Courtine, Jean-Daniel.Zucker}@lip6.fr

Abstract. The goal of conceptual clustering is to build a set of embedded
classes, which cluster objects based on their similarities. Knowledge
organization aims at generating the set of most specific classes: the
Generalization Space. It has applications in the field of data mining, knowledge
indexation or knowledge acquisition. Efficient algorithms have been proposed
for data described in <attribute, value> pairs formalism and for taking into
account domain knowledge. Our research focuses on the organization of
relational knowledge represented using conceptual graphs. In order to avoid the
combinatorial explosion due to the relations in the building of the
Generalization Space, we progressively introduce the complexity of the
relations. The KIDS algorithm is based upon an iterative data reformulation
which allows us to use an efficient propositional knowledge organization
algorithm. Experiments show that the KIDS algorithm builds an organization of
relational concepts but remains with a complexity that grows linearly with the
number of considered objects.

1 Introduction

In Artificial Intelligence, the problem of the automatic construction of classifications
has been the subject of much researches during the last fifteen years [6], [8], [13]. It
consists in searching for similarities between objects which are not pre-classified and
structuring them in a hierarchy of classes in which similar objects are clustered. A
class is also called a concept since it is described by an extension (the set of objects
clustered) and by an intension (the similarities of the descriptions of the objects
clustered). Most of the existing Conceptual Clustering approaches defined this task as
the search for a classification that would best predict unknown features of new objects
[5], [7], [8]. This type of construction is guided by heuristics, which allow one to
choose the best classes among the possible ones. The developed methods have proved
their interest in various fields [6], [8], [9], [13]. In other words, the classifications
built do not contain a class for each subset of objects whose descriptions have
similarities. More recent researches concern the construction of classifications that
organize knowledge [3], [15]. In these tasks, the goal is not to build a subset of the

possible classes but all the classes clustering similar objects: the Generalization
Space. In these methods, the process of construction is not based on a numerical
distance among descriptions and on a function to be optimized but on a language to
describe the similarities among the object descriptions. This language is called the
generalization language.

Efficient algorithms have been proposed for organizing data described by a set of
pairs <attribute, value> [15] and for taking into account domain knowledge [1], [3].
Our research concerns organization of relational data, i.e. data represented in more
expressive formalisms (first-order logic, description logic, conceptual graphs ...). To
avoid the problem of combinative explosion due to graph matching, we propose to
take gradually the complexity of graphs into account through a hierarchy of
abstraction spaces. The proposed approach, called KIDS, extends the propositional
approach of knowledge organization COING [1] to the relational framework. Given a
set of objects described using conceptual graphs [17] and domain knowledge
represented in a generalization lattice [14], COING builds the Generalization Space of
propositional descriptions of the objects. KIDS gradually enriches this space thanks to
a generalization language which is made more and more expressive at each step of the
algorithm. This idea, inspired from the REMO system [19], consists in increasing
gradually the structure of matching. The KIDS algorithm is based upon an iterative
reformulation of the data, which allows us to use COING on the reformulated
descriptions of the objects.

In the next section, we present the COING propositional algorithm for knowledge
organization. Although COING is based upon relational descriptions of data, it does
not use the structure of the descriptions in the construction of the Generalization
Space. Section 3 introduces the KIDS approach: we describe our method for graph
reformulation by abstraction, present the KIDS algorithm and illustrate our approach
on an example. In the next section, we evaluate KIDS on a Chinese characters
database. These experiments show the feasibility of the proposed approach. Finally, in
section 5, we conclude with a brief summary and outline directions for future
research.

2 Organization of relational knowledge

2.1 A graphical representation of relational data and their generalization

In the automatic construction of classifications, choosing the right language for
representing the objects is very important; it has an impact on the efficiency of the
algorithms manipulating them. The more expressive a language is, the more complex
are the algorithms manipulating it. Objects are structured, and this is true in many
fields; they may be decomposed into several parts, and these are then linked together
thanks to various relations (for example a part-of relation). Attribute-value languages
do not allow to easily represent such structure. We use a language based on a higher-
order logic and represent relational descriptions of objects in the conceptual graphs

formalism. However, this representation is not a limitation of our approach, as it may
be applied to any relational data described by graphs.

A conceptual arc is a triplet: [concepts]->(relation)->[conceptd],
where (relation) corresponds to a relation between [concepts] and
[conceptd]. A conceptual graph is a graph composed of a set of conceptual arcs.
For more information about conceptual graphs, the reader should refer to [19] [4].

Figure 1 below presents an example of a house description using conceptual
graphs. The triplet [Window]-> (color) -> [White] is a conceptual arc.
This example is used throughout the article to illustrate the algorithms presented.

House

Black

color

Big

size

Window

White

color

Gray

color

Small

size

Window

White

color

hashas

Fig. 1. A house and its description as a conceptual graph.

2.2 Organizing knowledge in a Generalization Space

Given a set of object descriptions and a generalization language, the associated
Generalization Space (GS) is the set of the most specific conjunctive concepts
generalizing these descriptions. In the GS, a node ni is a pair (ci, di). The element ci,
called the coverage of ni, is the set of objects covered by ni; and di, called the
description of ni, corresponds to the common features (most specific generalization)
of the objects of ci. In the GS, a node corresponds to a cluster of objects described in
intension by its description di and in extension by its coverage ci. Nodes of GS are
partially ordered by a subsumption relation between concepts. Given a node ni with
coverage ci, its ancestors are all the nodes nj, such that Cj ⊃ Ci. This partial order
provided the GS with a pruned lattice structure1, which may be represented by an
inheritance network. Indeed, GS nodes inherit the descriptions of the nodes which are
more general.

Figures 4 and 9 present two different Generalization Spaces of the same objects (as
explained in the next section, part of their node descriptions come from the use of a
generalization lattice over the types). Their differences lie in the expressiveness of the
generalization language used to build the GS. In effect, given a set of object
descriptions, depending on the language chosen to describe the generalizations (the

1 The Generalization Space may also be defined by the two isomorphic lattices: the Galois

lattice of concept descriptions (partially ordered by the subsumption relation) and the lattice
of objects (partially ordered by the inclusion relation) [12].

node descriptions), the nodes of the associated GS will not be the same. The node n’3
in the GS of figure 9 for example does not appear in the GS of figure 4. Moreover, for
a given set of objects, nodes belonging to different GS but having the same coverage
may have a more or less general description. The node n’2 in the GS of figure 9 and
the node n2 in figure 4 have the same coverage on objects ({h2, h3}) but the
description of the node n’2 is more specific than that of n2.

2.3 A classical simplification of the graph generalization problem

To avoid the exhaustive analysis of each of the 2n partitions of n objects, COING
adopts a bottom up approach generalizing objects descriptions to incrementally build
the GS. In COING, objects are represented using conceptual graphs. In order to deal
with the problem of matching graphs which is known to be NP-complete, COING
transforms the graph representation into an arc representation. In other words, each
graph describing an object is transformed into a set of independent arcs. This
reformulation has the advantage to limit the complexity of the algorithm (in the worst
case quadratic with the number of objects [1]) because, as the arcs are oriented they
fully match. However, this restricts the generalization language since relations among
arcs are not considered.

The COING principle for building the GS is as follows:
1. Reformulate each graph describing the objects to be organized as a set of

arcs.
2. Generalize each arc describing the objects. COING integrates an efficient

method for taking into account domain knowledge in the GS construction
[1]. This knowledge, represented in a generalization hierarchy (called the
“type lattice” in the conceptual graphs formalism [17]) expresses, for
example in the domain of colors, that the type Black and White (noted
B&W) is a generalization of the three types White, Black and Gray.
Figure 2 below presents part of the concept type lattice used for the houses.

Opening

Tc

Size

Big Small B&W

Color

Gray Black White

Window Door

Number

Two

Fig. 2. Part of the concept type lattice used for the houses.

3. Group the generalized arcs and initial arcs covering the same set of objects.
For example, the arc [Window]->(color)->[B&W] is a generalization
of the two arcs (thanks to the type lattice above on figure 2): [Window]-
>(color)->[Gray] and [Window]->(color)->[White]. This
arc will be part of the description of the node covering objects described by
one of these arcs.

4. Filter the generalized arcs. Indeed, for a given matching there are several
possible generalizations. For example, the two arcs [Window]-
>(color)->[B&W] and [Window]->(color)->[Colour] are both
generalization of the arcs: [Window]->(color)->[White] and
[Window]->(color)->[Gray]. This step considers each set of arcs
for a node and chooses the arcs that will form the description of this node in
the GS. In constructing the GS, the number of generalizations is limited
while considering only the most specific ones. The filtering step thus
consists in memorizing only the most specific arcs (on the example above,
the arc [Window]->(color)->[B&W]).As COING is using a
propositional language, the most specific generalization is unique.

5. Finally, the nodes are connected thanks to the inclusion relation existing
among their coverage.

 Figure 3 summarizes the principle of the GS construction.

Maison

Bleu couleur
Petit taille Fenetre

Rouge couleur
N oir couleur

Grand taille Fenetre
Vert couleur

possede possede

Maison

Bleu couleur
Petit taille Fenetre

Rouge couleur
N oir couleur

Grand taille Fenetre
Vert couleur

possede possede

Maison

Bleu couleur
Petit taille Fenetre

Rouge couleur
N oir couleur

Grand taille Fenetre
Vert couleur

possede possede

Maison

Bleu couleur
Petit taille Fenetre

Rouge couleur
N oir couleur

Grand taille Fenetre
Vert couleur

possede possede

……

Reformulation

of graphs into a set
of arcs

(OHPHQWDU\ DUFV

(OHPHQWDU\�DQG�
JHQHUDOL]HG DUFV

Generalize

Group arcs

&OXVWHUV�RI�DUFV

Filter arcs

Link clusters

&OXVWHUV�RI PD[LPDOO\�VSHFLILF DUFV

(O2,O3)

(O1,O2,O3,O4)
(O1,O2)

(O2,O3,O4)

O1 O2 O3 O4

(O2,O3,O4)

Conceptual graphs
[Sowa 84]

�7\SH KLHUDUFK\ �

*HQHUDOL]DWLRQ�6SDFH

Maison

Bleu couleur
Petit taille Fenetre

Rouge couleur
N oir couleur

Grand taille Fenetre
Vert couleur

possede possede

Maison

Bleu couleur
Petit taille Fenetre

Rouge couleur
N oir couleur

Grand taille Fenetre
Vert couleur

possede possede

Maison

Bleu couleur
Petit taille Fenetre

Rouge couleur
N oir couleur

Grand taille Fenetre
Vert couleur

possede possede

Maison

Bleu couleur
Petit taille Fenetre

Rouge couleur
N oir couleur

Grand taille Fenetre
Vert couleur

possede possede

…… ……

Reformulation

of graphs into a set
of arcs

(OHPHQWDU\ DUFV

(OHPHQWDU\�DQG�
JHQHUDOL]HG DUFV

Generalize

Group arcs

&OXVWHUV�RI�DUFV

Filter arcs

Link clusters

&OXVWHUV�RI PD[LPDOO\�VSHFLILF DUFV

(O2,O3)

(O1,O2,O3,O4)
(O1,O2)

(O2,O3,O4)

(O2,O3)

(O1,O2,O3,O4)
(O1,O2)

(O2,O3,O4)

O1 O2 O3 O4

(O2,O3,O4)

Conceptual graphs
[8

�7\SH KLHUDUFK\ �

*HQHUDOL]DWLRQ�6SDFH

Fig. 3. Principle of the construction of the most specific Generalization Space.

In order to illustrate the COING approach, let us consider the three houses h1, h2
and h3 whose descriptions need to be clustered. These houses are described by their
windows which have two proprieties: a color and a size. Figure 4 below presents
the GS build by COING for these houses.

This Generalization Space contains two class nodes (n1 and n2) and three object
nodes corresponding to the houses (box nodes). The node n2, for example, clusters
the houses h2 and h3. Its coverage is {h2, h3} and its description is the arc
[Window]->(color)->[Gray]. This class node indicates that h2 and h3 have
at least a gray window in common in their descriptions and that this property is not
shared by any other object considered. Thanks to the structure of the GS, we may add
the description of the root node (n1) to this description. More precisely, we add the
arcs from n1 which are not generalizations of arcs from n2, for example the arc
[Window]->(Size)->[Big]. Finally, the GS indicates that the two houses h2

and h3 have window(s), which have a size (Small,Big) and a color (Gray and
Black).

h2 h3

Gray

color

Window

h3 h2

House has has

Black

color

Small

size

Window

Gray

color

Big

size

Window

House has has

Black

color

Small

size

Window

White

color

Big

size

Window

House has has

Black

color

Big

size

Window

Gray

color

Small

size

Window

h1 h2 h3

Black

color

Window

B&W

color

Window

Window

has

House

Big

size

Window

Small

size

Window

h1
n2

n1

Fig. 4. Generalization Space built by COING.

Let us clarify why the arc [Window]->(color)->[B&W] appears in the root
node and why the arc [Window]->(size)->[Size] does not. This explanation
will clarify the 3rd step of the COING principle (cf. previous page).

- The arc [Window]->(color)->[B&W] is a generalization of the arc
[Window]->(color)->[Black]. As this last arc is more specific and
since they have the same coverage on objects ({h1, h2, h3}), the arc
[Window]->(color)->[B&W] should not appear. However, this arc is
useful because its coverage on arcs is bigger than that of [Window]-
>(color)->[Black]: it also covers the arcs [Window]-
>(color)->[White] and [Window]->(color)->[Gray]. In fact,
this arc tells us that there is a window whose color is [B&W].

- Consider now the arc [Window]->(size)->[Size]. It is more
general than both the arcs [Window]->(size)->[Small] and
[Window]->(size)->[Big]. The coverage on objects of these three
arcs is the same ({h1, h2, h3}). The coverage on arcs of [Window]-
>(size)->[Size] is exactly the union of the coverage on the arcs of the
two arcs [Window]->(size)->[Big] and [Window]->(size)-
>[Small]. The arc [Window]->(size)->[Size] is therefore not
useful and not informative; it should not be part of the root node description.

In order to deal with the traditional knowledge representation tradeoff [11]
between an expressive language and an efficient algorithm, COING reformulates
conceptual graphs into conceptual arcs. This simplification supplies the COING
algorithm with a quadratic complexity in the number of objects, but restricts the
generalization language, i.e. the expressiveness of the GS node descriptions. Let us
illustrate this point using the house example. The three houses h1, h2 and h3 all have
a small window and a black window; for h1 and h2 it is the same window, whereas
for h3 it is not. This difference does not appear in the classification built by COING
(see fig.4) since it requires representing relations between arcs.

3 Organize knowledge in a hierarchy of generalization abstraction spaces

Building an organization of relational descriptions requires to build a Generalization
Space whose nodes use a relational representation. Given a set of objects described as
graphs in the conceptual graph formalism, each node in the GS would ideally be
represented by the graph that is the most specific generalization of the graphs
describing the objects it covers. Let us note this Generalization Space as GSmax. In
fact, due to the complexity of the subsumption relation and the exponential growth of
the length of the least general generalization, building GSmax directly using an
exhaustive method is not practical. The matching curse is also true for the first-order
languages used in Inductive Logic Programming (ILP); they define syntactic
restrictions on clauses to devise efficient ILP algorithms [16] which are similar to the
restrictions on graphs used to devise graph-based algorithms [1], [12].

The solution proposed in this paper is to build an initial GS using a propositional
language and then to iteratively enrich this GS. This enrichment consists of refining
the descriptions of existing nodes or adding new nodes. We present in the following
sections our approach, called KIDS, which is using COING and relies upon the
abstraction of relational data.

3.1 KIDS principle

KIDS is based upon the following property of the GS which allows us to limit the
search space at each step of the algorithm:

If there exists a sub-graph Sgn which generalizes n object descriptions, then
there is in the GS built by COING a node whose coverage contains these n
objects (and possibly others) and whose description contains all the arcs of the
generalizing sub-graph Sgn.

In other words, this property of GS means that to enrich any node of a GS, it is
sufficient to restrict the search for richer descriptions only to the objects it covers.
This principle simplifies the process of enriching a GS. In effect, the nodes of GS0
(found by COING) are a subset of the nodes of a GS whose generalization language is
richer than the one used in COING and the description of each node of GS0 is more
general than that of GS.

In order to find richer descriptions of GS nodes, our approach consists of gradually
increasing the matching structure, i.e. the matching structure is made more complex at
each step of the algorithm. At each step, the objects descriptions are reformulated
based upon this structure into a propositional language. The reformulates descriptions
may then be processed by the COING algorithm.

More precisely, KIDS uses sub-graphs to represent the relational nature of the
descriptions. In order to reformulate these sub-graphs into a propositional language
that may be performed by COING we make an abstraction. This abstraction
transforms the sub-graphs representation into a representation appropriate to COING :
a structure like [concept-type]->(relation-type)->[concept-type]. In
fact, the relation-type is replaced by an “ abstract relation ” representing the matching
structure. For example, at the 1st level of KIDS (first step of the algorithm), an arc
performed by COING is:

[House] -> (has) -> [Window] -> (size) -> [Small]

The triplet (has)->[Window]->(size), which is in the box, is an abstract relation.
Figure 5 below presents the general KIDS principle.

COING

Reconstruction

Reformulation

Construction of GS

Simplification

Abstracting
relations

Set of structures as graphs

Set of nodes of arcsSet of structures as arcs

Set of nodes of structures

GS enrichedSet of objects
as conceptual graphs

Fig. 5. Principle of KIDS.

3.2 Towards a new generalization language

To enrich at each step the matching structure is equivalent to modify at each step the
generalization language. KIDS starts with a language of arcs (provided by COING),
then it uses at the first step a language of couples of connected arcs, then at the second
step a language of triplets of connected arcs, etc.. These successive generalization
languages are expressed according to particular connected sub-graphs: sequence, star
and hole structures.

Definition 1: A sequence is composed of a succession of arcs, which are connected
one-to-another thanks to a common concept. This concept is the origin of the first arc
and the target of the other one.

 Window has House Small size

Fig. 6. Example of a sequence-structure composed of two arcs through the common concept of
Window

Definition 2: A star is composed of a set of conceptual arcs which have the same
origin.

 House has Window Window has

Fig. 7. Example of a star-structure composed of two arcs through the concept of House

Definition 3: A hole-structure is composed of a set of conceptual arcs which have the
same target.

 Door left Window Window right

Fig. 8. Example of a hole-structure composed of two arcs

The number of arcs of an abstract relation depends on the level of KIDS (the step
of the algorithm): two connected arcs at the 1st level, 3 at the 2nd level, …, i+1 arcs at
the ith level. The more the sub-graph structure is complex, the more the matching for
the reformulation is expensive. Nevertheless, the specific structure of the GS and the
iterative method of KIDS allow us to limit the number of nodes to explore at each
step.

3.3 KIDS algorithm

The principle of the KIDS algorithm is to explore, at the ith step, only the nodes which
may be enriched, i.e. the nodes whose descriptions potentially contain an ith level
structure. In practice, at step (i+1)th, KIDS explores all the nodes which were
modified in step i. Indeed, an (i+1)th level structure is the aggregation of an ith
structure and one arc. We define a candidate node for KIDS at step i+1 a node which
has been modified in step i. In the first step, KIDS explores all the GS nodes built by
COING. The GS enrichment algorithm is as follows (cf. Table 1):

1. For each object covered by a candidate node, determine its ith level
description: (i+1) connected arcs. It consists of abstracting the object
descriptions using the three structures: sequence, star and hole.

2. Apply COING to the reformulated object descriptions. The result is the
addition of new nodes to the GS and/or the modification of the descriptions

of existing GS nodes. Notice that the new descriptions found by COING
have to be reformulated in terms of sub-graphs. It consists of reformulating
the descriptions using the abstract relations.

3. If KIDS modifies the GS at the ith step, then repeat the method from 1) at the
(i+1)th level (i+2 connected arcs).

KIDS_Algorithm (GS: Generalization Space; l: level)

GS_modified ← false
Nodes_List ← list of GS candidate nodes
for all the nodes n of Nodes_ List do

 Objects_ List ← Description of n’s objects at the lth level
 GS_enriched ← COING_Algorithm(Objects _List)
 if GS_enriched modified then GS_modified ← true
 GS ← Add (GS_enriched, GS)
end for
if GS_modified == true then KIDS_ Algorithm(GS,l+1)

Table 1: KIDS main algorithm

While the complexity of the matching for generalization is avoided by the use of
abstract relations, the complexity of graph matching is not suppressed; it is instead
moved to the reformulation of the descriptions. In fact, the more complex the abstract
relations are (the higher the KIDS level), the more complex the reformulation is.
Nevertheless, the GS’s specific structure and KIDS’s iterative method allow us to limit
the number of nodes to be explored at each step, while exploring only the ones that
can be enriched.

However, in order to find all the structural similarities among the descriptions,
KIDS needs to be applied up to the level of structure of the maximum level in the
objects descriptions. In other words, if there are at least two descriptions including a
structure of level l, KIDS will have to be applied up to the l level to assure a search
for all the similarities.

KIDS stops either when there is no more candidates node, or when it is not
possible to describe the objects at the next level (there is no structures of (i+2) arcs in
the descriptions). Experimentally, the time needed to apply the algorithm at the next
level may be evaluated from the time needed to build the GS at the previous level. It
is possible to approximate the time required for the next level and to stop KIDS if this
time is too long. Experiments in section 5 show that in our particular domain, the
increase of time required between two successive levels is linear.

3.4 Organizing relational data with KIDS

Let us consider again the example of the houses presented in section 2.2 (figure 4) to
illustrate KIDS improvement over COING. Figure 9 below presents the enriched GS
obtained by KIDS at the 1st level ; the information drawn in black is the result of
KIDS and in gray those of COING.

h1 h2 h3

h1 h2 h2 h3

Big

size

Window
Window

has

House

W&B

color

Window

Black

color

Window

Small

size

Window
Window

has

Window

has

House

W&B

color

Small

size

Window

W&B

color

Big

size

Window
Black

color

Size

size

Window

Window
has

House

W&B
color

Window
has

House

Black
color

Window
has

House

Small
size

Window
has

House

Big
size

Gray

color

Window

Gray

color

Size

size

Window

Window
has

House

Gray
color Black

color

Small

size

Window

h1 h3 h2

House has has

Black

color

Small

size

Window

Gray

color

Big

size

Window

House has has

Black

color

Small

size

Window

White

color

Big

size

Window

House has has

Black

color

Big

size

Window

Gray

color

Small

size

Window

n2’ n3’

n1’

Fig. 9. Generalization Space enriched by KIDS.

The abstraction allows us to discover common substructures between the objects
descriptions. At the 1st level, KIDS finds structural descriptions which were not find
by COING. For example, COING did not find that all the houses have (at least) two
windows and that all these windows have a color (W&B or Black) and a size
(unknown,Small or Big). Furthermore, COING did not find a class clustering h1
and h2 and only these two houses whereas they have a small black window in
common and this window does not appear in the description of h3 (even if h3 has a
small window and a black window but it is not the same window). This similarity is
found by KIDS at the 1st level, because it is a particular composition of two arcs. On
this example, KIDS enriched the description of existing nodes and added a new node
clustering h1 and h2. From a GS built using a propositional language, KIDS has
allowed to give more precise descriptions on the existing similarities between the
objects thanks to an abstraction of sub-graphs.

On this example, it is useless to apply KIDS at the 2nd level. Indeed, the stars and
sequences of h1, h2 and h3 descriptions are of 1st level, i.e. they connect 2 arcs. Once
the descriptions are reformulated using 1st level structures, there is only one way to
rebuild the description; the reformulation using first level structures is not ambiguous,
nor losses information. Figure 10 illustrates this idea.

Window

has

Window

has

House

White

color

Big

size

Window

Black

color

Small

size

Window

House has has

Black

color

Small

size

Window

White

color

Big

size

Window

h1

Window

has

Window

has

House

White

color

Big

size

Window

Black

color

Small

size

Window

Fig. 10. Rebuilding a graph from its decomposition in structures.

4 Experiments

This section presents an application of the above method in the framework of the
construction of a classification of Chinese characters. We briefly remind the context
of this work. For more information about this application, the reader should refer to
[2]. These experiments aim to show the feasibility of KIDS in terms of complexity
and to illustrate its interest for relational data organization.

4.1 Description of the relational data

The database considered is a collection of 6780 Chinese characters. Each character is
represented by a conceptual graph. Characters are described by : their initial and final
pronunciation, the ton of this pronunciation, the components (between 1 and 5) and

their relative positions and the key component. For example, the character , which
is composed of the radicals C5381 and C2843, which is pronounced “ qing ”, which is
in ton 2 and means "feeling", is represented by the conceptual graph of figure 11.

Fig. 11. Conceptual graph describing the character .

The type lattices used for the Chinese characters are the following :

[c2852]

[ton2]

[“feeling”]

[high]

[2]

[c5381]

[c2843]

[left]

[right]

(key)
(means)

[q] [ing]

(tone) (pronunciation)

(frequency)
(composed) (position)

(nbcomponents)
(composed)

(position)

(followed)
[false]
[false]
[false]

(samefin)
(sameini)

(sameton)

[true]
[true]
[true]

(samefin)
(sameini)

(sameton)

(leftto)

j q x

palatal dental

t d

initial pronunciation

labialnosed-voyel

in_n in_ng

composed-voyel

in_o in_e

final pronunciation

an en ang ing

Tc

means composed pronunciation tone position followed

Tr

Fig. 12. Part of the type lattices for the Chinese characters.

4.2 Results and discussion

We evaluated KIDS on several databases of characters composed of 10 to 140 or 416
characters. Figure 13 shows the total time required for generating the GS for 8 of
these databases using the COING and the KIDS algorithms.

00:00

05:46

11:31

17:17

0 20 40 60 80 100 120 140 160 180
Number of Chinese characters

C
P

U
 t

im
e

(m
n

:s
) COING

KIDS 1st level

KIDS 2nd level

KIDS 3rd level

KIDS 4th level

Fig. 13. Average execution time of COING and KIDS on Chinese characters databases.

In practice, the CPU time of the proposed algorithms is linear (it is quadratic in the
worst case in COING [1]) with the number of objects. This results may surprise
because, as it manipulates sub-graphs, KIDS introduces a complexity factor.
However, the combinatorial explosion due to the generalization of sub-graphs is
limited since the bigger the level of KIDS is (i.e. the more complex are the graphs to
generalize) the less the number of sub-graphs to perform is.

The level introduces a multiplicative factor. The linear growth means that on the
average, the time necessary to move to the next level is very close to be constant.
Figure 14 illustrates this result.

0

2

4

6

8

10

12

14

16

COING 1st level 2nd level 3rd level 4th level

Level of the algorithms used

R
at

io
 K

ID
S

 /
C

O
IN

G

Fig. 14. Evolution of the multiplicative factor as a function of the algorithms used.

During these experiments, we also evaluated the evolution of the number of nodes
of the GS as a function of the algorithms used. For COING, this number is in the
worst case in O(N) [1]. Figure 15 summarizes these results.

0

200

400

600

800

1000

1200

1400

1600

COING KIDS 1st level KIDS 2nd level KIDS 3rd level KIDS 4th level

Algorithms used

N
u

m
b

er
 o

f
G

S
 n

o
d

es

10 characters

22 characters

40 characters

50 characters

100 characters

140 characters

350 characters

416 characters

Fig. 15. Evolution of the number of nodes of the GS.

This graph shows that the number of nodes of the GS grows until a specific level –
1st level for the small bases and 2nd level for largest – then it becomes constant. This
may be explained by the fact that from a specific level, KIDS does not allow to create
new classes, but only to enrich the already existing ones with more complex
descriptions.

5 Conclusion

We have presented KIDS, an algorithm for organization of relational data. This
algorithm is iterative and is based upon an abstraction of the description. In a first
step, it builds the space of the most specific generalizations using a propositional
language. Then it uses reformulation to find more complex descriptions. We have

implemented and successfully tested our approach. Our experiments suggest that the
proposed method provides an organization of relational concepts while keeping a
linear complexity in practice with the number of objects. This result is due to the fact
that the more complex are the structure, the less are the nodes to explore.

The first perspective of this work is to characterize more precisely the generalized
language used in the enriched GS. Indeed, as soon as we work on the o-level
structures, there is no longer a unique most specific generalization and GS nodes may
be redundant. The characterization of the enriched language of GS allows us to
evaluate the usefulness of the sub-graphs and to filter them in order to keep the useful
one.

Another possible improvement of the algorithm is to define methods to evaluate
the interest of KIDS for a given database. Indeed, when the concepts in the objects of
a conceptual graphs database appear only once, it is not necessary to apply KIDS to
this database, because the decomposition does not cause a loss of information. In
contrast, if a concept appears several times in the objects descriptions (like in the
houses), it is not possible to differentiate them. So, we can consider a pre-processing
on the data to evaluate the maximal level of KIDS application.

Finally, we plan to extend this method for a more efficient processing of numerical
data. Currently, the numerical information contained in descriptions is processed like
symbols ; the implicit order existing between numbers is not taken into account. A
preprocessing on descriptions would make it possible to determine a hierarchy of
generalization of the numerical values. The creation of new values of attributes, as it
is the case in constructive induction, would make it possible to better account for the
similarities between descriptions [10], [18].

6 References

1. Bournaud I., Ganascia J.-G.: Accounting for Domain Knowledge in the Construction of a
Generalization Space. ICCS’97, Lectures Notes in AI n°1257, Springer-Verlag (1997) 446-
459.

2. Bournaud I., Zucker J.-D.: Integrating Machine Learning Techniques in a Guided Discovery
Tutoring Environment for Chinese Characters. International Journal of Chinese and Oriental
Languages Information, Processing Society, 8(2) (1998).

3. Carpineto C., Romano G.: GALOIS: An order-theoretic approach to conceptual clustering.
Tenth International Conference on Machine Learning (1993).

4. Chein M., Mugnier M.L.: Conceptual Graphs : Fundamental Notions. Revue d'Intelligence
Artificielle, 6(4) (1992) 365-406.

5. Fisher D.: Approaches to conceptual clustering. Ninth International Joint Conference on
Artificial Intelligence, Los Angeles, CA, Morgan Kaufmann (1985).

6. Fisher D.: Knowledge Acquisition Via Incremental Conceptual Clustering. In: Michalski,
R.S., Carbonell, J., Mitchell, T.(eds.): Machine Learning: An Artificial Intelligence
Approach. San Mateo, CA, Morgan Kaufmann. II (1987) 139-172.

7. Fisher D.: Iterative Optimization and Simplification of Hierarchical Clusterings. Journal of
Artificial Intelligence Research 4 (1996) 147-179.

8. Gennari J. H., Langley P., Fisher D.: Models of incremental concept formation. Artificial
Intelligence 40-1(3) (1989) 11-61.

9. Ketterlin A., Gancarski P., Korczak J.J.: Conceptual clustering in Structured databases : a
Practical Approach. Proceedings of the Knowledge Discovery in Databases KDD’95, AAAI
Press (1995).

10. Kietz J.U. & Morik K.: A polynomial approach to the constructive induction of structural
knowledge. Machine Learning 14(2) (1994) 193-217.

11. Levesque H.J. and Brachman R.J.: A fundamental tradeoff in knowledge representation and
reasoning. In: Brachman, R.J, Levesque, H.J. (eds.): Readings in Knowledge
Representation. Morgan Kaufmann (1985) 41-70.

12. Liquiere M., Sallanatin J.: Structural Machine Learning with Galois Lattice and Graphs.
Fifteen International Conference on Machine Learning (ICML), (1998).

13. Michalski R. S., Stepp R. E.: An application of AI techniques to structuring objects into an
optimal conceptual hierarchy. Seventh International Joint Conference on Artificial
Intelligence (1981).

14. Michalski R. S.: A theory and methodology of inductive learning. Machine Learning: An
Artificial Intelligence Approach I, Morgan Kaufmann (1983) 83-129.

15. Mineau G., Gecsei J., Godin R.: Structuring knowledge bases using Automatic Learning.
Sixth International Conference on Data Engineering, Los Angeles, USA (1990).

16. Muggleton, S., Raedt L. D.: Inductive Logic Programming: Theory and Methods. Journal of
Logic Programming 19(20). (1994). 629-679.

17. Sowa J. F.: Conceptual Structures: Information Processing in Mind and Machine.
Addisson-Wesley Publishing Company (1984).

18. Wnek J., Michalski R.: Hypothesis-driven constructive induction in AQ17-HCI : a method
and experiments. Machine Learning 14(2) (1994) 139-168.

19. Zucker J.-D., Ganascia J.-G.: Changes of Representation for Efficient Learning in
Structural Domains. International Conference in Machine Learning, Bari, Italy, Morgan
Kaufmann (1996).

