An Extended Evaluation of the Readability of Tapered, Animated, and
Textured Directed-Edge Representations in Node-Link Graphs
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Figure 1: All directed-edge representations used in our initial (a to j), follow-up (b, k, 1), and current study (b, I, m, n, 0). (a) standard arrow — S,
(b) tapered — T, (c) dark-to-light — DL (a.k.a intensity — I), (d) light-to-dark — LD, (e) green-to-red — GR, (f) curvature — C, (g) tapered-intensity —
TI, (h) tapered-curvature — TC, (i) intensity-curvature — IC, (j) tapered-intensity-curvature — TIC, (k) biased curvature — Cy, (I) animated — A, (m)

animated compressed — A, (n) glyph — G, and (o) glyph compressed — G.

ABSTRACT

We present the results of a study comparing five directed-edge rep-
resentations for use in 2D, screen-based node-link diagrams. The
goal of this work is to extend the understanding of tradeofts and
best practices for the representation of edges in directed graphs and
to help practitioners choose among different options. Our work
applies to graphs in which directed links are depicted using lines
connecting the nodes. We tested five different edge representations
chosen carefully based on user feedback to thoroughly cover the
directed-edge design space. We also investigated how the use of
pattern compression affects performance and subjective user prefer-
ence. The article presents detailed results regarding the significant
performance and preference differences between directed-edge rep-
resentations and provides practical recommendations on their use.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Evaluation/Methodology 1.3.3 [Computer Graph-
ics]: Picture/Image Generation—Line and Curve Generation H.1.2
[Models and Principles]: User/Machine Systems—Human Infor-
mation Processing

1 INTRODUCTION

Graph-based data has become ubiquitous these days, not least due
to the increasing popularity of social networking sites on the inter-
net. Graphs represent a collection of elements — called vertices or
nodes — as well as the connections between these elements — called
edges or links. Apart from social network graphs, where vertices
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represent individuals and edges represent acquaintance, the follow-
ing lists some additional examples of common graph-based data:

* Traffic networks, where vertices and edges are used to repre-
sent locations and traffic routes, respectively;

* Computer networks, where vertices and edges are used to rep-
resent PCs and network connections, respectively;

* Scientific citation networks, where vertices and edges are used
to represent papers and citations between papers, respectively.

In graphs, edges often have an associated weight and direction.
Edge weight might be used to indicate the strength, importance, or
cost of an edge. Edge direction can be used to signify the direction-
ality of what an edge represents, e.g., which paper holds a citation
and which paper is being cited in case of a citation network graph.

An often-used and intuitive visual graph representation is the
node-link diagram, in which vertices are generally represented as
circular nodes and edges as straight or curved links (lines). Edge
weight is commonly depicted by varying the width of a link, while
edge direction is generally depicted using an arrow representation,
i.e., a line with an arrowhead at the target node. However, our ear-
lier work [15] showed that arrowheads are a poor choice for depict-
ing directionality in all but very simple graphs. The main reason
for poor performance was visual clutter due to arrowhead over-
lap, which significantly hinders effortless and correct observation
of edge direction. Various approaches can be used to overcome
this, such as user interaction, using a matrix instead of a node-
link representation, improving the node-link layout, or improving
the directed-edge representation. However, user interaction is not
suited for statically depicted graphs such as printouts; matrix rep-
resentations are less intuitive than node-link graphs [12, 17]; and
layout improvement is generally tackled by node-placement opti-
mization, while the arrowhead-clutter problem stems from a sub-
optimal edge representation. We were therefore motivated to focus
our efforts on finding improved directed-edge representations.

The question arises as to which alternatives to the traditional
arrow are the most suited for directed graphs and how the per-



formance of different representations varies across different graph
characteristics. In this paper we describe an extensive study in
which we tested five different directed edge representations for
varying graph densities and edge lengths. In particular, we were
interested in testing whether edge representations would perform
particularly well if they encoded not only directionality but also
edge length. In [15], we found that a tapered representation (T;
Figure 1b), i.e., one where width varies along the length of an edge
from wide to narrow, was the only representation with a clear indi-
cation of edge length and it outperformed all other techniques. In
this study, we explore other representations such as an animated and
textured link which encode edge length through pattern compres-
sion using a 2D, screen-based testing environment and compare it
with T. We conclude with implications for practitioners which high-
light the tradeoffs of the tested techniques in terms of performance
as well as their applicability in several design contexts.

The remainder of the paper is organized as follows. Section 3
describes previous work on directed-edge visualization as well as
its evaluation. Section 4 gives an overview of graph generation
and layout, the evaluated representations, and the selection of node
pairs during trials. Experiment design and hypotheses are presented
in Section 5, followed by Section 6, which presents the statistical
analysis. Practical recommendations on directed-edge usage are
provided in Section 7. Finally, Section 9 presents our conclusion
and suggestions for future work.

2 STUDY BACKGROUND

The study presented in this paper follows a stream of our recent
research with the goal of providing a clear picture of the directed-
edge design space and the tradeoffs when choosing edge presenta-
tions for node-link graphs. Inspired by our initial results from [15],
we first conducted a smaller follow-up study which shed initial light
on our current study problem. The smaller study has not been pub-
lished apart from a technical report [14] so some of its findings are
re-iterated to explain our choices, hypotheses, and conclusions.

Study 1: Our initial study [15] had participants perform tasks
on a collection of graphs using different directed-edge representa-
tions to investigate which representation performed best in terms of
reading time and correctness. A tapered representation (T) clearly
outperformed the standard arrow (S), clockwise curvature (C),
and color-/intensity-based representations, i.e., dark-to-light (DL),
light-to-dark (LD), and green-to-red (GR). It also tested combina-
tions of these representations: since participants showed a slight
preference for DL, they chose this as the representative for the in-
tensity (I) class and combined it with T and C, leading to TI, TC,
IC, and TIC. Contrary to what they expected, stacking visual cues
did not result in significant performance gains, hinting at possible
interference instead of reinforcement effects. Figures 1la—1j show
all representations from our initial study.

Study 2: Our smaller follow-up study [14] evaluated the perfor-
mance of T, the best representation according to our initial study,
against animation (A) and biased curvature (Cy), proposed by
Fekete et al. [9] as a possible improvement to standard curvature
(C) (Figures 1b, 1k, and 11). In summary, T still outperformed Cy,
regardless of the added bias, but A proved to be on par with T.

Current Study: In this paper, we describe the results of our most
recent study, for which we chose the most promising candidates
from our previous studies, i.e., T and A. We furthermore added a
textured representation — “glyph” (G) — to cover the directed-edge
design space further. C and Cy, were dropped due to their poor per-
formance in the previous experiments. The excellent performance
of the edge-length indicating T representation motivated us to in-
vestigate how the use of edge-length indicating pattern compres-
sion in case of animated (A.) and glyph (G.) representations would
affect performance (Figures 1b and 11-10). We furthermore evalu-
ated how performance in terms of reading time and correctness are

affected by three levels of graph density (sparse, medium density,
and dense) as well as two link-length classes (short and long). Var-
ious subjective preference aspects were measured as well by means
of a post-study questionnaire.

Although we aimed to cover visual modalities and cues for de-
picting link length (and direction) as well as possible, we note that
due to feasibility constraints we only tested the most basic candi-
dates for animation, compression, and texturing to first determine if
such modalities can actually increase performance at all before in-
vestigating more advanced alternatives. A similar remark holds for
the combination of modalities, different graph densities and layout,
and experimental tasks: we chose an extra density case to test the
performance under limiting conditions, used a well-known graph
generation model and an often used layout algorithm, and evaluated
a single, basic task (connectivity testing), which is an important, el-
emental and generally recurring task when inspecting graphs. We
readily acknowledge, however, that other options and choices can
and should be considered, which we further discuss in Section 8.

To evaluate the performance of the representations in terms of
reading time and correctness, we ran an experiment in which partic-
ipants performed path-readability (connectivity) trials, i.e., they had
to answer whether or not there was a directed connection between
a pair of nodes. We provide initial hypotheses regarding the perfor-
mance with respect to varying graph densities and link lengths, and
subsequently compare these with the outcome of a statistical analy-
sis of reading times and correctness. Based on the analysis results,
we provide practical recommendations on the use of directed-edge
representations in the context of node-link graphs. This work sig-
nificantly extends the previous work and gives a clearer choice of
design alternatives for directed graphs.

3 RELATED WORK

The following presents an overview of directed-edge representa-
tions that have been previously proposed, the majority being uni-
form, static representations as described in Section 3.1 used in the
context of node-link graphs to depict directed connectivity. The use
of edge representations that rely on — generally texture-based — an-
imation is treated in Section 3.2. Section 3.3 then describes studies
that have been performed to quantify how directed-edge represen-
tations perform in the context of node-link graphs.

3.1 Static Directed-Edge Representations

Half-lines are used by Becker et al. [4] to depict directed edges; a
half-line from Node A to B is a straight-line connection in which
only the first half of the line is drawn. Although half-lines reduce
the amount of display space used to show links, they make it hard to
determine where links end. Wong et al. [27] present their GreenAr-
row technique to balance the appearance of both a graph and its la-
bels. The text label pertaining to a link (or one of its nodes) is drawn
such that the text itself forms a tapered link between nodes. This
removes the need to explicitly visualize the edge using a line-based
representation. A color-coded representation is used by Holten [13]
to indicate edge direction as running from Node A to Node B by
gradually changing the color from green (A) to red (B) along the
length of a link; different colors can be used as well.

Edge representations based on curvature (such as C; Figure 1f)
have been used before in the context of Arc Diagrams by Watten-
berg [24] and ArcTrees by Neumann et al. [19] Arcs, i.e., curved
links, were used in Arc Diagrams to represent complex repetition
patterns in string data and in ArcTrees to visualize hierarchical as
well as non-hierarchical data relations. In case of such symmetric
arcs, a curve’s clockwise orientation is generally used to indicate
direction. The aforementioned GreenArrow technique by Wong et
al. [27] also uses additional curvature to indicate direction.

Instead of only using (counter-)clockwise orientation to indicate
direction, Fekete ef al. [9] add curvature bias to this. Their links are



drawn as quadratic Bézier curves that vary the amount of curvature:
high at the start and low at the end. This is one of the representations
we evaluated in our second study (Cy; Figure 1k).

For completeness, other static representations were proposed in
our initial study [15]: the single visual cue representations S, T, DL,
LD, GR, and C (Figures la—-1f) as well as the multiple visual cue
representations TI, TC, IC, and TIC (Figures 1g—1j). Our follow-up
study, furthermore, added Cy, to this.

Apart from recommending the use of T overall because of its
performance, we found that combining representations (at least the
ones that were evaluated) did not result in significant performance
gains [15]. Our follow-up study, furthermore, showed Cy, providing
no significant improvement over C [14]. Nielsen et al. [20] note that
they were inspired by our initial-study results. For their ABySS-
Explorer they use tapering to depict the orientation of “contigs,”
i.e., genome assemblies consisting of long contiguous sequences.

3.2 Animated Directed-Edge Representations

Most animated edge representations indicate edge direction based
on the idea of having a dash pattern — generally implemented as
a repeating “glyph” using texturing — move in the direction of the
link along the length of a link. An example is the effective use
of animated dash-pattern textures by Wegenkittl ez al. [26] to show
the flow motion of trajectories within analytical dynamical systems.
This idea also served as the inspiration for the A and A, represen-
tations (Figures 11 and 1m). Our follow-up study already showed
that as far as performance is concerned, A is on par with T [14].

To address node and link clutter in dense node-link graphs,
Ware et al. [22] evaluated motion-based highlighting techniques
to provide effective access to such graphs. One of the evaluated
techniques is an edge representation that uses animated sawtooth
dash-pattern textures radiating out from the start node. For the
path-readability and node-reachability tasks that participants per-
formed, reading time and error rate were significantly lower when
using animated-link highlighting than when using no highlighting.
Ware et al. therefore argue that motion-based highlighting can be a
valuable visual aid for understanding large graphs.

Bartram et al. [3] showed the potential of using animated causal
overlays, e.g., animated links, on top of causality-depicting visual-
izations such as causal graphs. The idea was inspired by the fact
that perceptual psychology showed that causality perception is a
low-level visual event derived from certain types of motion.

Blaas et al. [5] present a spline-based way to smoothly visualize
higher-order state transitions for the exploration of state sequences
in large time-series. Because they noted that arrowheads distort the
perception of a continuous spline, they opted for a texture-based
approach using animated dash patterns to visualize edge direction.
They are furthermore planning to continue their investigation into
the visualization of directed edges using animated textures.

Animated links have also been added to the Tulip graph visual-
ization library [1]. The dash patterns used by Tulip move along a
straight line from start to end and consist of repeating “greater than”
symbols (“)))”) of alternating colors. Our glyph representations G
and G, (Figures 1n and 1o) are inspired by this technique.

3.3 Evaluation

Apart from our initial [15] and follow-up [14] studies, only few user
studies have been performed that quantify how directed-edge repre-
sentations perform in the context of node-link graphs. One of these
is the user study performed by Wong et al. [27] for their GreenAr-
row approach. However, their focus was on how to balance the
appearance of a graph and its labels, not on determining how well
their approach works as a technique for depicting directed edges in
comparison with other directed-edge representations.

4 GRAPHS AND DIRECTED-EDGE REPRESENTATIONS

This section provides details on our study setup. We include infor-
mation on the choices that were made with regard to the generative
graph model, the graph layout, the directed-edge representations,
and the way in which node pairs were chosen during trials to en-
sure controlled testing of different link lengths.

4.1 Graph Model

To ensure the availability of enough different graphs with similar
statistical properties for all of the participants and for all of the com-
binations of graph density, edge representation, and link length, we
chose to generate random graphs using a graph generation model.

The graph model proposed by Ware et al. [23] used in our initial
study [15] generates graphs as follows: “For each node, form a
directed edge to one or two other nodes, randomly selected, so that
a single connection occurs p% of the time and two connections
occur (100 — p)% of the time,” where p controls the density. This
model is part of a more focused class of real-world graph models
and, as stated in [18], it would be more correct to generate real-
world graphs using such a model instead of the random graph model
proposed by Erdds er al. [8], who define a random graph as G(n, p)
in which each of the (}) possible edges occurs with probability p.
However, the node-degree distribution of the Ware-ez-al.-graphs is
not scale-free: the fraction P(k) of nodes having k connections to
other nodes is not modeled by P(k) ~ k™7 (typically 2 < y < 3).
Many real-world graphs, however, are scale-free and exhibit small-
world properties, including social, citation, and protein networks.

For our follow-up study [14], we therefore chose a graph gener-
ation model that produces graphs with small-world properties, e.g.,
the Barabdsi-Albert (BA) [2] or the Watts-Strogatz [25] model. We
used the Network Workbench [21] to generate a collection of graphs
with varying densities according to the BA model. After initial pilot
runs that colloquially assessed the difficulty experienced by users
when deciding if there is a connection between a pair of nodes,
we settled for sparse, medium-density, and dense graphs (regarding
on-screen density with respect to “ink” usage), with 60, 90 and 135
nodes, respectively (60 x 1.5 =90,90 x 1.5 = 135).

For our current study we reverted to the Ware-et-al.-model as
in [15]. Although the latter does not provide scale-free graphs, it
allows us to avoid the typical scale-free-model generation of high-
degree nodes (subclusters); we contend that controlled testing with
respect to density is more important for our purposes. Furthermore,
we extended the density range to incorporate a limiting, “extra
hard” case to investigate the performance under conditions which
arise quite often for real-world graphs. The current study, thus,
used sparse, medium-density, and dense graphs, with 70, 140 and
280 nodes, respectively (70 x 2 = 140, 140 x 2 = 280; see Figure 2).

@

©

Figure 2: Graph densities used in the current study: (a) sparse (70
nodes), (b) medium-density (140 nodes), and (c) dense (280 nodes).



4.2 Graph Layout

There are many node-link-graph layout models available, the ma-
jority of which make use of force-directed node placement algo-
rithms, such as Eades’ spring-embedder model [6], the Kamada-
Kawai model [16], or the Fruchterman-Reingold model [10]. We
chose the widely used Fruchterman-Reingold (FR) algorithm to lay
out our graphs. All layouts were generated by an FR implementa-
tion as provided by the GraphViz graph visualization software [7].

To ensure a clear distinction between edge lengths, we opted for
two edge length classes — short and long — in the current study. For
each generated graph, an edge was randomly assigned to be either
short or long. The GraphViz FR algorithm allowed us to specify de-
sired edge lengths during layout; we settled for long edges that were
defined to be four times as long as short edges, ensuring clearly no-
ticeable differences between short and long edges.

4.3 Directed-Edge Representations

Our current study evaluated T and A, the most promising candidates
according to our previous studies, and a new texture-based “glyph”
representation G that was added to further cover the design space.
G - inspired by “sharp bend” traffic signs and the edges used by
the Tulip visualization library [1] — uses repeating “greater than”
symbols ()))”) of two alternating shades of gray (Figure 1n).

We used a 20.1 inch Dell LCD display with a 16:10 width:height
ratio and a resolution of 1680x1050 pixels to represent all of our
graphs at 4x anti-aliasing on a white background. Given the size
and resolution, our display provided approximately 99 DPIL

T was similar to the representation used in the previous studies:
0.05 inches and 0.005 inches wide at the start and end, respectively,
and drawn in black at an opacity of 35% (Figure 1b).

A was also similar to the representation used in our previous
studies: a moving dash pattern with a line width of 0.015 inches, a
cycle length of 0.35 inches, 90% of which was occupied by a line
(black, 50% opacity) and 10% of which was occupied by a gap,
and moving at a speed of 0.17 inches per second (Figure 11). Each
link used a random phase to prevent distracting “bursts” of activity
caused by multiple incoming/outgoing links around a node.

G used a static glyph pattern with a line width of 0.055 inches, a
cycle length of 0.3 inches, 60% of which was occupied by a “greater
than” symbol (“>") (black, 50% opacity) and 40% of which was
occupied by a gap. The “greater than” symbol of a non-stretched
glyph mark furthermore used an acute angle of 75°.

T allows for edge length estimation by only having to look at
part of an edge due to the varying width along its length. A simi-
lar advantage can be added to A and G by using dash/glyph pattern
compression/stretching. Let L be the average edge length (calcu-
lated over all graphs). Let L be the length of an edge E. The
amount C with which a pattern is compressed/stretched now be-
comes C = (1 —k)+k-L/L, with k € [0,1]. k determines the effect
strength and was set to 0.5 to obtain a clearly discernible amount of
compression/stretching while retaining as much edge uniformity as
possible. Edges with L > L or L < L have their pattern stretched or
compressed, respectively. Figures Im (A.) and 1o (A.) show how
this helps to estimate edge length.

G is also able to distribute visual clutter more evenly along an
edge instead of concentrating it around a node (as is the case with
arrowheads), thus providing users with multiple positions on an
edge to assess its directionality.

4.4 Link-Length Selection

For each path-readability trial, a pair of nodes A and B was selected
between which a directed link L — either short or long (as specified
during layout as described in Section 4.2) — might be present. Since
interesting difficulties caused by clutter and overlap occur more of-
ten in the central graph region, we ensured the selection of node
pairs from this region. This was done by calculating a bounding

circle for each layout and fitting a normalized, cut-oftf 2D Gaussian
onto this with a value of 1 at the center and O (at 30) at the cir-
cular graph boundary. This value, denoted as Peener(4,B) € [0,1],
represents the probability of a randomly chosen node pair consist-
ing of nodes A and B being accepted based on the pair-midpoint
position within the bounding circle. The probability of acceptance

Peenter(A,B) depended on d = IM — C, where C is the center
of the bounding circle and Aj,s and B, are the node positions.
Similar average task difficulty across participants was realized by
using a stable and predictable layout algorithm, by checking for
degenerate layout cases prior to testing, and due to the substantial
number of trials per participant.

5 EXPERIMENT — COMPARING DIRECTED-EDGE REPRE-
SENTATIONS

5.1 Hypotheses

Based on our experience, we hypothesized that edge compression
would improve the performance with respect to speed and correct-
ness of both A and G and that, thus, animation in the form of A,
might now be able to surpass T. We also hypothesized that interac-
tion effects would be present for the different graph characteristics.
This led to the following hypotheses:

HI: Compression will improve performance for A and G since it
provides a way to measure edge length “locally” by looking
at only a part of an edge. This would allow participants to
more easily exclude certain edges and help in cases where
unconnected nodes would lie in the path of an edge;

H2: Ac > T > A. In our follow-up experiment, A already showed
to be a competitive alternative for T for some graph types.
On par with H1, we hypothesize A. to outperform T; since
A already rivaled T in terms of performance, we suspect the
extra compression to be able to give A; an advantage over T;

H3: All edge types are impacted in time and error performance for
increasing graph density and edge length. We further hypoth-
esize that G and T would be more affected in higher densities
due to their increased use of “ink”.

5.2 Design

We used a repeated-measures design with the following within-
subjects independent variables: edge representation (T, A, Ac, G,
Ge), graph density (sparse, medium density, dense), and link length
(short, long). Each participant performed 10 blocks of 6 trials per
edge representation. The order of edge representations was ran-
domized based on a Latin Square and the presentation of length
X density combinations was further randomized per block. Before
each new representation, participants were allowed to rest and could
continue to the next representation whenever they were ready. Ex-
perimental sessions lasted about 30 minutes including training. In
summary, the design included:
3 graph densities
2 link lengths
10 repetitions
60 trials
5 edge representation

300 trials per participant
25 participants
7,500 trials in total

I x| xfn x x

5.3 Participants and Procedure

Twenty-five participants (18 male, 7 female) were recruited from
two research institutions. They ranged in age from 22 to 49 years
(median 30 years). All participants had normal or corrected-to-
normal vision. 17 participants reported looking at node-link graphs
at least weekly, the remaining participants reported monthly or



Is it possible to go FROM GREEN TO ORANGE in EXACTLY 1 step?
ENTER for yes, 0 for no
q R
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Figure 3: Example view of a trial as presented to participants. Task
instructions resided in the top-left corner (1), the graph in the screen
center (2), and a legend on how to read the directed-edge repre-
sentation in the lower-left corner (5). Test nodes were highlighted in
green for the start node (3) and orange for the end node (4).

yearly exposure. 13 participants were students and 12 were non-
students with varying technical as well as non-technical occupa-
tions. Participants were not paid for their involvement in the study.

During the experimental session, participants sat in front of a
20.1 inch Dell LCD display at a distance of approximately 50cm.
Participants were first given an introduction to node-link graphs and
the different edge representations. The experimenter then described
the task, how to step through the trials, and how to record an an-
swer, i.e., by pressing the “0” (no directed connection present) and
“Enter” (directed connection present) keys on the keyboard; they
pressed the “Space” key to start the trials for a new edge represen-
tation. Participants first conducted 30 practice trials to ensure that
they were familiar with the experimental setup and procedure. If
participants did not have any further questions, they continued with
the experiment and filled out a post-session questionnaire to elicit
qualitative feedback and demographic information.

5.4 Tasks

We used a path-readability task in which participants had to answer
the following question throughout the study: “Is it possible to go
from the green node to the orange node in exactly one step?” This
task was chosen as it tests local readability of node connections and
gives an indication of how well the chosen edge representation al-
lows participants to infer directionality. Participants were instructed
to be both as accurate and fast as possible. The correctness of their
answer was shown to participants only during practice trials (im-
mediately after a trial) and not during the actual experiment.

Each trial was shown to participants full-screen in three stages.
During the first stage, participants saw an empty white screen for
400ms. During the second stage, we showed two randomly selected
nodes A (green) and B (orange) to the participants for 600ms. This
stage was introduced to ensure that participants did not spend time
finding the two nodes in the graph. Finally, in stage three the com-
plete graph (with A and B in the same positions) was displayed and
timing for the trial was started.

A legend for the currently used edge representation was dis-
played in the lower-left corner of the screen. Participants were pre-
sented with a new graph for each trial and Nodes A and B were cho-
sen such that there was a 50% chance of a connection being present;

in 50% of the cases in which a connection was present, the connec-
tion also had the correct direction, i.e., there was a 25% overall
chance of a connection being present and having the correct direc-
tion (from A to B). The chance of a bidirectional connection being
present was not explicitly controlled for. The randomly selected
graphs were generated and laid out as discussed in Sections 4.1 and
4.2 and link lengths were selected as discussed in Section 4.4. Fig-
ure 3 shows a typical test screen that participants saw in our study.

6 RESULTS

This section includes the results of a statistical analysis of our
study data. The completion times collected during the experiment
were first log-transformed to comply with the normality assump-
tion of the data analysis. Then, time was analyzed using a repeated-
measures ANOVA. Timing data was recorded and analyzed at mil-
lisecond scale; average task times are reported here at second scale.
The error data was analyzed using the non-parametric Friedman
analysis of variance by ranks and Wilcoxon signed rank tests as the
error data did not conform to the normality assumption. For each
edge representation we removed the first block of trials from the
analysis to account for learning effects.

In the following the five edge representations will be abbrevi-
ated as previously introduced: tapered (T), animated (A), animated
compressed (Ac), glyph (G), and glyph compressed (G).

6.1 Overall Effect of Edge Representation

We observed task completion times ranging from 1.32s to 1.57s. T
was the fastest edge representation overall, followed by A. and A.
The picture was slightly different when analyzing overall correct-
ness. Participants were most correct using both animated represen-
tations followed by T with correctness ranging from 93.2% —97.4%
overall. Participants performed both most slowly as well as least
correctly with the glyph representations. Figure 4 gives an overview
of both average time and error for each edge representation.

To understand significant relationships between the different rep-
resentations according to time and error, we conducted a statistical
analysis. We found a significant effect of edge representation on
overall task completion time (F(4,96) = 7.424;p = .002). Post-
hoc pairwise comparisons only showed a significant difference be-
tween T and G with p < .001. We also observed a significant effect
of edge representation on correctness (y*(4) = 31.45;p < .001).
Wilcoxon signed rank tests showed several statistically significant
results for pairwise comparisons. These are summarized in Table 1.
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Table 1: Statistically significant results of pairwise comparisons for
edge representations based on error (better technique on the left).
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Figure 5: Average trial time per representation by graph density.

In summary, we observed that T performed well in terms of
speed. However, we also showed that A; is a competitive alter-
native to T as participants performed significantly more correctly
than T using this technique. Also, average task completion times
varied only within the range of .1s between both techniques. Glyph
techniques, overall, did not compete well. We, thus, confirm our
first hypothesis that edge compression improved the performance
of A overall. We partially confirmed H2 by showing that Ac > T
for overall task correctness. No significant difference was found
between T and A for both speed and correctness.

6.2 Effects of Graph Density

To understand whether the overall effects would vary for graphs
of different densities we investigated in more detail how each rep-
resentation fared across the three densities we tested. Overall,
tests showed a significant effect of graph density on task comple-
tion time F(1.484,35.627) = 16.112,p < .01 (using Greenhouse-
Geisser correction, € = .741). Average completion times were
1.36s (SD = .88) for sparse graphs, 1.39s (SD = 1.06) for medium-
density graphs, and 1.58s (SD = 1.3) for dense graphs. Post-hoc
pairwise comparisons showed a significant effect between the dense
graph and both others with p < .001. Error analysis also showed a
significant effect between the three densities (x2(2) = 24.55;p <
.001). Post-hoc pairwise comparisons showed a significant differ-
ence for dense and the two other graphs with p < .001 each. Thus,
we focused our analysis on both dense and sparse graphs.

Next, we looked at the effect of graph density with respect to the
different edge representations. The analysis of task completion time
showed a significant effect for edge representation x graph density
(F(8,192) = 3.607,p = .001). For sparse graphs T was the best
technique and significantly outperformed G (p < .006), A (p < .01),
and A. (p.012). For dense graphs G was the worst technique
and significantly slower than T (p < .001), A (p < .024), and A,
(p < .004). Interestingly, as can be seen in Figure 5, A was hardly
affected by changes in density.

During the analysis of trial errors we observed a similar pat-
tern. An overall significant difference for edge representation x
graph density (x%(14) = 65.91; p < .001) emerged. Further cross-
comparisons per type of graph density showed the strongest signifi-
cant effects for dense graphs. Here, G was significantly less correct
than T (Z = —3.097,p = .002), A (Z = —2.931,p = .003) and A
(Z = —-3.55,p < .001). Similarly, G, was significantly less cor-
rect than T (Z = —2.311,p = .021), A (Z = —2.492,p = .013), and
Ac (Z = —2.946, p = .003). Interestingly, participants were signifi-
cantly more correct with A compared to T (Z = —2.097, p = .038).

In summary, we saw that T performed fastest for sparse graphs
but it was significantly less correct than A. for dense graphs. A.
seemed to perform well across different graph densities and would
be a good choice in programs were consistency of edge representa-
tion is important across a wide variety of edge representations. We,
thus partially confirmed H3 for density.

S

% | Length

99+ |l Short [ Long
98-
o7
96
95
94
93
92
91

Tapered  Animated _Animated Glyph Glyph

Compressed Compressed
Figure 6: Average correctness per representation by edge length.

Short edges
AT Ac-G  Ac-Ge  AA T-G A-G

Z| -271 =397 306 -235 -292 253
p| 007 <.001 002 019 .003 <.011
‘ Long edges
| A-Ge A-G AT AG
Z|-329 221 =215 =297
p | .001 027 032 .003

Table 2: Significant differences for cross comparisons according to
trial error for all five edge types.

6.3 Effects of Edge Length

We had further hypothesized that participants performance would
be affected when judging connections of different lengths. Tests
showed a significant effect of edge length on task completion time
(F(1,24) = 37.501, p < .001) with average task completion times
of 1.34s (SD = .9) for short edges and 1.56s (SD = 1.23) for long
edges. Post-hoc pairwise comparisons showed a significant effect
between the two lengths with p < .001 in each case. No significant
effect was observed between edge lengths in terms of correctness.
Participants were 95.7% correct with short edges and 95.2% cor-
rect with long edges. Although the differences in error rate were
not significant for the different edge lengths, the timing informa-
tion shows that participants spent significantly longer for trials with
longer edges indicating an increase in difficulty (see Figure 6).

The Friedman analysis of variance showed a significant ef-
fect of error rate for edge representation x edge length (x*(9) =
48.47;p < .001). Table 2 shows the results of significant individ-
ual interactions. No significant effect of task completion time was
observed for edge representation x edge length.

In summary, A. was the best representation for short edges as
it lead to highest overall correctness. Both glyph representations
did not fare well for both edge lengths. Interestingly, participants
performed better with A for long edges than short edges and this
representation was also significantly better than T for long edges.

6.4 Qualitative Feedback

The post-session questionnaire elicited feedback on subjective pref-
erences and ratings for the five edge representations.

6.4.1 General Preference

The overall preference of participants showed clearly in the post-
session questionnaire. Thirteen participants preferred T followed
by A. which was preferred by eight (Figure 7). 20 participants
produced reasons for their choice of preferred technique. T was
preferred because of its simple, clean, and clear layout (6 answers)
and due to perceived speed and ease of edge recognition both for
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Figure 7: Number of participants preferring each representation.

direction and length of an edge (7 answers). The same general rea-
sons were cited by the participants who preferred animated edges
(7 answers overall). Participants also appreciated the reduced use
of “ink” required for drawing animated edges (2 answers). Two
participants who did not prefer A/A. named visual interference as
their main reason (2 answers). The glyph techniques were cited
as being too noisy visually and thus difficult to read overall. Only
three participants preferred G, and nobody preferred G. The com-
pressed techniques G, and A were both more preferred than their
counterparts G and A.

All techniques also scored favorably for the questions of whether
participants considered them easy to read. Answers were recorded
on a 7-point Likert scale ranging from 1: strongly disagree to 7:
strongly agree. The answers ranged from a median of 5 (somewhat
agree) for G, A, and A. to 6 (agree) for both T and Gc.

In summary, participants showed a strong preference for T and
Ac. Yet, they perceived all techniques to be generally easy to read.
This is echoed in our observations that participants required very
little learning time or explanation to understand the representations.

6.4.2 Self-rated Speed and Correctness

To capture possible differences in actual and perceived efficiency
and effectiveness with a given edge representation, participants
were asked to rank their perceived correctness and speed on a 7-
point Likert scale. The scale again ranged from 1: strongly disagree
to 7: strongly agree. All techniques scored highly. Participants
agreed (median = 6) that T allowed them to be fast and somewhat
agreed (median = 5) for the remaining representations. In terms of
correctness, participants agreed (median = 6) that T, A, and A, al-
lowed them to be fast and also somewhat agreed (median = 5) for
the two glyph techniques.

In summary, participants found all five edge representations to
allow for fast and correct task completion.

6.4.3 Aesthetics

Participants were further asked to rate the representations on their
ability to produce “nice-looking graphs” on a 7-point Likert scale.
Participants rated T, A, and A, highly (agree, median = 6) but gave a
“somewhat disagree” rating for both glyph representations (G/Gg).
Thus, the techniques which performed the best according to the
statistical analysis were also rated highest in terms of aesthetics.

7 DISCUSSION
7.1 Overall Recommendations

Overall, we partially confirmed our hypotheses: we saw that T
and A. performed best overall but there was a tradeoff in terms
of speed vs. error. Participants performed most correctly with A
but T showed to be faster on average. Both glyph techniques gener-
ally performed worst for all graph characteristics. We recommend
to consider using either A. or T and to take the design tradeoffs into
account as discussed below. The only exception is the case of long

edges where A was on average more correct than A and signifi-
cantly more correct than T. Thus, in graphs of mostly long edges, A
would also be a good alternative.

7.2 Effect of Pattern Compression

On average participants performed better in terms of correctness
and task completion times for the compressed techniques compared
to their non-compressed counterparts. Only in the case of long
edges did A outperform A, on average for correctness. However,
for short edges A performed significantly better than A in terms
of correctness. Participants also strongly preferred the compressed
techniques, ranking them before the non-compressed ones. We,
thus, conclude that pattern compression is a viable technique to use
when edges are encoded with patterns (e.g., dashes or glyphs). They
were well-liked by participants and also performed well. Com-
pressed edge representations are not common in standard graph
analysis packages but their use should be considered. From this
study we conclude that being able to infer edge length from an edge
representation is important and helpful for our test task.

7.3 Design Tradeoffs

All three main techniques incur tradeoffs in terms of their design
and applicability. T is quite simple to implement and works for both
printed media and screen display. Yet, T requires transparency and
a varying thickness to be readable. If changing the link thickness
or transparency according to an edge attribute is important, T can-
not be used or could become less effective. Animated techniques,
on the other hand, support varying thickness and variation of trans-
parency, but require a screen setting and are harder to implement.
Further research is also required to regarding different animation
patterns. We proposed one that tested very well in comparison to T,
but many different patterns are possible and may not support path
readability in the same way (they may be better or worse). Pat-
tern compression techniques are mainly valuable if there are clear
edge length differences within a graph (which is often the case for
small-world graphs), otherwise they provide only minor benefits.

The overall preferences for participants tended towards tech-
niques that are simple and clean. Interestingly, compression tech-
niques introduce additional visual variability among edges and we
were initially worried that this may introduce additional clutter. Yet,
we hypothesized that the drawbacks of this clutter would be out-
weighed by the ability to perceive edge length. Our initial worry
about clutter was not confirmed for edge compression. Participants
rated both A and G equally compared to their non-compressed tech-
niques for aesthetics, performed better with the compressed tech-
niques, and also preferred them.

8 FUTURE WORK

As mentioned in Section 2, the design space of directed links is
large and we have only tried basic designs for reasons of feasibility.
For animated edges it would, for instance, be interesting to measure
the importance of speed (possibly based on edge length) now that
we know that animation is helpful. Since compression provides an
advantage as well, different compression schemes are also worth
investigating. Another alternative worth considering is the place-
ment of arrowheads in the middle instead of at the end of an edge
to decrease overlap. As another example, since edge width can be
freely varied for some representations, exploring how edge-width
variation can be effectively combined with a directed-edge repre-
sentation to encode an additional edge attribute is useful as well.
Now that we have the result for individual representations, we
can also study how to use multiple representations within a graph
for different edge types, how to use different representations in
dense or sparse graph regions, or how to differentiate short and long
links. Apart from that, representations can be combined (stacked)
to form new ones, e.g., one that is tapered, glyphed, and animated



at once. Although we found that stacking did not provide any direct
benefits for combinations of tapering, intensity, and curvature [15],
the results can very well be different for the currently tested repre-
sentations, which makes the investigation worthwhile.

With respect to generalizability of the results, it would be of in-
terest to explore other layouts as well. For example, stress ma-
jorization MDS [11] also yields good layouts and would therefore
be worth investigating. Furthermore, apart from the single task that
we have evaluated, there are several other tasks involved in graph
visualization and the results of the tested representations might not
generalize to all of them. Higher-level tasks, such as connectivity
trials for paths spanning multiple nodes, or measuring the effect of
the number of edges crossing a path should therefore be tested as
well with respect to various directed-edge representations.

9 CONCLUSION

In this paper, we have reported on a controlled experiment compar-
ing the readability of five directed-edge representations for node-
link diagrams: tapered (T), animated (A), animated compressed
(A¢), glyph (G), and glyph compressed (G ). We tested these repre-
sentation on graphs with three densities and edges of two different
lengths. We tested one low-level connectivity task: showing two
nodes, asking if the first node was connected to the second. We
collected the completion time and the number of errors, as well as
a questionnaire eliciting subjective feedback from participants.

The study showed that T and A, were the best techniques overall
and that both glyph representations are not to be recommended. T
was the fastest technique and participants were significantly more
correct using A.. This study is the first that tested whether the abil-
ity to infer edge length from the edge representation would be im-
portant. Indeed, we conclude that both A. and G, techniques fared
better on average than their non-compressed counterparts. Also, all
three techniques which encoded edge length (including T) were the
most preferred by our participants.

From this study and previous work, we can conclude that the
best directed-edge representation among those studied for readabil-
ity tasks are T and A.. We provide recommendations in Section 7
for choosing a representation based on various tradeoffs.
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