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1 INTRODUCTION

In the last decades, the needs of the military es-
tablishment to have effective and economical tools to
train personnel or to evaluate some scenarios have
been a major motivation to develop virtual environ-
ments where geographically distributed participants
can interact as if they are in the real combat situation
(see [13, 25] and refs.). This has provided many re-
search works in the domain of distributed interactive
simulation (DIS) of discrete events, i.e., the execution
of a simulation program distributed on many com-
puters interconnected by a more or less large network
(LAN or MAN). Moreover, the use of distributed sim-
ulation in commercial applications (entertainment,
air traffic controller training, emergency planning ex-
ercises to deal with earthquakes) is also increasing.

A computer simulation is a computation that mod-
els the behavior of some real or imagined systems
over time. Historically, the first DIS project was the
SIMNET (SIMulator NETworking) project (1983-
1989) [18]. The challenge now is to run an interac-
tive application with 100.000 participants distributed
on 50 sites [13]. During the simulation, the different
sites have to exchange various data through the inter-
connection network. Whenever a simulator performs
some actions that may interact with other simula-
tors, such as moving an entity to a new location, a
message is sent. Thus, the real-time constraint to
overpass to make the simulation be realistic concerns
the communication times.

In this paper, we mainly deal with the way of ef-
ficiently realizing simulation information exchanges.
The simplest solution is to suppose that each partic-
ipant, having some information to be sent to some
other participants, makes a multicast of these data
in all the network. Even if efficient multicast QoS-
routing protocols exist [23, 8, 26], multicast is not re-
alistic for the size of simulation considered here since
it would require a too costly communication band-
width in the network. Specifically, the distributed
simulation executive must provide mechanisms to the
simulators to describe both information it generates,
and information it needs to receive. Two techniques
can be considered in this context [13] :

• Relevance Filtering: data are only sent to a sub-
set of the simulation participants. A survey on
this can be found in [24].

• Bundling: many data may be bundled into a sin-
gle packet to reduce overheads.

These communication improvement preoccupa-
tions are also the ones considered by the multipoint
communication community in [1, 10, 26]. Given a
group of nodes in a network, that need to share a
same application, the aim is to allocate enough free
bandwidth resources to them to ensure a required
quality of services (in terms of communication band-
width and delay). Usually, this consists in connecting
the nodes of the group by a subtree of the network
with enough bandwidth allocated on each edge [1, 5].
Then in this subtree, each node of the group sends to
a same node of the subtree, called core node, data to
be sent to all the other nodes; the core node broad-
casts the merge of all the data it has received. Vari-
ous Internet protocols support such techniques (CBT,
PIM [4, 12], EXPRESS,..., [34]).

Our purpose here is to solve communication prob-
lems related to DIS (see [13, 33, 24] for motivations).
The techniques that we use, are based on multi-
point communication techniques, and would be a ba-
sic principle of the data distribution management of
the DIS (see [28, 33]), i.e., the software in the dis-
tributed simulation controlling the distribution of in-
formation. The task of this data distribution soft-
ware is to ensure that each simulator receives all the
messages relevant to it, and ideally, no others.

In this context, the participants of a DIS are mem-
bers of various multipoint groups such that each
pair of participants having to exchange information
are members of at least one common group. Then,
one subtree has to be allocated in the network to
each group such that bandwidth constraints are re-
spected [5, 16]. In fact, two steps can be considered:

• At the beginning of the DIS execution, groups
of participants have to be computed to allow
subtrees allocation respecting bandwidth con-
straints.

• During the execution of the DIS, the groups and
thus the corresponding subtrees allocation have
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to change in real-time following the evolution
of the needs of communication between partic-
ipants (for example if the players of a military
simulation move on the battle field).

In this paper, we focus on the first step. The second
step has also been investigated in [11] by using fast
local search techniques.

Objectives

We focus here on a classical interactive game between
participants distributed on a geographic map called
“virtual field”. The participants are located in vari-
ous nodes of a network (LAN and/or MAN). In these
interactive games to be simulated (in a distributed
way), each participant is able to make moves (char-
acter, car, plane, etc...) and these participants ex-
change information (position, actions, ...).
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Figure 1: Virtual field

In the standard HLA (High Level Architec-
ture) [13, 27], the virtual field is partitioned into
cells [24, 27, 29, 33]. Every participant has a zone of
visibility corresponding to a square zone (i.e., a box)
overlapping several parts of cells (see Fig 1). It is
supposed that each participant has a ray of visibility,
marked by an arc of circle centred on the position of
the participant (contained by the square zone of this
participant). Inside this ray, each participant pro-
vides and receives information from the other partic-
ipants. It is supposed that if two such zones overlap
then both participants are close and should have to
exchange data [27].
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Figure 2: Neighborhood graphs H

Each player (or participant) is located on a node
in the target network on which runs the simulation.
Fig. 3 represents the location (or mapping) of the
players on the networks in our example. We assume
that each player is only associated to one node of
the network during the simulation (there is no mi-
gration of process towards another processor during
the game).

The available bandwidth of the links of the network
is limited. According to the number of participants
and to the topology of the network, the generated
load can saturate the links. To carry out this and
to avoid the multiple broadcastings of information
towards a set of participants, groups of participants
are defined: each participant of a group broadcasts
its information to all the other members of this group
only. The global bandwidth needed by such a group
is directly function of the number of members. The
choice of the most suitable mode of communication
is the multicast mode. Each group will be able to
communicate on a multicast tree allocated to this
group. In [22] a method for dynamically partition-
ing the participant set of a DIS into multicast groups
is provided, but resource allocation to each group is
not considered.

Our objective here is to obtain efficient algorith-
mic methods to compute groups of participants such
that corresponding subtrees allocations respect band-
width constraints of the network. The graph theory
concepts are used to model the network and the vir-
tual map.
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Figure 3: Network Topology and the corre-
sponding graph with the participant assign-
ment

This paper is organized as follows. First, we de-
scribe the model to define the main multipoint prob-
lems that we consider. In Section 3, we prove that
these problems are NP-complete and in Section 4, we
give some upper and lower bound on them. Finally,
we give some heuristics and experimental results.

2 Problems description

In all the following, we use graph and complexity
definitions given in [7, 14].

2.1 Modelization

Neighborhood graph: as it is shown in Fig. 1
and 2, a virtual field is a particular case of d-boxes
collections, as they are defined in [6]. Each element
in such a collection is a d-uple

< (x1, y1), (x2, y2), . . . , (xd, yd) >

where each pair of elements xi and yi are positive
integers, with xi ≤ yi. Such a d-uple (also called a
d-box) defines an entity in a discrete d-dimensional
space. We denote by Ed,n the set of all collections
of d-boxes of cardinality n, where d-boxes are labelled
from 1 to n. In the following, each d-box is denoted
by its label.

Let g ∈ Ed,n be a collection. The intersection
graph of g is the graph where vertices are the el-
ements of g and where an edge links two boxes if
and only if they intersect in the d-dimensional space.
This kind of graphs is a particular case of intersection
graphs [20, 32, 30] called d-dimensional boxes inter-
section graphs [2, 6, 30]. The set of 1-dimensional
boxes intersection graphs E1,n is the set of interval
graphs [15]. In the case d = 2, this class of graphs
was introduced in 1948 by Bielecki [9]. For any d ≥ 2,
the problem of knowing if a given graph is or not a
d-dimensional boxes intersection graph is known to
be NP-complete [19].

In this paper, a virtual field is represented by a set
of 2-boxes, i.e., an element of

⋃

n

E2,n (see Fig. 6 or

Fig. 1 and 2).
Moreover, it is easy to see that many different col-

lections in Ed,n, in particular for d = 2, correspond to
isomorphic intersection graphs. Let us call neighbor-
hood graphs the intersection graphs of 2-boxes (where
vertices are labelled from 1 to n) corresponding to vir-
tual field. By definition, each edge of neighborhood
graph represents an information exchange between
two players.
Network graph: the communication network is
modeled by an undirected graph G where each edge
is weighted by the bandwidth capacity of the commu-
nication link, given by a positive integer (see Fig. 3).
A multicast group in such a network consists in con-
necting the members of the group (i.e., vertices in the
graph) by a subtree.
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The capacity needed by such a subtree corresponds
to the resources of the network the group needs to
communicate. Thus, this capacity is proportional to
the number of members in the group. In our model,
the capacity required by a subtree on each link it
uses is equal to the cardinality of the associated mul-
ticast group. This model could be improved without
changing our main approach of the problem.

2.2 Problems description

In this section, we introduce the definitions and con-
cepts required to describe the main theoretical prob-
lem we focus on.

The set of vertices (resp. edges) of graph G is de-
noted by V (G) (resp. E(G)).

A

B C

F

D

J

(c) a neighborhood
graph H

A B D
J

21 3

4

F

C

5

(d) a graph G and an as-
signment p

Figure 4: An instance of problem CEMR

Definition 1. Let G and H be two graphs. An as-
signment from H to G is an injective mapping p from
V (H) onto V (G).

For example, in Fig. 4, two graphs G,
and H are drawn: V (G) = {1, 2, 3, 4, 5},
V (H) = {A, B, C, D, F, J}, E(G) =
{[1, 2], [2, 4], [2, 5], [3, 4], [3, 5], [4, 5]} and, E(H) =
{[A, C], [A, D], [A, F ], [B, C], [C, D], [D, F ]}. The
assignment p from H to G is defined as follows:
p(A) = 1, p(B) = 2, p(C) = 4, p(D) = p(J) = 3 and
p(F ) = 5.

For any graph G, a collection of G is defined as a
set of subsets of vertices of G. A group is said to be
a subset of vertices of G.

Definition 2. A covering of graph H is a collection
C = {c1, . . . , ck} of H such that for every edge [x, y] ∈
E(H), there is at least a set ci containing x and y.
We set |C| = k and C̄ = maxci∈C |ci|

Considering an assignment p from H to G, for
any set of vertices V1 ⊂ V (H), the subset p(V1) ⊂
p(V (H)) is defined as follows : x ∈ V1 if and
only if p(x) ∈ p(V1). Using the same notation, if
C = {c1, . . . , ck} is a covering of H , then the collec-
tion {p(c1), . . . , p(ck)} of G is denoted by p(C).

In Fig. 4, the collection Z =
{{A, C, D}, {B, C}, {A, D, F}} is a covering of
graph H (in Fig. 4(c)) because every edge of graph
H is contained at most by one element in Z .
Moreovoer p(Z) = {{1, 2, 3}, {2, 4}, {1, 3, 5}}.

Given a collection of the network graph deduced
from a covering of the neighborhood graph, we de-
fine now the way communications are related to each
group of the collection are realized by using allocated
subtrees.

Definition 3. Let G be a graph where the capacity
of each edge α is cap(α) and let S = {g1, . . . , gr} be
a collection of G. We denote cap(G) = max{cap(α) :
α ∈ E(G)}. A mapping of S is a set T =
{T1, . . . , Tk} of subtrees of G such that for every in-
teger i, 1 ≤ i ≤ r, gi ⊂ V (Ti).

The load of T denoted by εG,T is defined by

εG,T = max
α∈E(G)

(

∑

Ti∈T :α∈E(Ti)

|gi|

cap(α)

)

.

The load measures the maximal ratio of resources
used on a link by a mapping used to make a dis-
tributed simulation corresponding to a given neigh-
borhood graph H on a network G.

Definition 4. Given a collection S of G, if there
exists a mapping T of S such that εG,T ≤ 1 (i.e.,
for every edge α ∈ E(G),

∑

Ti:α∈E(Ti)
|gi| ≤ cap(α))

then S is said to be realizable in G.

In Fig. 4, recall that the collection Z =
{{A, C, D}, {B, C}, {A, D, F}} is a covering of graph
H . A mapping of Z can be T = {T1, T2, T3} of sub-
trees of G such that T1 = {[1, 2], [2, 4], [3, 4]}, T2 =
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{[2, 4]}, and T3 = {[1, 2], [2, 5], [3, 5]}. Assume that
all edges e in G are such that cap(e) = 10. The uti-
lization ratio of edge [1, 2] is 3/10 + 3/10(= 3/5) We
compute the load of T : εG,T = max( 6

10 , 2+3
10 , 3

10 ) =
3/5. So, since 1 ≥ εG,T , Z is realizable in G.

Given a network modeled by a graph G, a
neighborhood graph H and an assignment of the
participants of the distributed simulation on G,
the main purpose here is to give a load realizable
mapping on which a multipoint communication
scheme could be implemented. Thus, we focus on
several problems dealing with DIS communication
requirements. Let us first focus on a resource
allocation problem involving the network G.

Problem: Efficient Mapping (EM)
Given : Graph G, a collection S of G, a rational
k > 0 (the ratio), and a weight cap(a) ∈ N+, for
every a ∈ E(G).
Question : Is there a mapping T from S to G with
a load εG,T ≤ k ?

Proposition 1. Problem EM is NP-complete.

Proof. Problem EM is obviously in NP. Moreover,
consider instances (G, S, 1, cap) with S the set of
all pairs of vertices of G and cap([u, v]) = 2k for any
[u, v] ∈ E(G). Solving Problem EM for these in-
stances is equivalent to decide if the edge-forwarding
index of G is less or equal to k. Since answering this
question is an NP-complete problem [31], Problem
EM is NP-complete.

We now define the main general problem we deal
with.

Problem: Collection for Efficient Mapping
(CEM)
Given : A graph G, a weight cap(a) ∈ N+, for every
a ∈ E(G), a neighborhood graph H , an assignment
p, and a rational k > 0.
Question : Is there a covering C of H such that
there is a mapping T from p(C) onto G with a load
εG,T ≤ k?

It is easy to deduce the following corollary from
Proposition 1.

Corollary 1. Problem CEM is NP-complete.

In Problem CEM, each group has a possibility
to use every spanning tree for communications.
For example, in Fig. 4, group {A, F, D} can be
mapped by tree {[1, 2], [2, 5], [5, 3]} or by tree
{[1, 2], [2, 4], [4, 5], [5, 3]}. In fact, in many protocols,
we have to deal with the routing function of the
network to exchange packets. A routing function
r for the network G is a mapping from V (G)+ to
E(G)+, i.e, for every subset S of vertices, r(S) is a
tree which covers all the vertices of S. We thus focus
on a particular case of problem CEM.

Problem: Collection for Effective Mapping
with Routing (CEMR)
Given : A graph G = (V, E), a weight function
cap : E → N , a routing function r of G, a graph
H of neighborhood, an assignment function p, a
rational k > 0.
Question : Is there a covering C = {c1, . . . , ct} of H
such that T = {r(c1), . . . , r(ct)} is a mapping from
p(C) to G with load ε ≤ k ?

This problem is NP-complete and the next section
is devoted to prove this fact.

3 Complexity of Problem CEMR

Theorem 1. Problem CEMR is NP-complete, even
if graph G is a tree.

Proof. First, problem CEMR is in NP be-
cause checking whether a given covering C,
T = {r(c1), . . . , r(ct)} is a mapping from p(C)
to G with load less than k, can be performed in
polynomial time. Now, we transform a known NP-
complete problem called 3-Partition to CEMR.
Problem 3-partition is defined as follow [14]:·

Problem: Problem 3-Partition
Given : A set S = {s1, . . . , s3m}, a function
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w : S → N , an integer m.
Question : Can S be partitioned into m dis-
joint sets {S1, . . . , Sm} such that for 1 ≤ i ≤ m,
∑

c∈Si
w(c) = 1/m ∗

∑

c∈S w(c) ?

Consider an instance I of 3-partition : a set
S = {s1, . . . , s3m}, a function w : S → N , and
an integer m. We shall construct an instance of
problem CEMR such that the desired mapping ex-
ists if and only if S can be partitioned into m dis-
joint sets {S1, . . . , Sm} such that for 1 ≤ i ≤ m,
∑

c∈Si
w(c) = 1/m ∗

∑

c∈S w(c).

Let β =
P

c∈S
w(c)

m
and q = 3m. G is a tree such

that it contains

• a vertex u;

• m paths X1, . . . , Xm of q + 1 vertices such that,
for i, 1 ≤ i ≤ m, Xi = {u, Xi(1), . . . , Xi(q)}.
The capacity of all the edges of Xi, 1 ≤ i ≤ m is
2q + 3m2β. Each of theses paths corresponds to
one partition set;

• q paths Y1, . . . , Yq such that for 1 ≤ j ≤ q, Yj =

{u, zj(1), . . . , zj(m), Yj(1), . . . , Yj(3m2w(sj) − m)}.
The capacity of all the edges in {[Yj(`), Yj(` +
1)], [zj(m), Yj(1)] : 1 ≤ ` ≤ 3m2w(sj)−m−1} is
equal to 3m2w(sj)) + 1. Moreover, the capacity
of all the edges in {[zj(`), zj(` + 1)], [u, zj(1)] :
1 ≤ ` ≤ m− 1} is equal to 3m2w(sj) + 2m− 1.
Each of theses paths corresponds to one element
of set S.

Note that paths X1, . . . , Xm (resp. Y1, . . . , Yq) rep-
resent one element of the partition (resp. S).

As graph G is a tree, it is easy to determine the
routing function r. If A is a subset of nodes of G,
then r(A) corresponds to smallest subtree of G such
that all its leaves are nodes of A.

Now, we will build the neighborhood graph H and
the function of associated assignment p in the follow-
ing way: each element sj of collection S is represented
by a connected graphs called Hj such that

•
˘

ai
j , b

i
j , hj(`) : 1 ≤ i ≤ m ∧ 1 ≤ ` ≤ 3m2w(sj)−m

¯

is V (Hj). Moreover, for any 1 ≤ i ≤ m, for
any 1 ≤ ` ≤ 3m2w(sj) − m, p(ai

j) = zj(i),

p(bi
j) = Xi(j) and p(hj(`)) = Yj(`).

• E(Hj) = E1 ∪E2 ∪ E3 such that
E1 =

˘

[ai
j , hj(`)] : 1 ≤ i ≤ m ∧ 1 ≤ ` ≤ 3m2w(sj)−m

¯

E2 =
˘

[hj (`
′), hj(`)] : 1 ≤ `, `′ ≤ 3m2w(sj)−m

¯

,

E3 =
{

[a`′

j , a`
j ], [a

`
j , b

`
j ] : 1 ≤ `, `′ ≤ m

}

.
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3
Y (9)

Y (21)
2

u

1

Y (1)
2

Figure 5: Tree G building from an instance
of problem 3-PARTITION such that S =
{s1, s2, s3}, m = 2 and w(s1) = 1, w(s2) = 2,
w(s3) = 1.

By construction, since for any 1 ≤ j ≤ q, Hj is
composed of a complete graph and a set of edges,
it is easy to see that Hj is an intersection graph.
Thus, since graph H is a union of q connected graphs
H1, . . . , Hq , graph H is a neighborhood graph.

The construction of our instance of Problem
CEMR is completed by setting k = 1. As the prob-
lem 3-partition is NP-complete in strong sense, it
is easy to see that the number of vertices of G and H
is O(m3β). Our construction can be accomplished in
polynomial time.

Now, the remainder of the proof is devoted to show
the following property :

Property 1. There is a partition S = {S1, . . . , Sm}
of S such that, 1 ≤ i ≤ m,

∑

c∈Si
w(c) = β if and

only if there exists a covering C = {c1, . . . , ct} of H
such that T = {r(c1), . . . , r(ct)} is a mapping of p(C)
in G with a load ε ≤ k.

First, we consider a partition S = {S1, . . . , Sm}
of S such that 1 ≤ i ≤ m,

∑

c∈Si
w(c) = β. We

will construct a covering C = {c1, . . . , ct} of H such
that T = {r(c1), . . . , r(ct)} is a mapping from p(C)
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to G with a load ε ≤ k. Every element sj where
1 ≤ j ≤ q is represented by m elements of T , ci,j ,
with 1 ≤ i ≤ m.

• If element sj is in Si, then ci,j is equal to
{

bi
j , a

t
j , hj(`) : 1 ≤ ` ≤ 3m2w(sj)−m ∧ 1 ≤ t ≤ m

}

.

Note that |p(ci,j)| = 3m2w(sj) + 1.

• If element sj is not in Si, then element ci,j con-
tains vertices ai

j and bi
j : |p(ci,j)| = 2.

Let us compute the load of this mapping T .

• Let j be an integer between 1 and q. We focus on
edge e = [u, zj(1)] of path Yj . Only elements c
in A = {c`,j : 1 ≤ ` ≤ m} are such that e ∈ r(c).
Thus,

∑

c∈A |p(c)| = 3m2w(sj) + 2m − 1. Let
consider the following ratio :

∑

c∈A |p(c)|

cap(e)
=

3m2w(sj) + 2m− 1

3m2w(sj) + 2m− 1
= 1

We can apply the same argument with all the
edges of path Yj .

• Let i be an integer between 1 and m. We focus
on all the edges of path Xi. Without loss of
generality, we consider edge e = [u, Xi(1)]. Only
elements ci,`, 1 ≤ ` ≤ q are such that e ∈ r(ci,`).
If s` /∈ Si, then we have |p(ci,`)| = 2. Otherwise
(i.e if si ∈ S`), |p(c`,i)| = 3m2w(s`) + 1. Let
consider the following ratio :

P

c∈{ci,`,1≤`≤q} |p(c)|

cap(e) = 2(q−|Si|)+3m2β+|Si|
2q+3m2β

≤ 1

Since εG,T = maxα∈E(G)

(

P

Ti∈T :α∈E(Ti)

|gi|

cap(α)

)

, the load

of this mapping is less or equal to 1. We have proved
the first part of Property 1.

Conversely, let us consider a covering C =
{c1, . . . , ct} of H such that set T = {r(c1), . . . , r(ct)}
is a mapping from p(C) to G with a load εG,T ≤ 1.

Let j be an integer such that 1 ≤ j ≤ q. Edge
e = [hj(3m2w(sj) − m), hj(3m2w(sj) − m − 1)]

and vertex v = hj(3m2w(sj) − m) are con-
sidered. In graph H , vertex v is adja-
cent to vertices in set A such that A =
{

ai
j , hj(`) : 1 ≤ ` ≤ 3m2w(sj)−m− 1 ∧ 1 ≤ i ≤ m

}

.

Since |p(A)| = 3m2w(sj)− 1, and since the capacity
of e equals to 3m2w(sj) + 1, there is at least
two elements c1, c2 in T such that e ∈ r(p(c1)),
e ∈ r(p(c2)), v ∈ c1 ∩ c2, A ∪ {v} ⊆ c1 ∪ c2 and
c1 6= c2. By a listing of cases, we can check that
c1 = c2 and that there is only one element cj in T
such that e ∈ r(p(cj)).

Let B = {[u, zj(1)], [zj(`), zj(` + 1)] : 1 ≤ ` ≤
m − 1} be a set of edges. The capacity of all theses
edges is 3m2w(sj) + 2m− 1. Without loss of gener-
ality, we focus on edge e′ = [zj(1), zj(2)]. Let D =
{c : c ∈ T ∧ e′ ∈ r(c)}. Note that since e′ ∈ r(p(cj)),
cj ∈ D. Moreover, since there are edges between ver-

tices bi
j and ai′

j in H and e′ ∈ r(p({bi
j , a

i′

j })) with

1 ≤ i, i′ ≤ m, we have {bi
j : 1 ≤ i ≤ m} ∈

⋃

c∈D c.
Now, we will prove by contradiction that there exists
at most one element b in {bi

j : 1 ≤ i ≤ m} such that
b ∈ cj . So, we assume that cj does not contain any
vertex in {bi

j : 1 ≤ i ≤ m}. So there exist some ele-
ments c′1, . . . , c

′
xj

in T ∩D such that they cover edges
{

bi
j , a

i
j : 1 ≤ i ≤ m

}

in H . By definition, we have
∑xj

`=1 |p(c′`)| ≥ 2m. Since the capacity of e′ equals
to 3m2w(sj) + 2m− 1 and since |p(cj)| ≥ 3m2w(sj),
we have

1 ≥ εG,T ≥

∑

c∈D |p(c)|

cap(e′)

3m2w(sj) + 2m− 1 ≥
∑

c∈D

|p(c)| ≥ 3m2w(sj) + 2m.

The previous inequality leads to a contradiction.
So at most one element b in {bi

j : 1 ≤ i ≤ m} is such
that b ∈ cj .

Now, we will construct a collection S =
{S1, . . . , Sm} of S as follows : sj ∈ Si if all ele-

ments in set {hj(`), a
`′

j , bi
j : 1 ≤ `′ ≤ m ∧ 1 ≤ ` ≤

3m2w(si) − m} belong to the same element ci,j in
covering C. Let A` = {c : [u, X`(1)] ∈ r(c)} for
1 ≤ ` ≤ m. First, we will prove by contradiction
that S is a partition of S using the capacities of edges
[u, X`(1)], for 1 ≤ ` ≤ m. So, we assume that there
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exists sj ∈ S such that sj ∈ Si and sj ∈ Si′ with
i 6= i′ and 1 ≤ i, i′ ≤ m. By construction of S, we
have

3m2β + 2q ≥
∑

c∈A`

|p(c)| ≥
∑

sj∈S`

3m2w(sj) (1)

We focus on a value of
∑m

`=1

∑

s∈S`
w(s). From

Inequality 1, we have

m
∑

`=1

∑

si∈S`

3m2w(si) ≤
m

∑

`=1

∑

c∈A`

|p(c)| ≤ 3m2(mβ)+2qm

(2)
Since sj ∈ S such that sj ∈ Si and sj ∈ Si′ with
i 6= i′ and 1 ≤ i, i′ ≤ m.

P

s∈S
3m2w(s) + 3m2w(sj) ≤

Pm

`=1

P

si∈S`
3m2w(si)

≤ 3m2(mβ) + 2qm
(3)

Since 3m2w(sj) > 2mq, Inequality 3 leads to a
contradiction. So S = {S1, . . . , Sm} is a partition of
S. Moreover, from Inequalities 1 and 3, it is easy to
deduce that

∑

sj∈Si
w(sj) equals to β. Thus, S is a

partition satisfying the following property : for every
element S` of S,

∑

sj∈Si
w(sj) = β.

We have proved Property 1 and the proof of The-
orem 1 is completed.

The proof of Theorem 1 proves that Problem
CEMR remains NP-complete even if graph G is a
tree. In this case, Problem CEMR is equivalent to
Problem CEM. Moreover, the proof of Theorem 1
works because graph G contains several paths. But
it does not work if graph G is a path. However, we
believe that the following conjecture is valid.

Conjecture 1. Problem CEMR is solvable in poly-
nomial time for the case where G is a path.

4 Lower bounds of Problem CEMR

This section is devoted to giving lower bounds for
problem CEMR. We deal here with the optimization

problem corresponding to Problem CEMR, i.e., min-
imizing the load.

Definition 5. Let H be a digraph and C be a covering
of H. The covering C = {C1, . . . , Ck} is minimal if
and only if there is no Ci ∈ C such that there exists
c ∈ C1 and {C1, . . . , Ci − {c}, . . . , Ck} is a covering
of H.

Covering {{A, C, D}, {A, B, C}, {A, D, F}}
in Fig. 4, is not minimal because
{{A, C, D}, {B, C}, {A, D, F}} is still a cover-
ing (and it is minimal). It is clear that to study
Problem CEMR, we only have to consider minimal
coverings. Let us denote by Cm(H) the set of all
minimal coverings of H and by P(S) the set of all
the partitions of a given set S.

Lemma 1. For any digraph H we have |Cm(H)| ≤
|P(E(H))| and for any C ∈ Cm(H) we have |C| ≤
|E(H)|.

Proof. Let us consider any total order on the ver-
tices of H . Each minimal covering of H can
be considered as a lexicographically ordered set
based on the total order. We define the follow-
ing injective function I from Cm(H) into P(E(H)).
Consider the ordered set C = {c1, . . . , ck} ∈
Cm(H): I(C) is obtained by Algorithm in Ta-
ble 1 (In Fig. 4, C = {{A, C, D}, {A, D, F}, {B, C}}
is a minimal covering and I(C) is equal to
{{[A, C], [A, D], [C, D]}, {[A, F ], [D, F ]}, {[B, C]}}).

Since C is a minimal covering, then for each Pi ∈
I(C), Pi 6= ∅. Thus, by definition of I, it is clear that
I is an injective function and that I(C) is a partition
of E(H) with cardinal |C|.

Considering an instance (G, cap, r, H, p, k) of Prob-
lem CEMR, if a covering C of H is such that p(C)
is realizable (see Definition 4), then for any c ∈ C,
|c| ≤ cap(G). To enumerate all the coverings having
this property, we could think of generate all the par-
titions of E(H) where the greatest size of a part is
less than cap(G)2 (i.e., the number of arcs in a clique
with cap(G) vertices). Unfortunately, even if cap(G)
is bounded by a constant c, the number of partitions
to be generated is in θ(ep(|E(H)|)), with p(x) a poly-
nomial function. So generating all the partitions can
not be performed in polynomial time.
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Table 1: An algorithm to compute an injective
function I in Lemma 1

Input: An ordered set C = {c1, . . . , ck} ∈ Cm(H)
Output: A value I(C).
Algorithm:

1. I(C)← {P1, . . . , Pk} with Pi = ∅

2. For i = 1 to k do

For each edge [u, v] of H not considered
yet, such that u, v ∈ ci, do

Pi ← Pi ∪ {[u, v]}

3. return I(C)

In most cases, |Cm(H)| � |P(E(H))|. Even if
cap(G) = c, we don’t know if |Cm(H)| is or not a
polynomial function of |E(H)|.

Problem CEMR is also related to different prob-
lems of mapping and cuts in graphs. This leads us to
give bounds about the maximal size of a group in a
covering of H that can be efficiently mapped in G.

Let (G, cap, H, p, k) be an instance of Problem
CEM and consider V1 ⊂ V (G) a vertex subset of G
(note that we deal here with Problem CEM because
the lower bounds can be given. But this problem
does not on the routing function). We define

• the G-cut of V1 by cG(V1) = {[u, v] ∈ E(G) : u ∈
V1, v ∈ V (G)− V1},

• the H-cut of V1 by cH(V1) = {[x, y] ∈
E(H) : p(x) ∈ V1, p(y) ∈ V (G) − V1}.

For example, in Fig. 4, let V1 be {4, 5}. cG(V1)
(resp. cH(V1)) is equal to {[2, 4], [2, 5], [3, 5], [4, 3]}
(resp. {[A, C], [A, F ], [B, C], [C, D], [D, F ]}).

Proposition 2. Let (G, cap, H, p, k) be an instance
of Problem CEM. Consider C a covering of H such
that p(C) is realizable in G. Then, the size of each
element c of C should satisfy the following property:

2 ·min

(

dG,H

∆H

,
√

dG,H

)

≤ max
c∈C
|c| ≤ cap(G) ,

with dG,H = maxV1⊂V (G)
|cH(V1)|
|cG(V1)| .

Proof. The upper bound is straight forward, We only
deal with the lower bound. Let (G, cap, H, p, k) be an
instance of Problem CEM. Consider a vertex subset
V1 of G and let α be an edge in cG(V1). This edge can
be used by the subtree allocated to a group contain-
ing at most cap(α) vertices. The maximal number of
links of cH(V1) used by such a group is the maximal
number of edges in a bipartite graph with cap(α) ver-
tices and with maximal degree ∆H , i.e., with at most
cap(α)

2 ·min(∆H , cap(a)
2 ) edges.

Thus, the maximal number of edges in cH(V1) that
then can be used by groups using edges in cG(V1)

is
∑

α∈cG(V1)

cap(α)
2 · min(∆H , cap(a)

2 ). So we can state

that:

Claim 1. If there exists a covering C of H such that
p(C) is a grouping that can be mapped on G, then
∀ V1 ⊂ V (G),

|cH(V1)| ≤
X

α∈cG(V1)

cap(α)

2
min(∆H ,

cap(a)

2
).

Let C be a covering of H such that p(C) is realizable
and consider V1 a vertex subset of G. The maximal
size of a group using an edge α in cG(V1) is thus equal
to min(cap(α), max

c∈C
|c|). From Claim 1, we conclude

that ∀ V1 ⊂ V (G),

|cH(V1)| ≤ |cG(V1)| ·
MC

2
·min(∆H ,

MC

2
) ,

with MC = maxc∈C |c|. The lower bound given in the
proposition is a direct consequence of this inequality.

From Proposition 2, parameter dG,H helps us to
give a good idea on a lower bound of the cardinality
of a cover. However,

Lemma 2. Consider an instance (G, cap, H, p, k)
of Problem CEM. Computing dG,H =

maxV1⊂V (G)
|cH(V1)|
|cG(V1)|

is a NP-complete problem.

Proof. Let us consider the case of |V (G)| = |V (H)|,
p being a bijective function and H a complete graph
(which is a possible neighborhood graph).
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In this case, dG,H = maxV1⊂V (G)
|V1|(|V (G)|−|V1|)

|cG(V1)| .

From [21] we know that, given a graph G, computing

maxV1⊂V (G)
|V1|(|V (G)|−|V1|)

|cG(V1)| is a NP-complete prob-

lem.

Table 2: Algorithm to compute a lower bound
of parameter dG,H

Input: A graph G and a graph H
Output: a real LowerB
Algorithm:

1. i← 1; G′ ← G; H ′ ← H

2. For i = 1 to k do

3. While V (H ′) 6= ∅ do

Let u ∈ V (G′) such that wH′,G′ (u) is max-
imum

• N (u)← i

• i← i + 1

• H ′ ← H ′ − p−1(u); G′ ← G′ − {u}

4. While V (G′) 6= ∅ do

Let u ∈ V (G′) such that ∆G′ (u) is maxi-
mum

(a) N (u)← i

(b) i← i + 1

(c) G′ ← G′ − {u}

5. LowerB ← 0

6. For each i ∈ [1, . . . , |V (G)|] do

(a) V ′
i ← {u ∈ V (G) : N (u) ≤ i}

(b) LowerB ← max(LowerB,
|cH(V ′

i )|

|cG(V ′
i
)|

)

7. return LowerB.

In order to compute good lower bounds for dG,H ,
we now give an heuristic (see Table 2 for a formal
description).

We first give a labelling N of the vertices of G
verifying the following property: let H ′ be a sub-
graph of H and G′ be a subgraph of G. Con-
sider u a vertex in G′. We define wH′ ,G′(u) =
|{[x,y]∈E(H′): x∈p−1(u), y 6∈p−1(u)}|

∆G′ (u) . The lower bound

of dG,H we compute here is max1≤i≤|V (G)|
|cH(V ′

i )|
|cG(V ′

i
)| ,

with V ′
i = {u ∈ V (G) : N (u) ≤ i} (see Algorithm

described in Table 2).
Notice that the lower bound of Proposition 2 is

relevant only if H is dense in comparison with G.
The following result is directly deduced from Propo-
sition 2 and from Lemma 1.

Corollary 2. For any instance (G, cap, H, r, p, k) of
Problem CEMR, the set of possible solutions can
be generated by the enumeration of all the parti-
tions of E(H) with maximal size of a part between

2 · min
(

dG,H

∆H
,
√

dG,H

)

and cap(G), with dG,H =

maxV1⊂V (G)
|cH(V1)|
|cG(V1)| .

Notice that Corollary 2 allows us to improve our al-
gorithm which enumerates all the possibles solutions
in order to see the quality of our heuristics given in
the next section.

5 Heuristics

This section is devoted to describing two heuris-
tics we propose to solve Problem CEMR. Given an
instance of Problem CEMR, these heuristics return a
covering of H .

The first heuristic uses a natural idea. Considering
first a covering in which each element is an edge of H ,
the heuristic (randomly) merges elements to (locally)
decrease the current load.

The main interest of the second heuristic is to give
a first (not optimized) application of a strong prop-
erty of neighborhood graphs. The second heuristic
computes a covering consisting in maximal cliques of
the neighborhood graphs and then optimizes the in-
tersection of these elements of the covering.

5.1 An edge-covering heuristic for

Problem CEMR.

We give here a simple heuristic called Heuristic 1 per-
forming as follows (see Table 3 for a formal descrip-
tion). At the beginning, all the edges of H are the
elements of covering of H (see Definition 2). The load
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of the current solution is computed (see Definition 3).
At each step of this heuristic, we modify the current
solution by merging two elements of the current cov-
ering as follows: a group g is randomly chosen and
the set of the groups of the current solution such that
all the groups have at least one common vertex with
g is computed. For each group g′ of this set, we com-
pute the load of a solution in which groups g and g′

are merged. And among all new solutions, the cur-
rent solution is the solution with minimum load. This
process is reiterated until there is no way to modify
the current solution.

For example, we consider an instance of prob-
lem CEMR with a neighborhood graph H of 6
vertices (see Fig. 4(c)), a graph G of the target
instance of CEMR and an assignment p where
p(A) = 1, p(B) = 2, p(C) = 4, p(D) = p(J) = 3
and p(F ) = 5 (see Fig. 4(d)). We apply Heuris-
tic 1 by considering that all edges in G have
the same capacity equal to 10. After the initial-
ization phase, each edge of H is a group (one
communication per group). The current solution is
{{A, C} , {A, D} , {A, F} , {B, C} , {C, D} , {D, F}}.
Now, we will try to merge some groups without
increasing the load of the current solution. Assume
that the routing function r returns a steiner tree given
a set of vertices and r({A, D})) = {[1, 2], [2, 5], [5, 3]}.
The load of edge [3, 4] is 2, the load of edges [2, 4],
[2, 5], [3, 5] is 4 and the load of edge [1, 2] is 6. A
group {A, D} is randomly chosen and the groups
{A, F}, {A, C}, {C, D}, {D, F} have one common
vertex with group {A, D}. Now, we compute the
load of a new covering by merging {C, D} with
group {A, D}: so we compute the load of solution
{{A, C, D}, {A, F}, {B, C}, {D, F}} (note that
group {A, C} is removed because it is a subset of
{A, C, D}). Its load is equal to 5/10. We do the
same process for groups {A, F}, {A, C}, {D, F}. We
keep the best solution which consists of merging
{C, D} with group {A, D}. Again, a group {B, C}
is randomly chosen. Only group {A, C, D} has
one common vertex with group {B, C} and the
solution obtained by merging group {B, C} with
{A, C, D} has 6/10 as load. So group {B, C}
can not merged without increasing load and the
current solution is not modified at this stage. And

so on. At the end, Heuristic 1 gives the solution
{{A, C, D}, {A, F}, {B, C}, {F, D}} (it is easy to see
that merging any two groups does not improve the
quality of the solution).

5.2 A clique-covering heuristic for

Problem CEMR

We will describe an heuristic based on some proper-
ties of a neighborhood graph. In Section , we notice
that neighborhood graphs are isomorphic to intersec-
tion graphs. Neighborhood graphs verify the Helly
property [30]. This property given by Helly in 1923,
says that, given n convex subsets in a d-dimensional
Euclidean space with n ≥ d + 1, if each collection of
d + 1 subsets contains a same common point, then
there is a same point common to the n subsets. Thus
in case of neighborhood graphs (i.e., d = 2), if a set
of at least 3 vertices induces a clique then the corre-
sponding boxes in the virtual field have a no empty
intersection.

We know that if an intersection graph with n ver-
tices verifies this property then this graph contains
a polynomial number of induced cliques, and that
these cliques can be enumerated in time O(n7) [3, 30].
Thus, the CLIQUE-MAX problem can be solved
in polynomial time for intersection graphs of d-
dimensional boxes, with d bounded by a given con-
stant c.

We now give an improved result to obtain the
heuristic for our main problem. We will give an algo-
rithm to enumerate all the maximal induced cliques
of a neighborhood graph in time O(n4) where n is
the number vertices. First, we focus on a specific
property of a neighborhood graph. We first show the
following lemma.

Lemma 3. Each element of E2,n can be obtained in
an unique way from an union of two collections of
intervals of E1,n.

Proof. Let us consider a collection g ∈ E2,n and a box
i =< (x1, y1), (x2, y2) > in G (see Section 2.1). We
give two collections of intervals I1 et I2 by the follow-
ing way (see Fig. 6). Let i =< (x1, y1), (x2, y2) > be
a box in g. Then, the interval i in I1 is (x1, y1) and
the interval i in I2 is (x2, y2).

12



Table 3: Heuristic 1: EDGE-COVERING heuristic.

Input:

• G : graph of the target instance of CEMR

• cap : E(G)→ N : a weight function

• H: a neighborhood graph

• p: an assignment

• r : routing function of the instance

Output:

• S : a covering of H

• ε : the load of coverin S

Variables:

• g, gnew : sets of vertices of H

• mark: boolean array of size |E(H)| initialized to false

• εmin : real

Algorithm:

1. S ← ∅ /* Initialization of the current solution */

2. For each e = [u, v] ∈ E(H), Do S ← S ∪ {{u, v}}

3. For each {u, v} ∈ S, Do mark[{u, v}]← false

4. ε← load of solution S /*(see Definition 3) */

/* Modification of the current solution */

5. While there exists an element g ∈ S such that mark[g]← false Do

(a) Choose randomly g ∈ S such that mark[g]← false.

(b) mark[g]← true.

(c) εmin ← ε and gnew ← ∅ and Smin ← S

/* Choose of group such that the merge between g and g′ gives the best solution */

(d) For all the elements g′ ∈ S such that g′ 6= g and g′ ∩ g 6= ∅ Do,

i. S′ ← S − g − g′ ∪MERGE(g, g′)

where MERGE(g, g′) = {x : x ∈ g ∨ x ∈ g′}

ii. For all the elements g′ ∈ S′ such that g′ ⊂ gnew Do S′ ← S′ − g′.

iii. ε′ ← load of solution S′

iv. if εmin ≥ ε′ then

εmin ← ε′ and Smin ← S′

gnew ←MERGE(g, g′)

(e) EndFor

(f) if εmin 6= ε then S ← Smin and ε← εmin

6. EndWhile

7. return S and ε
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Figure 6: 2-dimensional boxes with the corre-
sponding intersection graph and intervals

Given two intervals I1 and I2, we act in the oppo-
site way to obtain g. It is clear that in every case,
(g, I1, I2) is unique.

Remark 1. In a geometric way, considering that a
collection g ∈ E2,n is located in a positive discrete
plan, the procedure given in the previous proof con-
sists in projecting g on the two axes.

In fact, Lemma 3 induces a bijection between E2,n

and E1,n × E1,n (see Fig. 5). For each d ≥ 2, we
can give a bijection (computed in polynomial time)
between Ed,n and Ed1,n × Ed2,n, for any d1 + d2 = d.

Corollary 3. Each neighborhood graph is the inter-
section of an unique pair of interval graphs with n
vertices sharing the same vertex set.

Now, we will give the main result used by our
heuristic.

Proposition 3. The enumeration of the maximal in-
duced cliques of a neighborhood graph with n vertices
can be done in time O(n4).

Proof. By Lemma 3 each collection g ∈ E2,n can be
associated in an unique way to a pair of collections of
intervals (I1, I2). Let H, G1 and G2 be respectively
the intersections graphs of g, I1, and I2. By con-
struction, these three graphs have the same vertex
set V = {1, . . . , n}.

In Fig. 5, {1, 2, 3, 4} and {1, 2, 3} are maximal
clique respectively in I1 and in I2 and we can also
notice that g has maximal clique {1, 2, 3}. Property 2

explains the previous remark and it is a direct conse-
quence of the construction of I1 and I2 from g.

Property 2. A subset of vertices V ′ ⊂ V induces
a maximal clique in H if and only if V ′ induces a
maximal clique in a subgraph of G2 induced from the
vertices of a maximal clique in G1.

From a geometric point of view, let us consider
the projection of I1 (resp. I2) on a segment s1

(resp. s2) (see Remark 1 and Fig. 5). From these
projections, each segment is composed of at most
k1 ≤ 2n (resp. k2 ≤ 2n) consecutive sub-segments
(see Fig. 5). The algorithm we give acts as follows:
assume s1 = s1,1, . . . , s1,k1 and s2 = s2,1, . . . , s2,k2 .
For each sub-segment s1,j , we define c1,j as the col-
lection of the interval labels of I1 covering this seg-
ment. It is clear that c1,j induces a clique in G1. We
denote by CI1 = {c1,1, . . . , c1,k1} the set of collections
we obtain (in polynomial time). Consider now C1 a
set of collections of intervals initially empty. For each
c1,i,

• we consider I2,i the subset of intervals of I2 in-
duced by c1,i,

• we build CI2,i
= {c′2,1, . . . , c

′
2,k2
}, where c′2,i is

the set of interval labels of I2,i covering segment
s2,i,

• C1 ← C1 ∪ CI2,i
.

So,

Property 3. |C1| ≤ 4n2 and for each c ∈ C1 we have
|c| ≤ n.

We denote by C1 the closure of C1, i.e., C1 is the
biggest subset of C1 such that for each pair c, c′ in C1,
c 6⊂ c′ and c′ 6⊂ c. From Property 2, C1 is obtained in
polynomial time function of n and |C1| ≤ 4n2.

From Property 2, the elements of C1 are maximal
cliques in H et by construction, C1 contains all these
cliques.

Proposition 3 leads us to obtain a covering of the
neighborhood graph by maximal cliques in polyno-
mial time O(n4). This is also the basic principle of
Heuristic 2 we describe now. From the main idea

14



given in Corollary 2, we deal here with the coverings
of H in which each group induces a maximal com-
plete graph of H . Thus, we consider a particular set
of partitions of E(H) for which we know by Proposi-
tion 3 that the cardinality is polynomial. In this case,
Problem CEMR consists in studying another kind of
problem in which we both take into account the fast
construction of ad hoc coverings, and the limited load
of edges in H .

Now, we will give an example to show how Heuris-
tic 2 works (see Table 4 for a formal description).
Let consider the instance of problem CEMR repre-
sented in Fig. 7. Moreover, all edges in G have the
same capacity equal to 10 and the routing function
r returns a steiner tree given a set of vertices and
r({J, D}) = {3, 4, 6}.

First, all maximal complete graphs of H are com-
puted:

K = {{A, B, D}, {B, C, F}, {B, D, F}, {C, F, J}, {D, F, J}}

S is initialized to {∅, ∅, ∅, ∅, ∅}. Set S corresponds
to the solution (Note that, the number of groups of
S is at most the number of maximal complete graphs
of graph H). Moreover, set NC is equal to E(H).
Now, we focus on the process executed in the loop
While. Graph G reprensents the relationship between
maximal complete graphs and edges of H . An edge
of graph G between a vertex representing a maximal
clique c and a vertex corresponding in edge e of H
indicates that c covers edge e in graph H . Now, the
remainder of the algorithm determines how all the
edges of H are covered by the solution. At each step
of this process, one edge e of H is selected so that
the number of groups in K containing e is minimum.
Afterwards, amoung all groups covering edge e, one
group is selectionned for covering edge e because
this solution is the best solution for minimising the
efficency. As edges [A, B], [A, D], [B, C], [C, J ], [D, J ]
are covered by one element of K, their degree in
G is equal to 1 and they are selected first (see
Fig. 8(b)). After their treatment, S is equal to
{{A, B, D}, {B, C}, ∅, {C, J}, {D, J}} and NC =
{{B, D}, {B, F}, {C, F}, {D, F}, {D, J}, {F, J}}
(see Fig. 8(a)). Moreover, now e is equal
to edge [C, F ]: elements {C, F, J} and
{B, C, F} cover it. The efficiencies of covers

{{A, B, D}, {B, C}, ∅, {C, F, J}, {D, J}} and
{{A, B, D}, {B, C, F}, ∅, {C, J}, {D, J}} are

computed (they are respectively equal to
5/10 and 4/10). Thus, S becomes equal to
{{A, B, D}, {B, C, F}, ∅, {C, J}, {D, J}}. And so
on.
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Figure 7: An instance of problem CEMR

6 Simulation and experimentation results

This final section gives some simulation results
about the use of the heuristics given in Section 2.2.
The purpose of this section is to evaluate the quality
of the solutions given by ours two solutions in com-
pare to all valid solutions.

Since Problem CEMR is NP-complete even if G is
a tree, we consider only G as the tree given in Fig. 3.
Thus, the routing function r is obvious. Neighbor-
hood graphs H are randomly chosen such that they
verify the Helly property, they have the same diame-
ter and they contain 12 edges.

For each random neighborhood graph H , the simu-
lations we consider consists in computing the average
load ε1 obtained from 5 executions of H1 and the load
ε2 obtained by running H2. For the 300 generated
random graphs, Fig. 9 gives the percentage of solu-
tions found by the two heuristics. Note that they give
always realizable solutions, knowing that the average
ratio of realizable solutions is 31.3%, H2 returns a
solution which is in the first 17.2% of the best solu-
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Table 4: Heuristic 2: CLIQUE-COVERING heuristic.
Input:

• G : graph of the target instance of CEMR ; cap : E(G)→ N : a weight function

• H: a neighborhood graph ; p: an assignment ; r : routing function of the instance

Output:

• S : a cover of H; ε : the load of cover S

Variables:

• g, gnew : sets of vertices of H ; εmin : real

• marks: boolean array of size |E(H)| initialized to false

Algorithm:

1. Compute K where K = {k1, . . . , kz} is the set of all maximal complete graphs of H

2. S ← ∅ and ε← 0 /* Initialization of the current solution */

3. For each i ∈ [1, . . . , z] do , S ← S ∪ {∅}

4. For each e ∈ E(G) do, load(e) = 0 /*Initialization of the state of network G*/

5. NotCovered← E(H)/* Initialization of computing phase */

6. While (NotCovered 6= ∅) do /* Phase of computing of the cover */

(a) Let G = (V, E) where

V = NotCovered ∪K and E = {(e, s) : e = [x, y] ∈ E(H) ∧ s ∈ K ∧ x ∈ s ∧ y ∈ s}

(b) Choose e = [u, v] ∈ NotCovered such that dG(e) = min{dG(t) : t ∈ NotCovered}

(c) εmin ←∞+ /* selection of element in K for covering edge e */

(d) For each i ∈ [1, . . . , z] do /*notation: S[i] (resp.K[i]) is the ith element of S (resp.K)*/

i. if (u ∈ K[i]) ∧ (v ∈ K[i]) then

A. gnew ← S[i] ∪ {u, v} and εnew ←∞+

B. For each e ∈ E(G) do

/*Suppression of communication tree of group S[i]*/

• if e ∈ r(S[i]) then load′(e)← load(e)− |S[i]| otherwise load′(e)← load(e)

/*Taking count of communication tree of new group gnew*/

• if e ∈ r(gnew) then load′(e)← load′(e) + |gnew|

• if εnew < load′(e)/cap(e) then εnew ← load′(e)/cap(e)

C. EndFor

D. if (εmin > εnew) then nb← i and (εmin ← εnew)/* keep the best solution */

(e) EndFor /* update the load of network G + the cover which now covers e*/

(f) NotCovered← NotCovered− {e}

(g) For each e ∈ E(G) do, if e ∈ r(S[nb]) then load(e)← load(e)− |S[nb]|

(h) S[nb]← S[nb] ∪ {u, v} and ε← εmin

(i) For each e ∈ E(G) do, if e ∈ r(S[nb]) then load(e)← load(e) + |S[nb]|

7. EndWhile

8. return S and ε
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Figure 8: An instance of problem CEMR
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Figure 9: Percent for the acceptable solutions
for Heuristics H1 and H2

tions and H1 returns a solution which is in the first
18.6% of the best solutions. Fig. 10 and 11 presents
the average values of ε1 and ε2 on 300 random graphs
and their standard deviations. We get (using technic
described in [17]): ε1 = 0.89±0.09 and ε2 = 0.84±0.13

(see Fig. 10(a) and 10(b)). Note that here, Heuristics
H1 and H2 provide realizable solutions.

We consider now a particular instance considering
the two graphs G and H given in Fig. 3 and 2. The
capacity of each edge of G is equal to 10. Fig. 11
presents the distribution of all the solutions (i.e., the
efficiencies of all the possible mappings), sorted by in-
creasing values. Note that only 34% of the mappings
are realizable on G.

These simulation results, for which we analyzed the
confidence, lead us to some remarks and analysis. We
first see that the random aspect of H1 can be used to
obtain good solutions by making many executions of
it on the target instance. The average behavior of H2

is better than the one of H1 because H2 considers the
topology of the neighborhood graphs. Actually, we

ut
ili

sa
tio

n 
ra

te
 f

or
 th

e 
m

us
t l

oa
de

d 
ra

te

0.94
0.83

refused solutions

distribution of solutions

H2

H1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70 80 90 100%

Figure 11: All solutions and the quality of
Heuristics H1 and H2

also considered regular topologies of graphs H , that
do not contain large cliques: H1 and H2 turn out to
return equivalent solutions. An open question is to
determine what are the realistic properties of neigh-
borhood graphs in addition to the Helly property we
could use to improve H2.

7 Conclusion

We investigate here a theoretical problem related
to communication resource allocation to answer
multicast requirements for distributed interactive
simulations. Our approach consists in considering it
as a multipoint communication problem for which
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Figure 10:

we give some complexity results (NP-complete
problems), and some lower bounds. We also devel-
opped two polynomial-time heuristics. They provide
anwers that are experimentally shown to be in the
top 19% of the best solutions. There remain (at
least) three open questions about this problem.
First, we have seen that neighborhood graphs have
the Helly property (we use in Heuristic 2), but is
it the only main characteristic of these graphs in
practice? Second, could we find some algorithm with
approximation guarantees to solve Problem CEMR
for some classes of network graphs (for example
trees) and/or of neighborhood graphs? Finally,
Problem CEMR can be seen as the initial problem
to be solved at the beginning of the simulation.
When the neighborhood graphs change time after
time, the initial solution has to be quickly modified.
What is the ad hoc algorithmic approach to be use
to do this modification? For which kinds of changes
in the neighborhood graphs this modification of the
multipoint solution has to be done? Some tests using
local search technics can be founded in [11].
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