
FSEN 2005

An abstract way to define rewriting logic

Marc Aiguier a,1, Diane Bahrami b, Delphine Longuet a

a Université d’Évry, LaMI CNRS UMR 8042,
Tour Evry II, 523 pl. des Terrasses de l’Agora F-91000 Évry

b CEA-LIST Saclay
F-91191 Gif sur Yvette Cedex

Abstract

Since rewriting logic has been introduced, it has shown its adequateness both as a
semantic and a logical framework. But the numerous applications of the rewriting
logic in the above two areas has shown the importance of increasing its expressive
power. Therefore, in order to facilitate this work, we will study in this paper how
to generalize the transformation that from the equational logic has resulted in the
rewriting logic. To achieve this purpose, we will show that there exists a valid and
useful notion of rewriting logic associated to any rewriting theory fitting an abstract
framework developed by two of the authors in previous papers.

Key words: Rewriting formal system, abstract rewrite system,
abstract rewriting logic, reachability and provability models,
soundness and completeness results

1 Introduction

Since rewriting logic has been introduced [21], it has shown its adequateness
both as a semantic framework, particularly for concurrent and distributed
computation, and as a logical framework, that is, a meta-logic in which other
logics can be represented. Indeed, the basic axioms of this logic, which are
rewrite rules of the form t→ t′ where t and t′ are terms over a given signature,
can be read into two ways: either as the local transition of a concurrent
system or the inference rule of some logic. For the former, rewriting logic
then extends (equational) algebraic specifications to deal with dynamic and
concurrent systems. Indeed, algebraic specifications have proven to be well-
suited for describing complex data structures and the functional aspects of a
software system. However, they are insufficient when applied to dynamic and

1 e-mail: aiguier@lami.univ-evry.fr
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Aiguier

distributed systems. For the latter, rewriting logic is then a “universal” logic
whithin which other formalisms can be translated.

The numerous applications of rewriting logic in the above two areas has
shown the importance of increasing its expressive power. The expressive power
of the standard rewriting logic can be increased in two ways, by extending
either the computational capabilities such as introducing some probabilistic
laws to basic transitions t → t′ [8,7] or real-time aspects [18], or the logical
capabilities by considering another logic than the conditional equational logic
to parameterize rewriting logic such as the membership equational logic [22]
with frozen operators [9].
When we observe all these extensions, at each time, they lead to the three
questions:

(i) What are the rules of deduction for this extended rewriting logic?

(ii) What are the models of a rewrite theory? Are there initial and free
models?

(iii) Is rewriting logic complete with respect to its model theory?

In the future, other applications will certainly lead to extend the stan-
dard rewriting logic to other peculiar aspects. These new extensions naturally
lead to answer the three above questions. However, as this has been observed
in [7,9], these extensions are usually nontrivial generalizations of the original
inference rules, model theory, initial and free models, and completeness theo-
rem for rewriting logic over equational logic as developed in [21]. Therefore, in
order to facilitate this work, it can be useful to study how to define rewriting
logic and how to answer the three above questions at a more abstract level.
This is what we propose to do in this paper. This requires first to give an
abstract form of logics which parameterize rewriting logic, and then to study
rewriting in this abstract framework of logics. In previous papers [3,2,1], we
proposed such a general framework of rewriting by applying the paradigm
“logical-system independent”, that is providing a general framework and con-
ditions (axioms), and adapting and proving the classical definitions and results
which underlie rewriting. Such an abstraction allowed us to unify and general-
ize many different rewriting theories. Another interest of such an abstraction
is rewriting is the main technique used for prototyping algebraic specifica-
tions, and many new algebraic formalisms are (and will be) defined to answer
some specific questions related to the activity of formal specification (observ-
ability, exception-handling, dynamic data-types, etc.). Hence, in order to be
able to prototype (algebraic) specifications, one does not only need to define
new formalisms, but also has to adapt these classical notions, and show that
these fundamental results remain true for such formalisms. Up to now, this
kind of approach to study some properties in the paradigm “logical-system
independent”, has been widely applied to semantic aspects of algebraic for-
malisms [12,15,24] and to theorem deduction [13,23]. But as far as we know,
operational aspects of algebraic formalisms (here represented by rewriting)

2

Aiguier

have not received attention at this abstract level. Therefore, it is useful to
provide an axiomatization of rewriting allowing one to generalize results which
are well known for some specific formalisms.

The present paper is then devoted to the next step: showing that there
exists a valid and useful notion of rewriting logic in this abstract framework.
Hence, the present work continues the development of the abstract framework
of rewriting developed in [2,1].

In the abstract rewriting theory developed in [3,1], abstraction is twofold:

(i) Rewritten objects are just elements of a set without any peculiar structure
as to be inductively defined from a set of function names and variables.

(ii) rewriting relations are specified by inference rules just defined as n-ary
relations of formal systems. Hence, no property is supposed on them such
as for instance transitivity.

The consequence of both above points is that the work presented here does
not aim at generalizing the approach developed by Meseguer and many oth-
ers, that is providing a logical support to a very powerful version of transition
systems. Indeed, in this case, rewriting logic is based on a notion of relation
which is not symmetric (because change is not in general reversible) but tran-
sitive. The present paper goes beyond by only generalizing the transformation
that from the equational logic has resulted in the rewriting logic. Besides, we
will show in Section 7 that the rewriting logic over membership equational
logic [9] in an instance of our framework.

This paper is organized as follows: In Section 2, we recall standard nota-
tions about formal systems, theorem deduction and proof trees. In order to
be as self-contained as possible, Section 3 and Section 4 summarize relevant
definitions of [2,1]. In Section 5 is introduced the notion of rewriting logic at
this abstract level. Section 6 proposes a model theoretic semantics for abstract
rewriting logic. The theorems proving the soundness and completeness of the
abstract rewriting logic with respect to this semantics are presented. Finally,
Section 7 exemplifies the abstract framework.

To instantiate our definitions, concepts and results, we will present the
conditional rewriting logic [21] as a running example and the rewriting logic
parameterized by the conditional membership equational logic [9] in Section 7.
Other examples such as constrained and timed rewriting logics [18,17] can be
found in [4].

2 Preliminaries

A formal system (a so-called calculus) S = (F,R) over an alphabet A consists
of a set F of strings over A, called formulae, and a set R of n-ary relations
on F , called inference rules. Thus, a rule with arity n (n ≥ 1) is a set of

3

Aiguier

tuples (ϕ1, . . . , ϕn) of strings of F . Each sequence (ϕ1, . . . , ϕn) belonging to a
rule r of R is called an instance of that rule with premises ϕ1, . . . , ϕn−1 and
conclusion ϕn. It is usually written ϕ1 ... ϕn−1

ϕn
. If n = 1, the instance is called

an axiom and is written
ϕ1

. A deduction in S from a set of formulae Γ of

F is a finite sequence (ψ1, . . . , ψm) of formulae such that m ≥ 1 and, for all
i = 1, . . . ,m, either ψi is an element of Γ or there is an instance ϕ1 ... ϕn−1

ϕn
of

a rule in S where ϕn = ψi and {ϕ1, . . . , ϕn−1} ⊆ {ψ1, . . . , ψi−1}. A theorem
from a set of formulae Γ in S is a formula ϕ such that there exists a deduction
in S from Γ with last element ϕ. The existence of such a deduction is usually
denoted by the meta-statement Γ ` ϕ. Instances of rules can also be composed
to build proof trees. Formally, a proof tree π in a formal system S is a finite
tree whose nodes are labelled with formulae of F in the following way: if a
non-leaf node is labelled with ϕn and its predecessor nodes are labelled (from
left to right) with ϕ1, . . . , ϕn−1, then ϕ1 ... ϕn−1

ϕn
is an instance of a rule of S.

Moreover, the leaves in π are either axioms or else rules with no premise and
conclusion of which is an element of a given set of hypotheses Γ. We write
π = (π1, . . . , πn, ϕ)ι, with n ∈ N, the proof tree whose last inference rule is
ι = ϕ1,...,ϕn

ϕ
and such that, for every i ∈ {1, . . . , n}, πi is the subtree of π

leading to ϕi.

3 Rewriting formal system

Here, we define an abstract framework of logics for which there exists a notion
of rewrite system with an associated notion of rewriting logic (see the two
next sections).

Rewriting is a method to reason with binary relations (equality [5,11],
inclusion [19] or other non-symmetric relations [6,25], the ideal membership
problem [10], etc.). These binary relations (the set E in Definition 3.1) are
defined on sets of elements that are homogeneous but that can be different
from one rewriting theory to another (simple words, λ-terms, first order terms,
graphs, etc.). Moreover, the behavior of these binary relations is specified by
inference rules. For example, in the equational rewriting setting, the behavior
of equality is specified by the reflexivity, transitivity and symmetry rules. If
we extend to term equations, we add both context and substitution rules. We
can then notice that, in all rewriting theories, rewriting relations are spec-
ified thanks to a subset of these inference rules (e.g. substitution, context,
reflexivity and transitivity) while others are removed of the process (e.g. sym-
metry). Moreover, preserved inference rules can be split up into two disjoint
sets, called RS and De, specifying rewriting steps and derivations, respec-
tively. Removed inference rules will be put in the set Rmv. Typically, rule
instances of Rmv are removed because they generate basic loops in rewriting
process, and then lead to obvious nonterminating rewrite relations. Finally,
these binary predicates can be constrained by other n-ary predicates (the set

4

Aiguier

P in Definition 3.1) such as for instance the definability predicate D in partial
algebras or the membership predicate “:” in the membership equational logic.
The inference rules defining the behavior of these extra predicates will be put
in the set Oth. This leads to extend formal systems as follows:

Definition 3.1 [Rewriting formal systems] A rewriting formal system (rfs) is
a 7-tuple SP = (T,E, P,RS,De,Rmv,Oth) such that T is a set, E and P are
disjoint sets of binary and n-ary relations on T , and RS, De, Rmv and Oth
are four disjoint sets of n-ary relations on the set F = {p(u1, . . . , un) | p ∈
E ∪ P ∧ (u1, . . . , un) ∈ p} satisfying:

• for every r ∈ RS ∪ De ∪ Rmv, all instances of r have conclusions of the
form p(u, v) with p ∈ E, and

• for every r ∈ Oth, all instances of r have conclusions of the form p(u1, . . . , un)
with p ∈ P .

Remark 3.2 The couple S = (F,RS ∪De ∪Rmv ∪Oth) is a formal system
over the alphabet E ∪ P ∪ T ∪ {(; , ;)}.

Example 3.3 [Conditional equational logic] In this example, we define the
logic which parameterizes the conditional rewriting logic associated to the con-
ditional term rewriting modulo a set of equations. Before defining the rfs for
this logic, let us recall some definitions and notations useful to this purpose.
A signature Σ is a set of function names, each ones equipped with an arity in
N. Given a set of variables V , let us note TΣ(V) the set of terms, free with
generators in V . Given a term t ∈ TΣ(V), V ar(t) denotes the set of variables
occurring in t.
Atoms are Σ-equations of the form t = t′ where t and t′ are terms in TΣ(V).
Formulae are then sentences of the form α1 ∧ . . .∧αn ⇒ αn+1 where for every
1 ≤ i ≤ n + 1, αi is a Σ-equation, and theories are any set of formulae. A
substitution is a mapping σ : V → TΣ(V). It is naturally extended to terms
equations and conditional formulae.
In order to fit conditional formulae into the definition of rfs which only ma-
nipulates predicates, any formula of the form c ⇒ t = t′ where c is a finite
conjunction of equations, will be noted t =c t

′. Unconditioned equations t = t′

will be noted t =∅ t
′. Hence, in the associated rfs, this gives rise to a family of

predicates =c indexed by finite conjunctions of equations, and inference rules
will be n-ary relations on such formulae.

Therefore, given a signature Σ and a set of Σ-equations Eq, we define the
rfs SP = (T,E, P,RS,De,Rmv,Oth) for the conditional equational logic as
follows: Let Γ be a set of formulae t =c t

′

• T = TΣ(V),

• E = {=c | c : finite conjunction} is a set of equalities with for every

c : conjunction, =c
def
= TΣ(V)×TΣ(V) (syntactical definition of equations 2),

2 Any couple of terms (t, t′) is a well-formed equation. In any way, this does not mean that

5

Aiguier

• P = {≈} with ≈def
= TΣ(V)× TΣ(V),

• RS is the set defined by the following deduction rules:
(i) Reflexivity for each t ∈ TΣ(V),

t =∅ t

(ii) Replacement for each t =c t
′ ∈ Γ with c =

∧
1≤i≤n

ti = t′i and every σ, σ′ :

V → TΣ(V),

∀x ∈ V ar(t) ∪ V ar(t′), σ(x) =∅ σ
′(x) ∀1 ≤ i ≤ n, σ(ti) =∅ σ(t′i)

σ(t) =∅ σ′(t′)

(iii) Congruence for each t(x1, . . . , xn),

∀1 ≤ i ≤ n, ti =∅ t
′
i

t(t1/x1, . . . , tn/xn) =∅ t(t′1/x1, . . . , t′n/xn)

(iv) Equality

t ≈ u u =∅ v v ≈ t′

t =∅ t′

• De is the set defined by the following deduction rule:
(i) Transitivity

t =∅ t
′ t′ =∅ t

′′

t =∅ t′′

• Rmv is the set defined by the following deduction rule:

Symmetry
t =∅ t

′

t′ =∅ t
• Oth is the set defined by all the standard rules of equational reasoning

applied on equations of the form t ≈ t′ at which we add the following
deduction rule:

Axiom
t = t′ ∈ Eq
t ≈ t′

4 Abstract rewriting

In this section, we recapitulate how to define the notion of rewrite systems and
derivations in rfs from [2,1]. In [2,1], we also gave a meaning, in the abstract
framework of rfs, to the usual notions of effluences and proofs by rewriting

it is true.

6

Aiguier

(abstractions of peaks and valleys, respectively, usual in term rewriting), ter-
mination, Church-Rosser property, etc. From these notions, we then gave
sufficient conditions to ensure the fundamental results which underlie rewrit-
ing used to generate canonical rewrite systems, such as Newman’s lemma.
Then, this has allowed us to define a generic completion method á la Knuth-
Bendix. We refer the interested reader to our papers [2,1] for the complete
presentation of these notions, results and extensions.

Definition 4.1 [Rewrite systems] Let SP = (T,E, P,RS,De,Rmv,Oth) be
a rfs. A SP-rewrite systems R is an E-sorted set of binary relations (→p)p∈E

on T such that: ∀p ∈ E, →p⊆ p (compatibility with the syntactic definition
of p given in SP).

Example 4.2 In the rfs developed in Example 3.3, we can consider the follow-
ing set of rules from the signature Σ = (true0, false0, 00, eq?2, mod 2, gcd2),
which specifies the greatest common divisor:

gcd(n,m)→eq?(n mod m,0)=true m
gcd(n,m)→eq?(n mod m,0)=false gcd(m,n mod m)

As another example, dealing with rewriting modulo a set of equations, we
can consider the following rewrite system from the signature Σ = ({00, 10,+2,×2}, {x, y, z})
which defines Boolean rings:

Eq =

 x+ y ≈ y + x, x× y ≈ y × x,

(x+ y) + z ≈ x+ (y + z), (x× y)× z ≈ x× (y × z)

,

→=∅=


x+ x→ 0, x× x→ x,

0 + x→ x, 0× x→ 0, . . .

x× (y + z)→ (x× y) + (x× z), 1× x→ x,

.

(see [16] for the complete presentation of this rewrite system)

We could be tempted to define rewriting steps and derivations as the clo-
sure of each binary relation →p under RS’s and De’s rule instances, respec-
tively, that is orienting the conclusion of RS’s and De’s rule instances in the
same direction as all their premises (this is how the standard rewriting rela-
tion is built in the unconditioned equational rewriting setting). But, there
are many deduction rules which do not satisfy such a condition. For instance,
this is not observed by the rule Replacement of the logic that parameterizes

conditional rewriting and given by: for each t =c t
′ 3 with c =

∧
1≤i≤n

ti = t′i and

every σ, σ′ : V → TΣ(V),

3 t =c t′ and t =∅ t′ denote, respectively, the conditional formula c ⇒ t = t′ where c is a
finite conjunction of equations, and the equation t = t′. This transformation is useful in
order to fit conditional formulae into the definition of rfs.

7

Aiguier

∀x ∈ V ar(t) ∪ V ar(t′), σ(x) =∅ σ
′(x) ∀1 ≤ i ≤ n, σ(ti) =∅ σ(t′i)

σ(t) =∅ σ′(t′)

Indeed, when dealing with conditional rewriting rules, we have (at least)
three potentially interesting definitions of →=∅

R : given a rewrite system R =
(→=c)c:equationconjunction, then let us define Θ = {t =c t

′ | t→=c t
′ ∈ R}

(i) Natural conditional rewriting σ(t) →=∅
R σ′(t′) if for every x ∈ V ar(t) ∪

V ar(t′), σ(x)→=∅
R σ′(x) and for every 1 ≤ i ≤ n, Θ ` σ(ti) =∅ σ(t′i),

(ii) Join conditional rewriting σ(t) →=∅
R σ′(t′) if for every x ∈ V ar(t) ∪

V ar(t′), σ(x) →=∅
R σ′(x) and for every 1 ≤ i ≤ n, σ(ti) ↓=∅ σ(t′i) where

↓=∅ means there is a term t′′ such that σ(ti)
∗→=∅ t

′′
=∅

∗← σ(t′i), or

(iii) Normal conditional rewriting σ(t) →=∅
R σ′(t′) if for every x ∈ V ar(t) ∪

V ar(t′), σ(x)→=∅
R σ′(x) and for every 1 ≤ i ≤ n, σ(ti)

∗→=∅ σ(t′i)

After seeing this example, it becomes obvious that some premises of rule
instances in RS ∪ De have a special status. For any rule instance ι ∈ RS ∪
De, we gather its “special” premises in the multi-set FL(ι) ⊆ L(ι) and call
them fixed leaves. The definition of these fixed leaves are ad-hoc for each rfs.
Therefore, given a deduction rule in RS∪De, the orientation of its conclusion
will only be influenced by the orientation of its fixed leaves. In the next
definition, we will only define in the abstract framework, normal rewriting.
Both natural and join rewriting can also be abstractly defined. In order to
simplify the presentation, we do not present here the abstract form of these
notions which, however, can be found in our paper [1].

Definition 4.3 [Rewriting step and rewriting relations] Let R be a SP-

rewrite system. For every p ∈ E, →p
R and

∗→
p

R are two binary relations
on T defined as the least binary relations (according to the set-theoretical
inclusion) inductively defined as follows:

(i) →p⊆→p
R and →p

R⊆
∗→

p

R, and

(ii) for every ι : p(t, t′) ∈ RS (resp. ι : p(t, t′) ∈ De) such that:

• for every leaf p′(u, v) ∈ FL(ι), u→p′

R v (resp. u
∗→

p′

R v), and
• Normal rewriting:

· for every leaf p′(u′, v′) ∈ L(ι) \ FL(ι) with p′ ∈ E, u′
∗→

p′

R v′, and
· for every leaf p(t1, . . . , tn) ∈ L(ι)\FL(ι) with p ∈ P , Θ ` p(t1, . . . , tn)

we have t→p
R t′ (resp. t

∗→
p

R t′)

We note →R=
⋃
p∈E

→p
R and

∗→R=
⋃
p∈E

∗→
p

R.

Example 4.4 From Example 3.3, for any rule instance ι ∈ RS ∪De, FL(ι)
contains all its premises of the form t =∅ t

′ except if ι is an instance of the
rule Replacement. In this last case, we have FL(ι) = {σ(x) =∅ σ

′(x) | x ∈
8

Aiguier

V ar(t) ∪ V ar(t′)}. Therefore, rewriting steps are then defined as follows:

• for every t ∈ TΣ(V), t→=∅
R t,

• →=∅⊆→
=∅
R ,

• for every t →∧
i≤n

ui = vi

t′ ∈ R, and every σ, σ′ : V → TΣ(V), if for every

x ∈ V ar(t) ∪ V ar(t′), σ(x) →=∅
R σ′(x) and for every 1 ≤ i ≤ n, σ(ti)

∗→
=∅
R

σ(t′i) then σ(t)→=∅
R σ(t′),

• for every t(x1, . . . , xn) ∈ TΣ(V), if for every 1 ≤ i ≤ n, ti →=∅
R t′i then

t(t1/x1, . . . , tn/xn)→=∅
R t(t′1/x1, . . . , t

′
n/xn), and

• if u →=∅
R v and there exists s, t ∈ TΣ(V) such that Eq ` s ≈ u, and

Eq ` v ≈ t, then s→=∅
R t.

Note both congruence and replacement rules have many premises. This allows
to apply rules in parallel to all arguments of an operator (congruence), or in
correspondence of all variables of a rule (replacement). Hence, a single rewrite
step can apply various rules in parallel.

For every finite conjunction of equations c 6= ∅, the rewriting relation
∗→

=c

R =→=c
R =→=c . Finally,

∗→
=∅
R is the transitive closure of →=∅

R .

5 Generic form of rewriting logic

In rewriting logic, basic axioms are rewrite rules of the form t→ t′ considered
as sequents and inference rules are n-ary relations on these basic axioms.
Inference rules are simply obtained by replacing in every deductive rule of
De∪RS formulae of the form p(t, t′) by t→p t

′, and by erasing rules in Rmv.
Formally, we have

Definition 5.1 Let SP = (T,E, P,RS,De,Rmv,Oth) be a rfs. For any

r ∈ RS ∪ De, let us note
→
r= {→ι | ι : p(t, t′) ∈ r ∧ p ∈ E} where for any

ι = ϕ1...ϕn

p(t,t′)
∈ r, →ι is the instance

→
ϕ1...

→
ϕn

t→pt′
where for all 1 ≤ i ≤ n:

•
→
ϕi= ti →pi

t′i if ϕi = pi(ti, t
′
i) and pi ∈ E, or

•
→
ϕi= ϕi, otherwise.

Definition 5.2 [Abstract rewriting logic (ARL)] Let SP = (T,E, P,RS,De,Rmv,Oth)
be a rfs. Let R = (→p)p∈E be a SP-rewrite system. We say that R entails a
sequent t→p t

′ and write R `Ded t→p t
′ if and only if t→p t

′ can be obtained
by the following set Ded of deduction rules:

Ded = {→r | r ∈ RS ∪De} ∪Oth

SP-rewrite systems are then theories for the underlying abstract rewriting
logic.

9

Aiguier

Example 5.3 [The conditional rewriting logic] The conditional rewriting logic
which formalizes the conditional term rewriting modulo a set of equations is
defined as follows:

• sentences are sequents of the form t →=c t
′ where c is a finite (possibly

empty) conjunction of equations,

• a rewriting theory R is a set of sequents, and

• a rewriting theory R entails the sequent t →=c t
′ if it is obtained by the

finite application of the following deduction rules:

(i) Replacement for each t →c t′ ∈ R with c =
∧

1≤i≤n

ti = ti and every

σ, σ′ : V → TΣ(V),

∀x ∈ V ar(t) ∪ V ar(t′), σ(x)→=∅ σ
′(x) ∀1 ≤ i ≤ n, σ(ti)→=∅ σ(t′i)

σ(t)→=∅ σ
′(t′)

(ii) Congruence for each t(x1, . . . , xn),

∀1 ≤ i ≤ n, ti →=∅ t
′
i

t(t1/x1, . . . , tn/xn)→=∅ f(t′1/x1, . . . , t′n/xn)

(iii) Equality

t ≈ u u→=∅ v v ≈ t′

t→=∅ t
′

(iv) Reflexivity for each t ∈ TΣ(V),

t→=∅ t

(v) Transitivity

t→=∅ t
′ t′ →=∅ t

′′

t→=∅ t
′′

(vi) all rule instances in Oth given in Example 3.3.

6 Semantics

In this section, we will answer the following question: what are the models of
abstract rewriting logic?

To achieve this purpose, we follow the approach initiated in [9] to define a
model-theoretical presentation of rewrite theories in terms of the models of a
suitable theory of the first-order logic. As this was observed in [9], two kinds
of models can be defined:

10

Aiguier

(i) Reachability models which focus just on what elements of T can be
reached from a certain element t via sequences of rewriting, ignoring
how the rewrites can lead to them.

(ii) Provability models which focus, unlike reachability models, both on what
elements of T can be reached from a certain element t via sequences of
rewriting and how the rewrites can lead to them. In [9], such models are
called concurrent models because, as in [21], they are defined from both
congruence and replacement rules which have many premises. Therefore,
this allows to apply rewrite rules in parallel to all arguments of an op-
erator (congruence) or in correspondence of variables of a rewrite rule
(replacement). Congruence and replacement rules are strongly depen-
dent on inductive structure of terms. In rfs, elements of T are simple
objects without any inductive structure. Consequently, at this abstract
level, concurrent models do not make sense anymore.

6.1 Reachability models

Definition 6.1 [Reachability relation] Let R be a SP-rewrite system. Let us
define →R the E-sorted set of binary relations on T as follows:

∀p ∈ E, t→p
R t′ ⇐⇒ R ` t→p t

′

Remark 6.2 Although the notation is the same, the reachability relation has
not to be confused with the rewrite relation →R which has been defined in
Definition 4.3. However, if rewriting coincides with derivability in ARL [4],
both above binary relations denote the same subset of T × T .

The mono-sorted first-order predicate logic is sufficient to define a model-
theoretical presentation of the reachability relation associated to a SP-rewrite
system R.

Definition 6.3 [The theoryReach(R)] Let SP = (T,E, P,RS,De,Rmv,Oth)
be a rfs. Let R be a SP-rewrite system. The first order theory Reach(R)
contains the signature ΣR = (F , C,P) 4 and the set Ax of sentences defined
respectively, as follows:

• Signature:
· F = ∅, C = T , and
· P = {→2

p |p ∈ E} ∪ P
• Sentences:
· ∀p ∈ E, ∀t, t′ ∈ T, t→p t

′ ∈ R =⇒ t→p t
′ ∈ Ax, and

· ∀ι = ϕ1...ϕn

ϕ
∈ Ded,

∧
1≤i≤n

ϕi =⇒ ϕ ∈ Ax.

Definition 6.3 call for some comments:

4 F , C and P are respectively the set of function, constant and predicate names.

11

Aiguier

• The above theory Reach(R) contains many (usually an infinite number of)
sentences in Ax. The reason is that we associate a sentence to each rule
instance. Consequently, all sentences in Ax are ground, that is, all terms
which occur in sentences are elements of T . But, as T is not equipped with
any inductive structure from a set of operators, elements in T are simple
constants, and then the set of operators with arity greater than 1 is empty.

• For logics which parameterize existing rewriting logics, a shorter description
can be given. Indeed, as this is usual in most logics (anyway all logics used
in computing science and mathematics) the underlying inference relation `
is generated from a finite set of deductive rules, that is a single form with
infinitely many instantiations. This allows to denote all the instances by a
set of generic forms (up to meta-variable renaming). In this case, generic
terms which occur in such deductive rules can be replaced by variables in
the sentences of Ax.

Example 6.4 As explained in the above comments, we are going to ben-
efit from the fact that inference rules given in Example 5.3 are deductive
rules and terms are inductively defined from a set of operator names, to give
a shorter description of the theory Reach(R) than the one given in Defini-
tion 6.3. Therefore, this gives rise to the following description: let R be a
rewriting theory over a signature Σ,

• The signature ΣR = (F , C,P) is defined by:
· F = {fn | f ∈ Σ, n ≥ 1}, C = {f 0 | f ∈ Σ}, and
· P = {→2

=c
,←2

=c
|c finite conjunction} ∪ {≈2}

• sentences in Ax are: to indicate that a term t has its variables among
{x1, . . . , xn}, we write t(x1, . . . , xn), and then t(t1, . . . , tn) is the term ob-
tained from t by replacing all variable occurrences xi by ti
· sentences in R and Eq,
· for every t→=∧

i≤n

ti = t′i
t′ ∈ R,

∧
j≤m

yj →=∅ y
′
j ∧

∧
i≤n

ti(y1, . . . , ym)→=∅ t
′
i(y1, . . . , ym)

⇒ t(y1, . . . , ym)→=∅ t
′(y′1, . . . , y

′
m)

· for every fn ∈ Σ,∧
i≤n

xi →=∅ x
′
i ⇒ f(x1, . . . , xn)→=∅ f(x′1, . . . , x

′
n)

· x ≈ y ∧ y →=∅ z ∧ z ≈ w ⇒ x→=∅ w
· x→=∅ x
· x→=∅ y ∧ y →=∅ z ⇒ x→=∅ z
· Usual equality axioms for the predicate ≈

Definition 6.5 [Reachability models] Let R be a SP-rewrite system. A
reachability model of R is any first-order structure of Reach(R).

12

Aiguier

Example 6.6 From the theory Reach(R) developed in Example 6.4, a model
M is a set U together for any finite conjunction c with a binary relation→M

=c
.

For the empty conjunction,→M
=∅

is reflexive and transitive. Therefore, the car-
rier U ofM can be naturally regarded as a category. This is how the semantics
of the standard rewriting logic has been defined in [21]. In this case, all syn-
tactical notions can be interpreted in the language of category theory. Indeed,
from the congruence rule, it is obvious to show that the semantics of opera-
tor names and then terms with variables, are functors. Therefore, rewritings
become natural transformations between functors. Actually, the semantics of
rewrite rules in the language of category theory is more complicated because
of conditions. Indeed, it is obvious to show from the replacement rule, that
the semantics of unconditional rewrite rules of the form t→=∅ t

′ is a natural

transformation γ : tM ⇒ t′M.
When conditions occur, rewrite rules define natural transformations between
functors resulting of the composition of each functor associated to each term
occurring in the conclusion and the subequalizer functor used to solve condi-
tions 5 .

Definition 6.7 [Herbrand’s model] Let R be a SP-rewrite system. Let I be
the first order structure over ΣR defined as follows:

• the carrier I is T ,

• for every t ∈ C, tI = t,

• for every p ∈ E, →I
p=→R, and

• for every p ∈ P , (t1, . . . , tn) ∈ pI ⇔ R ` p(t1, . . . , tn).

Theorem 6.8 (Completeness) For R a SP-rewrite theory,

Reach(R) |= t→p t
′ ⇐⇒ R ` t→p t

′

Proof (Sketch) Reach(R) is a universal Horn theory. Therefore, I is initial
in the category of first-order structures that satisfy sentences in Reach(R) [20].
By Definition 6.7, we obviously have:

I |= ϕ⇐⇒ R ` ϕ
Consequently, we can write:

Reach(R) |= t→p t
′ ⇐⇒ I |= t→p t

′ I is initial

⇐⇒ R ` t→p t
′

2

5 It is well-known that solutions of substitutions are equalizer between both morphisms
associated to terms of equations [14]. Here, terms are semantically denoted by functors.
Therefore, subequalizer is the generalization of the notion of equalizer of two functors. We
refer the reader to [21] for the complete exposition of this notion.

13

Aiguier

Actually, we have a more general completeness result:

Theorem 6.9 For R a SP-rewrite theory,

Reach(R) |= ϕ⇐⇒ R ` ϕ
ϕ is over Reach(R), that is, is either of the form t →p t

′ or of the form
p(t1, . . . , tn) with p ∈ P .

Proof The proof is similar to the proof of Theorem 6.8. 2

6.2 Provability models

As usual, the idea is to attach a proof term to each sequent, so-called decorated
sequents. In the standard rewriting logic (this is also true for its extension
developed in [9]) proof terms are built from variables, operators in signatures
(congruence), labels of rewrite rules in R (replacement), and “;” to compose
rewritings (transitivity). Here, inference rules (proofs) cannot be implicitly
taken into account (built) from operators of signatures, variables and other
primitive symbols such as “;”. The reason is no information is given on both
the structure of elements in T and the form of inference rules. Therefore,
a symbol operator fι : sϕ1 × . . . × sϕn → sϕn+1 has to be associated to any
inference rule ι = ϕ1...ϕn

ϕn+1
∈ Ded where sϕi

1 ≤ i ≤ n + 1 is a sort name
which semantically contains every proof tree π : ϕ. For rewriting rules in a
SP-rewrite system R, we will index rewriting rules by labels. Therefore, this
leads to extend SP-rewrite systems as follows:

Definition 6.10 [Labelled rewrite system] Let L be a set. A labelled SP-
rewrite system R is an E-sorted set of ternary relations (→p)p∈E on L×T ×T .
For every (l, t, t′) in →p, we will use the notation l : t→p t

′.

This naturally leads to specify provability models in the many-sorted first
order predicate logic:

Definition 6.11 [The theory Proof(R)] Let SP = (T,E, P,RS,De,Rmv,Oth)
be a rfs. Let us note S the underlying formal system associated to SP (see
Remark 3.2). Let R be a labelled SP-rewrite system. The first order theory
Proof(R) contains the signature ΣR = (S,F ,P) and the set Ax of sentences
defined respectively, as follows:

• Signature:
· S = {sϕ | ϕ ∈ S},

· F =


{fι : sϕ1 × . . .× sϕn → sϕ | ι = ϕ1...ϕn

ϕ
∈ Ded}

∪

{l :→ st→pt′ | l : t→p t
′ ∈ R}

,

· P = {Prϕ : sϕ | ϕ ∈ S}
• Sentences:

14

Aiguier

· ∀l :→ st→pt′ ∈ F , P rt→pt′(l), and

· ∀ι = ϕ1...ϕn

ϕ
∈ Ded,

∧
1≤i≤n

Prϕi
(xϕi

) =⇒ Prϕ(fι(xϕ1 , . . . , xϕn)) ∈ Ax.

where xϕi
is a variable of sort sϕi

.

Proof(R) is complete with respect to inference rules of ARL as expressed
by the following result:

Theorem 6.12 (Completeness I) For any rewrite theory R, we have:

R ` t→p t
′ ⇐⇒ ∃π ∈ TΣR(X)st→pt′

, P roof(R) |= Prt→pt′(π)

X is any set of variables which contains the subset {xϕ | ϕ ∈ S}.

Proof The “Only if” part is obvious. The “If” part is proven by mathemat-
ical induction on the structure of proof trees.

• basic case Both cases have to be considered:
(i) l : t→p t

′ ∈ R. In this case, Prt→pt′(l) ∈ Proof(R).
(ii) there is a rule ι

t→pt′
∈ Ded. In this case, Prt→pt′(fι) ∈ Proof(R).

• general case there is a proof tree π = (π1 : ϕ1, . . . , πn : ϕ1, t →p t
′)ι. By

induction hypothesis, for every 1 ≤ i ≤ n, there exists π′i ∈ TΣR(X)sϕi
such

that Proof(R) ` Prϕi
(π′i). Therefore, by assuming that we use the Hilbert

calculus for the first-order logic, by instantiation and modus-ponens, we
have Proof(R) ` Prt→pt′(fι(π

′
1, . . . π

′
n)).

As the Hilbert calculus for the first-order logic is complete, we have then
Proof(R) |= Prt→pt′(fι(π

′
1, . . . π

′
n)). 2

From the definition of Proof(R) the above completeness result holds for
any formula ϕ of the underlying formal system S, that is:

Theorem 6.13 (Completeness) For any rewrite theory R, we have:

R ` ϕ⇐⇒ ∃π ∈ TΣR(X)sϕ , P roof(R) |= Prϕ(π)

X is any set of variables which contains the subset {xϕ | ϕ ∈ S}.

Proof The proof is similar to the one given to prove Theorem 6.12. 2

7 An instance of our general approach

The rewriting logic defined in this section is parameterized by a generalization
of the conditional Membership Equational Logic (MEL), called MEL with
frozen operators [9].
The conditional membership equational logic (MEL) belongs to the family
of algebraic specification formalisms that have been defined to extend basic
algebraic specifications in order to support subsorts and partially of function

15

Aiguier

symbols. Before presenting the rfs for conditional membership equational
logic with frozen operators, let us recall the basic notions and notations of
this logic.
A MEL signature with frozen operators (called generalized MEL signature
in [9]) is a triple (K,Σ, S) (just Σ in the following) where:

• K is a set of kinds,

• Σ = (K,F) is a standard many-kinded signatures where each function name
f : k1 × . . . × kn → k is together with a set Φ(f) ⊆ {1, . . . , n} of frozen
arguments positions, and

• S is a K-indexed family of sets Sk (so called K-set).

Given a K-set V of variables, for every k ∈ K, TΣ(V)k is the standard set
of terms of kind k, free with generating in V , and TΣ(V) is the K-indexed
family (TΣ(V)k)k∈K . Let us define Φ and ν the two binary relations on TΣ(V)
as follows:

Φ(t, t′)⇐⇒ ∃p ∈ N,∃1 ≤ i ≤ p, ∃α = α1.i.α2 ∈ Pos(t),



t′ = t|α

∧

t|α1
= f(t1, . . . , tp)

∧

i ∈ Φ(f)

ν(t, t′)⇔ ∃α ∈ Pos(t), t′ = t|α ∧ ¬Φ(t, t′)

Let us define Φ(t) = {x | Φ(t, x)} and ν(t) = {x | ν(t, x)}.
Atoms are either equations t = t′ where t and t′ are terms of the same kind,
or membership formula t : s where t is a term of kind k and s ∈ Sk. In [9],
conditions of rewrite rules are increased to allow equations, memberships and
rewritings. This leads naturally to consider in the underlying rfs, three kinds
of K-indexed family of equality predicates:

(i) ≈k to make rewritings modulo a set of equations Eq,

(ii) ≡k to increase conditions in order to allow equations, and

(iii) =k to denote equations which will be transformed into rewritings.

Conditional formulae are then any sentence α1 ∧ . . . ∧ αn ⇒ α where each
αi (1 ≤ i ≤ n) is either of the form ti =k t

′
i, or ti ≡k t

′
i or ti :k si, and α

is of the form t =k t′. A substitution is a K-indexed family of application
σk : Vk → TΣ(V)k. It is naturally extended to terms and formulae.
Given a MEL signature Σ and a set of equations Eq, we define the rfs SP by
the tuple (T,E,RS,De,Rmv,Oth) such that: Let Γ be a theory in MEL with
frozen operators

16

Aiguier

• T = TΣ(V) ∪ (
⋃
k∈K

Sk),

• E = {=k,c | k ∈ K, c : finite conjunction} s.t. =k,c
def
= TΣ(V)k × TΣ(V)k

(syntactic definition of equations),

• P = {:k,≡k,≈k | k ∈ K} s.t. :k
def
= TΣ(V)k × Sk (syntactic definition of

memberships), and ≡k,≈k
def
= TΣ(V)k × TΣ(V)k,

• RS is the set defined by the following deduction rules:
(i) Reflexivity for each k ∈ K and each t ∈ TΣ(V)k,

t =k,∅ t

(ii) Replacement for each t =k,c t
′ with c =

∧
i∈I

ti ≡ki
t′i∧

∧
j∈J

tj :kj
sj∧

∧
l∈L

tl =kl,∅ t
′
l

and all substitutions σ, σ′,

∀i ∈ I, σ(ti) ≡ki
σ(t′i) ∀j ∈ J, σ(tj) :kj

sj ∀l ∈ L, σ(tl) =kl,∅ σ(t′l)

∀x ∈ Φ(t) ∪ Φ(t′), σ(x) ≡ σ′(x) ∀x ∈ ν(t) ∩ ν(t′), σ(x) =∅ σ
′(x)

σ(t) =k,∅ σ′(t′)

(iii) Congruence for each t(x1, . . . , xn) with xi ∈ Vki
, if we note I ⊆ {1, . . . , n}

and J = {1, . . . , n} \ I such that Φ(t) = {xi | i ∈ I} and ν(t) = {xj | j ∈
J}, then

∀i ∈ I, ti ≡ki
t′i ∀j ∈ J, tj =kj ,∅ t

′
j

t(t1/x1, . . . , tn/xn) =k,∅ t(t′1/x1, . . . , t′n/xn)

(iv) Equality1

t ≈k u u =k,∅ v v ≈k t
′

t =k,∅ t′

• De is the set defined by the following deduction rule:

Transitivity
t =k,∅ t

′ t′ =k,∅ t
′′

t =k,∅ t′′

• Rmv is the set defined by the following deduction rule:

Symmetry
t =k,∅ t

′

t′ =k,∅ t
• Oth is the set defined by all the standard rules of equational reasoning

for each of the predicates ≡k and ≈k at which we add the two following
deduction rules:

17

Aiguier

(i)

Axiom
t = t′ ∈ Eq, t, t′ ∈ TΣ(V)k

t ≈k t′

(ii)

Equality2
t ≈k u u ≡k v v ≈k t

′

t ≡k t′

For any rule instance ι ∈ RS ∪De, FL(ι) contains all its premises of the
form t =k,∅ t

′ except if ι is an instance of the rule Replacement. In this last
case, FL(ι) = {σ(x) =∅ σ

′(x) | x ∈ ν(t)∩ν(t′)}. Therefore, if we note Cnj the
set of all finite conjunctions of atoms, then a rewrite system R is a K ×Cnj-
indexed set of binary relations →=k,c

⊆ TΣ(V)k × TΣ(V)k
6 . Rewriting steps

are then defined as follows:

• for every t ∈ TΣ(V)k, (t, t) ∈→=k,∅
R ,

• →=k,∅⊆→
=k,∅
R ,

• for every t→k,c t
′ ∈ R with c =

∧
i∈I

ti ≡ki
t′i∧

∧
j∈J

tj :kj
sj ∧

∧
l∈L

tl =kl,∅ t
′
l and all

substitutions σ, σ′, if for every x ∈ ν(t) ∩ ν(t′), σ(x)→=∅
R σ′(x) and:

· ∀i ∈ I, Θ ` σ(ti) ≡ki
σ(t′i),

· ∀j ∈ J, Θ ` σ(tj) :kj
sj,

· ∀x ∈ Φ(t) ∪ Φ(t′), Θ ` σ(x) ≡ σ′(x), and

· Normal rewriting ∀l ∈ L, σ(tl)
∗→

=kl,∅
R σ(t′l)

then σ(t)→=k,∅
R σ(t′),

• for every f : k1× . . .× kn → k ∈ Σ, if for every 1 ≤ i ≤ n, ti →
=ki,∅
R t′i then

f(t1, . . . , tn)→=k,∅
R f(t′1, . . . , t

′
n), and

• if u →=k,∅
R v and there exists s, t ∈ TΣ(V)k such that Eq ` s ≈k u, and

Eq ` v ≈k t, then s→=k,∅
R t.

The associated rewriting logic is then defined by the following inference
rules: let R be a set of sequents of the form t→=k,c

t′

(i) Reflexivity for each k ∈ K and each t ∈ TΣ(V)k,

t→=k,∅ t

(ii) Replacement for each t→=k,c
t′ ∈ R with c =

∧
i∈I

ti ≡ki
t′i ∧

∧
j∈J

tj :kj
sj ∧∧

l∈L

tl =kl,∅ t
′
l and all substitutions σ, σ′,

6 Here, ←=k,c
is not needed because =k,c is symmetric.

18

Aiguier

∀i ∈ I, σ(ti) ≡ki
σ(t′i) ∀j ∈ J, σ(tj) :kj

sj ∀l ∈ L, σ(tl)→=kl,∅
σ(t′l)

∀x ∈ Φ(t) ∪ Φ(t′), σ(x) ≡ σ′(x) ∀x ∈ ν(t) ∩ ν(t′), σ(x)→=∅ σ
′(x)

σ(t)→=k,∅ σ
′(t′)

(iii) Congruence for each t(x1, . . . , xn) with xi ∈ Vki
, if we note I ⊆ {1, . . . , n}

and J = {1, . . . , n} \ I such that Φ(t) = {xi | i ∈ I} and ν(t) = {xj | j ∈
J}, then

∀i ∈ I, ti ≡ki
t′i ∀j ∈ J, tj →=kj,∅ t

′
j

t(t1/x1, . . . , tn/xn)→=k,∅ t(t
′
1/x1, . . . , t′n/xn)

(iv) Equality1

t ≈k u u→=k,∅ v v ≈k t
′

t→=k,∅ t
′

(v) Transitivity

t→=k,∅ t
′ t′ →=k,∅ t

′′

t→=k,∅ t
′′

In [9], the membership equational logic has been used to specify both
theories Reach(R) and Proof(R). As the membership equational logic does
not deal with predicates except equality and membership, to specify Reach(R)
in [9], it has been added for any kind k ∈ K of the MEL signature Σ which
underlies the rfs, a new kind Pairk with three sorts Ar0

k, Ar
1
k, and Ark, and

two operators →: k × k → Pairk and ; : Pairk × Pairk → Pairk. The kind
Pairk contains all rewritings, and Ar0

k, Ar
1
k and Ark denote respectively, idle

rewrites, one-step rewrites and rewrites of arbitrary length. Finally, → and
; denote respectively, rewritings and composition of rewritings. For lack of
space, we cannot present both theories but we refer the reader to [9] for the
complete presentation of both the reachability and provability theories. If we
note MELReach(R) and Reach(R) the MEL reach theory as defined in [9]
and the first order theory as defined in this paper, respectively, we can show
that:

MELReach(R) |= t→ t′ : Ark ⇐⇒ Reach(R |= t→=k,∅ t
′

Similar results are obtained with the theory Proof(R) as specified in this
paper and the one developed in [9].

8 Conclusion

In this paper, we have shown the existence of a notion of rewriting logic for any
rewriting theory satisfying the conditions of a general framework of rewriting.

19

Aiguier

This has given rise to an abstract form of rewriting logic for which we have
studied the model theoretical semantics, and given an initiality theorem and
two theorems proving respectively the soundness and completeness of the ab-
stract rewriting logic with respect to this semantics.
In order to validate our approach, we are continuing to check “by hand” that
we can indeed cover other already known extensions of the rewriting logic such
as rewriting logic with probabilities [7].

References

[1] Aiguier, M. and D. Bahrami, Structures for abstract rewriting, Technical report,
La.M.I, Université d’Évry val-d’Essonne (2003), available at www.lami.univ-
evry.fr/˜aiguier.

[2] Aiguier, M. and D. Bahrami, Une approche générique de la réécriture, Technique
et Science Informatiques (TSI) 22 (2003).

[3] Aiguier, M., D. Bahrami and C. Dubois, On a generalised logicality theorem,
in: AISC’2002, L.N.A.I. 2385 (2002), pp. 51–64.

[4] Aiguier, M., D. Bahrami and D. Longuet, Abstract rewriting logic, Technical
report, University of Evry (2005), available at www.lami.univ-evry.fr/˜aiguier/.

[5] Baader, F. and T. Nipkow, “Term Rewriting and All That,” C.U. Press, 1998.

[6] Bachmair, L. and H. Ganzinger, Rewrite techniques for transitive relations, in:
9th IEEE Symposium on Logic in Computer Science, 1994, pp. 384–393.

[7] Bournez, O. and M. Hoyrup, Rewriting logic and probabilities, in: S. Tison,
editor, Rewriting Techniques and Applications (RTA), L.N.C.S. 2706 (2003),
pp. 61–75.

[8] Bournez, O. and C. Kirchner, Probabilistic rewrite strategies: Applications
to elan, in: S. Tison, editor, Rewriting Techniques and Applications (RTA),
L.N.C.S. 2378 (2002), pp. 252–266.

[9] Bruni, R. and J. Meseguer, Generalized rewrite theories, in: J.-C.-M.Baeten, J.-
K. Lenstra, J. Parrow and G.-J. Woeginger, editors, Proceedings of ICALP 2003,
30th International Colloquium on Automata, Languages and Programming,
L.N.C.S. 2719 (2003), pp. 252–266.

[10] Buchberger, B., Gröbner bases: an algorithmic method in polynomial ideal
theory, in: N.-K. Bose, editor, Multidimensional Systems Theory, 1985, pp. 184–
232.

[11] Dershowitz, N. and J.-P. Jouannaud, Rewrite systems, in: Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics (B),
Elsevier, 1990 pp. 243–320.

[12] Ehrig, H., M. Grosse-Rhode and U. Wolter, On the role of category theory in
the area of algebraic specification, in: WADT, L.N.C.S. 1130 (1995), pp. 17–48.

20

Aiguier

[13] Fiadeiro, J. and A. Sernadas, Structuring theories on consequence, in: Recent
Trends in DT Spec., L.N.C.S. 332 (1988), pp. 44–72.

[14] Goguen, J., “Resolution of Equations in Algebraic Structures,” Academic Press
Inc., 1989 pp. 217–263.

[15] Goguen, J. and R. Burstall, Institutions: abstract model theory for specification
and programming, Journal of the ACM 39 (1992), pp. 95–146.

[16] Hsiang, J., Refutational theorem proving using term rewriting systems, Artificial
Intelligence 25 (1985), pp. 255–300.

[17] Kirchner, C., Réécriture, résolution d’équations et preuves en logique égalitaire,
EJC, GDR programmation du CNRS, Nantes (1998).

[18] Kosiuczenko, P. and M. Wirsing., Timed rewriting logic with an application
to object-based specification, Science of Computer Programming 28 (1997),
pp. 225–246.

[19] Levy, J. and J. Agusti, Bi-rewrite systems, Journal of Symbolic Computation
22 (1996), pp. 279–314.

[20] Mahr, B. and J.-A. Mokowsky, Characterizing specification language which
admit initial semantics, in: Proc. of 8th CAAP, number 159 in L.N.C.S. (1983),
pp. 300–316.

[21] Meseguer, J., Conditional rewriting logic as a unified model of concurrency,
Theo. Comp. Sci. 96 (1992), pp. 73–155.

[22] Meseguer, J., Membership algebra as a logical framework for equational
specification, in: WADT’97, number 1376 in L.N.C.S. (1998), pp. 18–61.

[23] Messeguer, J., General logics, in: Logic Colloq.’87 (1989), pp. 275–329.

[24] Salibra, A. and G. Scollo, A soft stairway to institutions, in: Recent Trends in
Data Type Specification, L.N.C.S. 655 (1993), pp. 310–329.

[25] Struth, G., “Canonical Transformations in Algebra, Universal Algebra and
Logic,” Ph.D. thesis, Institut Für Informatik, University of Saarlandes (1998).

21

	Introduction
	Preliminaries
	Rewriting formal system
	Abstract rewriting
	Generic form of rewriting logic
	Semantics
	Reachability models
	Provability models

	An instance of our general approach
	Conclusion
	References

