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Abstract

In the framework of functional testing from algebraic
specifications, the strategy of test selection which has been
widely and efficiently applied is based on axiom unfolding.
In this paper, we propose to extend this selection strategy
to a modal formalism used to specify dynamic and reac-
tive systems. Such a work is then a first step to tackle test-
ing of such systems more abstractly than most of the works
dealing with what is called conformance testing. We get a
higher level of abstraction since our specifications account
for what is usually called underspecification, i.e. they do
not denote a unique model but a class of models. Hence,
the testing process can be applied at every design level.
Keywords. Specification-based testing, dynamic specifica-
tions, selection criteria, unfolding, proof tree normalisa-
tion, exhaustivity, coalgebras

Introduction

Specification-based testing is a particular case of black-
box testing. It consists in executing the system under test
on input data which have been selected from a specification.
The aim is to show that the system behaviour conforms to
its specification. Using formal specifications (i.e. specifica-
tions given as a formal text with a clear semantics) makes
it possible to automate both test case generation from selec-
tion criteria and evaluation of test executions as successful
or not. The evaluation of test executions, which consists in
computing a success or failure verdict, is then done by com-
paring system outputs with the expected values defined by
the specification. This often requires to make some restric-
tions on test cases so that they can be interpreted as suc-
cessful or not when executed by the system under test. For
instance, in the framework of testing from algebraic speci-
fications, these restrictions consist in choosing as test cases

*This work has been performed within a French national project
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formulae only built over Boolean connectives and ground
equations whose equality predicate is defined within the
programming language used to implement the system un-
der test.

System correctness with respect to its specification is
then defined up to these restrictions. This leads up to the
notion of exhaustive set of test cases, whose successful sub-
mission to the system under test would prove its correct-
ness. The problem is that the cardinality of an exhaustive
set is usually too big (often infinite) to be fully submitted
to the system. To manage the size of the exhaustive set, the
idea is to make a partition of it, corresponding to the vari-
ous cases described by the specification. Then, by assuming
the standard uniformity hypothesis, meaning that each test
case of each subdomain has the same power to make the
system fail, one test case for each subdomain is submitted
to the system. Hence, system correctness can be asymptot-
ically reached by making an increasingly fine partition of
the exhaustive set. This selection criterion leading to a par-
tition of the exhaustive set has been mainly and extensively
applied for specifications defined as theories of equational
logic [1, 4, 5, 6, 7, 13] and more recently of quantifier-free
first-order logic [2]. In these works, the partitioning of the
exhaustive set under consideration is made in an algorith-
mic way by unfolding axioms. This axiom unfolding makes
a case analysis of test purposes defined as simple equations
in [1] and quantifier-free formulae in [2]. Test cases are
then extracted from specifications by building input data de-
fined by ground equations or formulae, matching the differ-
ent cases defined in the specification.

In this paper, we propose to extend this selection crite-
rion based on unfolding of axioms to dynamic and reactive
aspects. Therefore, the formalism defined in this paper will
manipulate modal formulae of the form /\[mz]tl =t =

i<m
[m]t = t' where each m; and m are modalities and ¢;, t},
t, t' are terms whose function semantics depends on sys-
tem states (see Section 1.1 for a complete definition of this
modal formalism). It then is a simple extension of a pre-
post language restricted to equations. Hence, we propose to



define a test selection method for testing dynamic systems.

Such a work is then a first step to tackle testing of dy-
namic and reactive systems more abstractly than most of
the works dealing with the same subject [8, 9, 11, 17]. As
a matter of fact, most of existing works deal with what is
called conformance testing. This consists in showing that
an implementation meets all the requirements of its specifi-
cation when they are both represented by transition systems.
The comparison is then made through behaviours, which are
expressed as execution traces, i.e. sequences of possible ac-
tions. Here, we will go beyond by checking, as well as ex-
ecution traces, properties on system attributes represented
by equations. Moreover we get a higher level of abstrac-
tion, since specifications account for what is usually called
underspecification, i.e. they do not denote unique systems
but collections of systems. Therefore, the testing process
can be applied at every design level. As far as we know, our
approach is the first one that proposes to test dynamic and
reactive systems with respect to a specification expressed in
modal logic.

The paper is organised as follows. In Section 1, we de-
fine the formalism on which we will define the unfolding
procedure. In order to be as self-contained as possible, Sec-
tion 2 adapts relevant definitions of [13] to our framework
of testing and defines selection criteria and their associated
properties. We prove in this section the important result
of the existence of an exhaustive test set, which allows to
start the process of selecting test sets. Section 3 introduces
the unfolding procedure allowing us to define a selection
criterion for the class of specifications in our dynamic for-
malism. This unfolding procedure performs a case analysis
on specification axioms defining the attributes (i.e. func-
tions whose behaviour depends on system states) of the sys-
tem under test. We will see that our unfolding procedure
makes a strategy for selecting proof trees and then bounds
the search space of proof trees. This is why it is definable
in an algorithmic way. We will then show that this strategy
coincides with the full derivability, i.e. performs at each
step an adequate partition of the input domain insofar as it
is a sound (no test is added) and complete (no test is lost)
selection criterion.

1. Preliminaries
1.1. A dynamic formalism

A (dynamic) signature 3 = (S, F, V) consists of a set
S of sorts, a set F' equipped with a partition Fy, F, and
F,, of function, attribute and method names, respectively,
each one equipped with an arity in S* x (S U {e})!, and
an S-indexed set V of variables. In the sequel, a func-
tion, attribute or method f of arity (s1,...,Sn,s) will be

'e stands for the empty word on S.

written f : s1 X ... X s, — s. If f € F; U F,, then
s # ¢, otherwise s = e. Functions are operations on
data, attributes are operations returning a value depending
on the system state, and methods are operations making the
system state evolve without returning any value. Given a
signature ¥ = (S, F,V), Tx(V) and Tx are both S-sets
of terms with variables in V and ground terms, respec-
tively, freely generated from variables (resp. the empty set)
and function and attribute names in Fy U F;, and preserv-
ing arity of operations. Finally, Mx (V') and My, are both
sets of modalities with variables in V' and ground modal-
ities of form m(ty,...,t,) withm : s1 X ... X 8, —
in F, and (t1,...,t,) € Txs(V)s x ... X T5(V)s,
(resp. (t1,...,tn) € Txs X ... X Txy ). A substi-
tution is any mapping o : V. — Tx(V) that preserves
sorts. Substitutions are naturally extended to terms with
variables. XY-equations are sentences of the form ¢ = ¢
where t,t’ € Tx(V), for s € S, and modal formulae are
sentences of the form [a1] ... [ay,]8 where n € N, for every
1,1 <i<n,a; € Mx(V) and 3 is a YX-equation. A pos-
itive conditional formula is then any sentence of the form
PY1 A...ANpy, = @ whereforeveryi, 1 <i<m,p;and ¢
are modal formulae or X-equations. For(X) is the set of all
positive conditional X-formulae. A (positive conditional)
specification Sp = (X, Az) consists of a signature ¥ and a
set Ax of positive conditional formulae often called axioms.
Given a signature 3, a ¥-model M, so-called Kripke
frame, is a triple W, A, R) where W is a non-empty set
of states (or possible worlds), A is a W-indexed family of
algebras A™ over the algebraic signature (S, F,; U F},) such
that for every w,w’ € W, for every s € S and for every
feFq, AY = Aj;“/ and fA" = wa,, and R is a family of
binary relations R, (yy,...,0,,) © W X W, where m : s1 X
.. X8y — € Fpand (v1,...,0,) € Agy X... X Ag , and
such that for every w € W, the set {w’ | w R (o, ,....00) W'}
is finite.> Mod(X) is the category objects of which are
Y-models. Given a ¥-model M = (W, A, R), we note
A . Tp, — A the unique X-morphism that maps any
ground term f(t1,...,t,) to fA(L, ..., t2).3 A ¥-model
M is said reachable if _* is surjective. Given a ¥-model
M, a Y-interpretation in M is any mapping ¢ : V — A
such that for every s € S, (Vi) C A,. Interpretations
are naturally extended to terms with variables: given an in-
terpretation ¢ and a state w € W, we will note its exten-
sion iy : T (V) — A. M satisfies a Y-equation ¢ = ¢t/
(resp. a modal formula [ag] ... [a,]3) for an interpreta-
tion ¢ and a state w € W, noted M =, ,, t = ¢ (resp.
M=, [oa] .. [an]B), if and only if ¢y, (¢) = 14 () (resp.

2Such Kripke frames are said image-finite (i.e. finitely branching). This
condition is needed to get an exhaustive test set (see the proof of Theo-
rem 1). However, it is not restrictive since, as we will see in Section 2,
software systems will be assimilated to Kripke frames, and such a condi-
tion is sensible concerning systems.

e -, 18 the restriction of T’ to functions of Fy.




for every w’ € W such that wR, (o) ® ... ® Ry (ayW',*

M =, B). M validates a formula p1 A ... A o, = @,
noted M = o1 A ... A p, = ¢, if and only if for ev-
ery Y-interpretation ¢ and every state w € W, if for ev-
eryi, 1 <i<n, M}, ¢ then M =, ¢. Given
¥ C For(¥) and two ¥-models M and M’, M is U-
equivalent to M', noted M =g M’, if and only if we
have: Vo € ¥, M | ¢ < M’ = ¢. Given a spec-
ification Sp = (X, Ax), a ¥-model M is an Sp-model if
for every ¢ € Az, M = ¢. Mod(Sp) is the full subcat-
egory of Mod(X), objects of which are all Sp-models. A
Y-formula ¢ is a semantic consequence of a specification
Sp = (3, Az), noted Sp |= ¢, if and only if for every Sp-
model M, we have M |= ¢. Sp°® is the set of all semantic
consequences.

A calculus for positive conditional specifications is de-
fined by the following inference rules:

AzeSp SpEA; pi=>[ai1]...[ak] t=t
X Sym
SpkAx Spkt=t SpEA; pi=loa].. [ar] t'=t
SpEN,; pi=lon]. Jaglt=t"  SpEA; pi=lai]...[ag]t'=t"
- Trans

SpEA; pi= (o] Jag]t=t"

SpEA; pi=>[aa]...[ag]ti=t] SpEA; pi=>[a1]...[ag]tn=t,
Sp=A; pi=lan].farlf (trstn)=F(t],00t5,)

Cong

SpEA; pi=
SpEA; piny=0

SpENi < Pi=
SpEN; o(pi)=0(p)

Mono

SpEN; pi=¢
Sp=A;lalei=[ale

SpEA; winNb=>¢p  SpEN; @i=p VP
SpEN; pi=¢

1.2. Running example

We take here as a running example a cash machine, or
ATM, that allows customers to access their bank accounts in
order to make cash withdrawals and to check their account
balances. The customer first inserts his card, then verifies
his identity by entering a passcode (PIN for Personal Iden-
tification Number). Upon successful entry of the PIN, the
customer may perform a transaction, that is to check his ac-
count balance or to withdraw cash. If the number is entered
incorrectly three times in a row, the card is not given back
to the customer. If the customer asks for a withdrawal, he
enters an amount that is checked not to go beyond the autho-
rised threshold for this account. If it is the case, the with-
drawal is not authorised, otherwise if the amount is avail-
able in the machine, the customer is given the money he
asked for.

The signature of such a machine may then be the
following:

4o is the composition of binary relations, and if o; = m(¢1,...,tn),

then ., (t3) denotes m(Lw (t1), - - -, tw (tn))-

S = {Nat, Bool}

Fy={# : Nat x Nat — Bool
< : Nat x Nat — Bool
> : Nat x Nat — Bool
+ : Nat x Nat — Nat
- : Nat x Nat — Nat
PIN : Nat — Nat
Balance : Nat — Nat
Threshold : Nat — Nat}

F, = {Card :— Nat Code :— Nat

Amount :— Nat
Screen :— Nat
F,, = {card? : Nat —
check? : —
amount? : Nat —
balance! : —
cardkept! : —
notenough! : —

Attempts :— Nat
ATMamount : Nat — Bool
passcode? : Nat —
withdraw? : —
cardback? : —
wrongcode! : —
notes! : Nat —
threshold! : —

In function of a card number A, the ATM is able to
know the passcode of the card PIN(A), the account bal-
ance Balance(A) and the maximum amount authorised for
withdrawal Threshold(A).

The state of the machine is known through six observa-
tors: Card gives the number of the inserted card if there
is one, 0 otherwise; Code gives the entered code if a pass-
code has been entered, and O otherwise; Amount gives the
asked amount if an amount has been entered, and O other-
wise; ATMamount gives the total amount available in the
machine; Attempts gives the number of wrong codes en-
tered since a new card has been inserted; Screen gives the
current display on the screen, 0 if nothing is displayed. .

Like in the setting of input output automata (IOLTS for
instance), the state of the ATM evolves thanks to commu-
nications between the customer and the machine, that are
emissions and receipts through channels. To keep the usual
notations, although it does not have any effect on the se-
mantics, method names denoting receipts will end with an
interrogation mark ‘?’, while method names denoting emis-
sions will end with an exclamation mark !’

e Receipts, from the ATM point of view, are actions per-
formed by the customer: the insertion of a card in the
machine card?; the input of a code passcode?; the re-
quest for checking the account balance check?; the re-
quest for making a withdrawal withdraw?; the input of
an amount to withdraw amount?; the request for get-
ting the card back cardback?.

e Emissions are then actions performed by the machine,
that are mainly messages to the customer, except the

51t is very simplified here since the screen can only display a natural
number. The use of strings would just have made the example uselessly
complicated.



issue of notes: balance! displays the account balance;
wrongcode! tells the customer that the code he entered
is refused; cardkept! swallows the card after three at-
tempts to enter the right code; notes! gives the cus-
tomer the money he asked for; notenough! says that
the machine does not have money enough to give the
customer the amount he wanted; threshold! tells the
customer that he is not allowed to withdraw the amount
he asked because it goes beyond his authorised thresh-
old.

A specification of this ATM in our formalism may be the
following.® Since we are interested in testing system dy-
namics, we only give here the axioms specifying attributes
and methods, and suppose that functions of F;; have been
specified separately, by using a classic algebraic formalism.
e Card =0 = [card?A] Card = A
e Card=ANAF#0=[card?C] Card = A
e [cardback?] Card = 0
o [cardkept!] Card = 0
o [card?A] Card = A = [card?A] Code =0
e Code = 0 = [passcode?c| Code = ¢
e Code = ¢ A ¢ # 0 = [passcode?d] Code = ¢
e [cardback?] Code =0
e Code # PIN(Card) = [wrongcode!] Code = 0
o [cardkept!] Code = 0
e [withdraw?] Amount = 0
o [cardkept!] Amount = 0
o [card?A] Card = A = [card?A] Amount =0
e Amount = 0 A Code = PIN(Card)

= [amount?M] Amount = M
e Amount = M A M # 0 = [amount?N| Amount = M
e [cardback?] Amount = 0
e Amount < Threshold(A) A Amount < ATMamount
= [notes!] Amount = 0
o Amount < Threshold(A) A Amount > ATMamount
= [notenough!] Amount = 0
e Amount > Threshold(A) = [threshold!] Amount = 0
e Amount < Threshold(A) A Amount < ATMamount
= [notes!] ATMamount = ATMamount — Amount
o [card?A] Card = A = [card? A] Attempts = 0
e Code # PIN (Card)
= [wrongcodel] Attempts = Attempts + 1
e Attempts > 2 = [cardkept!] Attempts = 0
o [cardback?] Attempts = 0
o [card?A] Card = A = [card?A] Screen =0
e [withdraw?] Screen = 0
e Code = PIN(Card) =
[check?][balance!] Screen = Balance(Card)

%Not to make the specification too heavy, boolean functions are used
as predicates. Obviously, a formula like ¢ # 0 would have to be written
(¢ #0) = true.

The specification axioms give, for each attribute, the ac-
tions that modify it. Not to make the specification too heavy,
all axioms expressing that an attribute remains unchanged
after some actions don’t appear. In the case of the attribute
Amount for example, there should be the following four ad-
ditional axioms:

e Amount = M = [passcode?]Amount = M
e Amount = M = [wrongcode!]Amount = M
e Amount = M = [check?]Amount = M

e Amount = M = [balance!]Amount = M

2. Testing from formal specifications

The work presented in Section 3 comes within the gen-
eral framework of testing from formal specifications defined
in [13]. Here, we succinctly introduce this framework and
we instantiate it to the formalism we have just defined in
Section 1.1.

Following previous works [4, 5, 6, 7, 13], given a spec-
ification Sp = (X, Ax), the basic assumption is that the
system under test can be assimilated to a model of the sig-
nature Y. Test cases are then X-formulae which are seman-
tic consequences of the specification Sp (i.e. elements of
Sp®). As these formulae are to be submitted to the sys-
tem, test case interpretation is defined in terms of formula
satisfaction. When a test case is submitted to a system, it
has to yield a verdict (success or failure). Hence, test cases
have to be directly interpreted as “true” or “false” by a com-
putation of the system. Obviously, systems can’t deal with
formulae containing non-instantiated variables, so test cases
have to be ground formulae, that is formulae where all vari-
ables have been replaced with actual values. These “exe-
cutable” formulae are called observable. Then a test case
is any observable semantic consequence. If we denote by
Obs C For(X) the set of observable formulae, then a test
set T is any subset of Sp® N Obs. Since the system under test
is considered to be a X-model P, T is said to be successful
for Pifand only if Vo € T, P |= .

The interpretation of test cases submission as a suc-
cess or failure is related to the notion of system correct-
ness. Following an observational approach [10], to be qual-
ified as correct with respect to a specification Sp, a system
is required to be observationally equivalent to a model of
Mod(Sp) up to the observable formulae of Obs, that is, they
have to validate exactly the same observable formulae.

Definition 2.1 (Correctness) P is correct for Sp via Obs,
denoted by Correct ops(P, Sp), if and only if there exists a
model M in Mod(Sp) such that M =cps P.”

A test set allowing to establish the system correctness is

7Equivalence of ¥-models with respect to a set of formulae is defined
in Section 1.1.



said exhaustive. Formally, an exhaustive set is defined as
follows:

Definition 2.2 (Exhaustive test set) Ler K C Mod(X). A
test set T' is exhaustive for KC with respect to Sp and Obs if
and only if

VP e K,P =T < Correct ops(P, Sp)

The existence of an exhaustive test set means that sys-
tems belonging to the class KC are testable with respect to
Sp via Obs, since correctness can be asymptotically ap-
proached by submitting a (possibly infinite) test set. Hence,
an exhaustive test set is appropriate to start the process of se-
lecting test sets. However, such an exhaustive set does not
necessarily exist, depending on the nature of both specifi-
cations and systems (hence the usefulness of subclass /C of
systems in Definition 2.2), and on the chosen set of observ-
able formulae. For example, we will need here to assume
that the system under test is reachable, as well as initial
for modal formulae occurring in premises of axioms of Ax.
Roughly speaking, a system will be said initial for a modal
formula if it behaves like the specification for this modal
formula.

Definition 2.3 (Initiality) Ler Sp = (X, Ax) be a specifi-
cation. Let S = (W, A, R) € Mod(X) be a system. Let ¢
be a ground modal Y-formula. S is initial on ¢ if and only
if we have:
Yw eW,S Ew ¢ =
{Hal,...,am € My,Fw e W,w' Ry, @...0 R, w
A Sp E o] ... [am]e

In practice, ¢ is of the form f(v1,...,v,) = t where
f 1 s1 X...xXs, — sis an attribute (e.g. Amount)
which is necessarily provided with at least one “modifier”
m: 81 X ...X 8, X s — (e.g. amount?). A state is
then often reduced to the “product” of signature attributes.
The semantics of m(vy, ..., v,,v) then consists in modify-
ing A“ and yielding the algebra A"’ defined like A™ ex-
cept for f(vft”, ..., vA"). For example, after an action like
amount?M, the only part of the state which is modified is
the attribute Amount. Hence, if S =y, f(v1,...,0n) = v
then we have Sp = [m(v1,..., 00, 0)]f(v1,...,0,) =
v, where v’ is a function of v. Besides, the formula
[m(v1, ..., 00, 0")]f(v1,...,v,) = v is often given like
an axiom of the specification. We have for example
the axiom Amount = 0 A Code = PIN(Card) =
[amount?M] Amount = M.

Among all the test sets, the biggest one is the set Sp® N
Obs of observable semantic consequences of the specifica-
tion. Hence, to start the testing process, we first have to
show that Sp® N Obs is exhaustive. As stated by the fol-
lowing theorem, we show that given a dynamic specifica-
tion Sp = (X, Az), the set Sp°® N Obs is exhaustive for a

certain class IC of systems when Obs is the set of ground
modal formulae {[a1]...[ap]t = | Vi, 1 < i< m,a; €
Ms At t € Tg}.

Theorem 1 Let Sp = (X, Ax) be a specification. The test
set Sp® N Obs is exhaustive for any reachable system S
initial on all ground instances of any modal formula which
occurs in premises of axioms of Ax.

Idea of the proof. It recently became clear that a great va-
riety of state-based dynamic systems can be captured uni-
formly as coalgebras [12, 18]. To prove the above theorem,
we then show that the semantics of our formalism can be
defined in the coalgebra theory. By using classic results of
this theory, we build a final coalgebra as a model of specifi-
cation Sp and then show that it is elementary equivalent to
the system S, up to Obs.
The entire proof may be found in [3].

The challenge of testing then consists in managing (in-
finite) test sets. In practice, experts apply some selection
criteria on a reference test set in order to extract a test set of
sufficiently reasonable size to be submitted to the system.
The underlying idea is that all test sets satisfying a consid-
ered selection criterion reveal the same class of incorrect
systems, intuitively those corresponding to the fault model
captured by the criterion. For example, the criterion called
“uniformity hypothesis” postulates that any chosen value is
equivalent to another one.

A classic way to select test data with a selection criterion
C consists in splitting a given starting test set 7" into a fam-
ily of test subsets {Ti}ielcm such that ' = Ujero(r, Ti
holds. A test set satisfying such a selection criterion simply
contains at least one test case for each non-empty subset 7;.
Hence, by assuming the uniformity hypothesis, all test cases
in T; are equivalent to reveal incorrect systems with respect
to the fault model captured by 7T;. The selection criterion C'
is then a coverage criterion according to the way C' is split-
ting the initial test set T" into the family {T; }sc1, (- This is
the method that we will use in this paper to select test data,
known under the term of partition testing.

For instance, the selection criterion we will define in
the sequel of this paper consists in splitting a test set into
subsets according to specification axioms. If we come
back to the ATM specification of Section 1.2, the attribute
Screen is specified by three axioms. Testing a formula like
Screen = n consists in finding both input data and a state.
Input data are given by a ground substitution to apply to the
formula in order to submit it to the system, and the state is
given by a path leading to a state where the formula has to
be verified. These substitutions and paths have to bring into
play at least once each of these three axioms. Therefore,
the set of test cases associated to Screen = n, where n is a
variable, can be split into three subsets:



1. The set of tests associated to the reinitialisation of
the attribute after the insertion of a new card, that is,
associated to the substitution n +— 0 and the path
card?A, coming from the axiom [card?A] Card =
A = [card?A] Screen = 0.

2. The set of tests associated to the reinitialisation
of the attribute after the request for a withdrawal,
that is, associated to the substitution n +— 0
and the path withdraw?, coming from the axiom
[withdraw?] Screen = 0.

3. The set of tests associated to the display of the ac-
count balance after the request for it, that is, as-
sociated to the substitution n +— Balance(Card)
and the path check”balance!, coming from the axiom
Code = PIN(Card) = [check?][balance!] Screen =
Balance(Card).

The process can be pursued on the first and the third subsets
defined, respectively, by formulae [card?A] Card = A and
Code = PIN(Card).

Definition 2.4 (Selection criterion) A selection criterion
C is a mapping P(Sp® N Obs) — P(P(Sp® N Obs)).
For a test set T, we note |C(T)| = U T; where
C(T) = {Ti}iefc(T)‘

T satisfies C applied to T, noted by T' = C(T) if and
only if:

iEIc(T)

VZ'EIc(T),TZ‘#@@T/ﬂTi#@

A selection criterion consists of a mapping that splits test
sets into families of test sets. The selection criterion is sat-
isfied as soon as the considered test set contains at least a
test case within each (non-empty) test set of the resulting
family. To be pertinent, a selection criterion should ensure
some properties between the starting test set and the result-
ing family of test sets:

Definition 2.5 (Properties) Let C be a selection criterion
and T be a test set.

o C is said sound for T' if and only if |C(T)| C T

o C is said complete for T' if and only if |C(T)| = T.

These properties are essential for an adequate selection
criterion: soundness ensures that test cases will be selected
within the starting test set (i.e. no test is added) while com-
pleteness ensures that we capture all test cases up to the
notion of equivalent test cases (i.e. no test is lost).

In the following, we will denote by T'(Sp) the exhaustive
test set Sp® N Obs.

8For a given set X, P(X) denotes the set of all subsets of X.

3. Test of attributes by axiom unfolding

In this section, we study the problem of test case se-
lection for dynamic specifications, by adapting a selection
criteria based on axiom unfolding which has been widely
and efficiently applied in the algebraic specification set-
ting [1, 2, 5, 6, 7].

3.1. Input domain of attribute

Here, we are going to define a test selection method
aimed at making a partition of T'(Sp). This selection
method takes inspiration from classic methods that split the
input domain of each signature function [1]. Here, because
we are interested in testing dynamic systems, the signature
functions we are going to consider are attributes.’

Succinctly, for a dynamic signature 2 = (S, F, V') and
an attribute f (i.e. f € F,), our method consists in

1. splitting the input domain of f into many subdomains,
called test sets for f, and

2. choosing any input in each non-empty subdomain.

First, we have to define what input domain and test set
for attributes are.

The input domain of an attribute f is the projection of the
reference test set 7'(Sp) on f, that is, the subset of T'(Sp)
dealing with f. Obviously, it is an exhaustive test set de-
voted to the test of f.

Definition 3.1 (Input domain) Ler f : s X ... X s, —
s € F, be an attribute. The input domain of f, noted
T'(Sp),,, is the set defined as follows:

T(Sp), ={lp(cr)]. .. [plam)lp(f(u1, ... un)) = p(v) |
p:V =T,

[p(e1)] - .- [p(awm)]p(f(ur, . .. un)) = p(v) € Sp*NObs }

Note that [aq]. .. [am] f(u1, ...
formula, not necessarily in Sp°®.

,Up) = v may be any

Example 1 The input domain of the attribute Amount,
for example, contains all possible ground modal formulae
which are semantic consequences of the specification of
Section 1.2 concerning Amount. For instance:

Amount = 20

[amount?50] Amount = 50

[amount?10] Amount = 20
[passcode?5438][wrongcodel!][cardkept!] Amount = 0
[amount?20][notes!]|[cardback?] Amount = 0

belong to the input domain of Amount. <&

9We recall that the data part of the system has been specified by classic
algebraic specifications. So, testing this part can be done by using selection
methods defined in [1, 2].



As we will see in the next section, axiom un-
folding makes a partition of the input domain, that
is the initial test set, by replacing a modal formula
[a1] ... [am]f(ur,...,uy) = v with sets of modal
formulae, called constraints. These constraints corre-
spond to the premises of the various cases described
by the specification, that are axioms whose conclu-
sion is [m]...[vglle1] .. [am]f(ut,...;un) = v (up
to some substitutions). By construction, if all the con-
straints of a set are satisfied, so is the modal formula
(1] ... [Ygllea] ... [am] f(ur, ..., un) = v. Hence, test
sets are subsets of the input domain, satisfying constraints.

Definition 3.2 (Test set) Let C be a set of modal -

formulae called ¥-constraints. Let f : s1 X ... X s, — s €

F, be an attribute, and let A = o, . .., ou, be a sequence

of modal terms in Mx (V). A test set for f with respect to

C and A, noted Ty c a), is the set of ground Y-formulae

defined by:

Ty c.a) =

(Bl allpl@)] - Iolem) | F(plur)s s p(1n)) = p(0)
Yis---3Yq € Ms,p:V - Ty,

VEeC,Sp .- [vle©) }

Note that the input domain of an attribute f can be seen
as a test set with an empty path and f(u1,...,u,) = v as
the only constraint, that is C = {f(u1,...,u,) = v} and
A =

Unlike in the algebraic specification setting where con-
straints are only equations, here, constraints are both modal
formulae and a path, since formula satisfaction depends on
states. The path then gives us a state from which the con-
straints are satisfied.

We will then observe in the following section that
the unfolding procedure build, step by step, paths
[v1] - - - [vgllp(ea)] - . . [p(cum)] increasingly complete, al-
lowing to put the system in states in which observations
flp(ur), ..., p(uy)) = p(v), where p is a ground substi-
tution, are satisfied.

3.2. Unfolding procedure

The unfolding procedure inputs are:
e a positive conditional specification Sp = (X, Ax),
e an attribute f € F,, and

e asetI" of couples (C, A) where C is a X-constraints set
and A is a finite sequence of modal terms.

Test sets for attributes are naturally extended to sets of
couples I" as follows:

Trr= |J Trea
(c,A)er

The first set 'y contains the unique couple (Co, _) de-
fined by Cp = {f(x1,...,2,) = y} where for every 1,
1 <% < n, x; and y are variables. “_" stands for the empty
sequence of modal terms. Then

Trre = Ty, ({f (1, mn)=y}.) = T(SP);
is the initial test set.

This set will be split into test subsets thanks to the un-
folding procedure, expressed by the two following inference
rules:!?

FU{CULB]... [Belt =7} A)}
Red FUE(G( ),kA)} o mgu of t and r
Fu{(Cu{s}},A)}
Unfold
u{( U {c.ue}, A)}
ceTr(yp)
where:

o Tr(yp) for ¢ = [B1]...[Bk]t = r is the set of -

constraint sets defined by:

{{[0(71)] . k[a(vp)]a(t[v]w) =a(r), } ‘

a(p1)y. . 0(0m)

(A=l bplon .. ov) =ve Ax
1<i<m
or
/\ i = cplv=g(v1, .. o) € Ax)
1<i<m
o(t,) =o(g(v,...,va)), and
pZ kL1 <1<k o ) = U(’Y(p k)+1), o unifier

U
{ {[0(%)] .(.I.([owp)]a(t) = o(rful.), } ‘

Ql)a ey O-(Spm)

( /\801 [Vp]Q(’Ul,...,’U)—'UGAJ?

1<i<m

or

/\ QDL [VP]IU - g(U17 MR} Un) S AI)

1<i<m
0'(7‘|w) = ( ( U1 -avn))v and
p >k VL1 <1< k,0(8)=0(Vp—r)+i), o unifier

o forevery {[o(71)]...[o()]o(t[v]w) = a(r),o(p1)

o (pm)} (esp. {[o(1)] - .. [ ()] () = o (r[o].),
(g1, 0(@m)}) in Tr(p), C. is the set {[o(7))
Lo )0(61)]- . [060))(E) | (6] [B,)e €
C}, and

10The most general unifier (or mgu) of two terms ¢ and r is the most
general substitution o such that o(t) = o(r).



o A. is the sequence o(v1),...,0(Vp—k),Q1,...,04
when A = aq,...,q4.

The definition of 7r(y) being based on the subterm re-
lation and unification, this set is computable if the specifi-
cation Sp has a finite set of axioms.

The Red rule eliminates tautologies from constraints
sets. Intuitively, the Unfold rule consists in replacing the
formula ¢ with a set ¢ of constraints, which are what re-
mains of the axiom after unification, and in lengthening the
path A with the path ~; . ..~y,_j given by the axiom.

Hence, given a modal formula ¢, we have the selection
criterion C, that maps any T (¢ A) t0 (T, (c1Ue,A.) ) ce Tr(
if o € C, Ty (¢, ) otherwise, where C' = C \ {}.

®)

Example 2 We want to test the attribute Screen of the spec-
ification of Subsection 1.2. The initial test set for Screen is
its input domain 7'(Sp)j..... that is the test set Tscreen,r,
where Ty = {(Co,Ag)} with C; = {Screen = n} and
Ag = _, as explained above. Then by applying the Unfold
rule, we obtain the set I'y = {(C1, A1), (C2, A2), (C3,A3)}
where:

e C; = {[card?C] Card = C, [card?C] Screen = 0} and
A7 = card?C, which come from the unification with
the axiom [card?A] Card = A = [card?A] Screen =
0.

e Co = {[withdraw?] Screen = 0} and A, =
withdraw?, which come from the unification with
[withdraw?] Screen = 0.

e C3 = {Code = PIN(Card), check?][balancel]
Screen = Balance(Card)} and A3 = check?balance!,
which come from the unification with Code =
PIN(Card) = [check?][balancel] Screen =
Balance(Card).

A second step of unfolding is then possible for constraints
in C1 and in Cs.

The unfolding of constraints in C; leads to the set '} =
{(C},A})} where C; = {Card = 0,[card?C] Card =
C, [card?C] Screen = 0} and A} = card?C, which come
from the unification of [card?C] Card = C with the axiom
Card = 0 = [card?A] Card = A.

The unfolding of constraints in C3 leads to the set 'y =
{(C5", AgY), (C5%, Ag?)} where:

e C}! = {Code = 0,[passcode? PIN (Card)]Code =
PIN (Card), [passcode? PIN (Card)][check?][balance!]
Screen = Balance(Card)} and ALl =
passcode? PIN (Card)check?balance!, which come
from the unification of Code = PIN(Card) with the
axiom Code = 0 = [passcode?c] Code = c.

e C}? = {Code = PIN(Card), PIN(Card) #
0, [passcode?p]Code = PIN(Card), [passcode?p]
[check?][balance!]Screen = Balance(Card)} and
ALY = passcode?p check?balance!, which come from
the unification of Code = PIN (Card) with the axiom
Code = ¢ A ¢ # 0 = [passcode?d] Code = c.

The constraint [withdraw?] Screen = 0 of Cy can not be
unified with any axiom, so the unfolding is finished for this
set.

We observe that each step of the procedure builds paths
increasingly long to reach states where Screen = n is satis-
fied, under constraints on initial states of paths.

As another example, if we wanted to test the at-
tribute Attempts, the initial test set, or input domain of
Attempts, iS Tattempts,, Where T'g = {(Co, Ag)} with
Co = {Attempts = n} and Ay = _. But Attempts can only
take the values 0, 1 and 2. The unfolding of Attempts = n
will then lead to two kinds of constraints: those where
n < 3, that will become test cases since they are conse-
quences of the specification, and those where n > 3 that
will not lead to test cases. The unfolding procedure cannot
distinguish between these two kinds of constraints, how-
ever, before being submitted to the system, a ground sub-
stitution p is applied to both elements of test sets and con-
straints. Since by definition, the resulting ground formu-
lae have to be consequences of the specification, constraints
where n > 3 will not be submitted as test cases to the sys-
tem. <

We write I' -7 I to mean that I" can be transformed into
I by applying Red or Unfold. An unfolding procedure is
then a program that accepts in input a positive conditional
specification Sp, and uses the above inference rules to gen-
erate a sequence

Toby Ty by Ty ..

Termination of the unfolding procedure is unlikely, since
it is not checked, during its execution, whether the formula
[B1] ... [Bk]t = r is a semantic consequence of the speci-
fication or not. Actually, this will be done during the se-
lection phase, either automatically when the specification
under consideration is decidable or “by hand” otherwise.
The aim of the unfolding procedure is to make a partition
of T'(Sp) increasingly fine. We can then observe that ax-
iom unfolding defines a proof strategy which enables to
bound the search space for proof trees (see the proof of The-
orem 2). The idea is then to stretch further the execution of
the procedure in order to make increasingly big proof trees
whose remaining lemmas are constraints. If among remain-
ing lemmas, some of them are not true, then the associated
test set is empty.



3.3. Soundness and completeness

Here, we prove the two properties that make the un-
folding procedure relevant for selection of appropriate test
cases, i.e. that the selection criterion defined by the proce-
dure is sound and complete for the initial test set we defined.

The completeness result needs the following additional
assumption: for any I' resulting of the unfolding proce-
dure, any (C,A) € T, any £ € C and any ¢ € Az,
Var(€) N Var(p) = (.'! This is a very weak assumption
since it suffices to rename variables at each iteration of the
procedure to satisfy it.

Theorem 2 [fT' ¢ IV, then Ty r = Ty .

Idea of the proof. As explained just before, we can observe
that our unfolding procedure defines a proof search strategy
that enables to bound the search space to the class of proof
trees having the following structure:

e no instance of transitivity occurs over instances of con-
gruence, necessitation, substitution and modus ponens;

e no instance of modus ponens occurs over instances of
congruence and substitution;

e no instance of congruence occurs over instances of
substitution.

We then have to prove that the derivability defined by our
unfolding strategy coincides with the full derivability. We
then define basic transformations to rewrite proof trees into
ones having the above structure, and show that the induced
global proof tree transformation is normalising. This last re-
sult is shown by defining a recursive path ordering on proof
trees.
The entire proof may be found in [3].

Conclusion

In this paper, we have extended a selection criteria based
on unfolding of formulae to a dynamic formalism. As in
the algebraic specification setting, our unfolding procedure
consists in dividing the input domain into subdomains and
then in selecting test cases from each of these subdomains.
We have then proved that this unfolding is complete, that is
test cases are preserved at each step of the unfolding pro-
cedure. This last result has been obtained by showing that
the full derivability coincides with the derivability restricted
to the class of proof trees generated by the unfolding pro-
cedure. We have also proved that the set of ground modal
formulae satisfied by a specification Sp is exhaustive for
every reachable system which is initial. To show this prop-
erty we have first translated the semantics of our formalism

1 Var(a) is the set of all variables occurring in 1.

into the coalgebras theory, and then to take the advantage of
the duality between algebraic and coalgebraic approaches
to prove this property of exhaustiveness.

We still have ongoing research concerning the extension
of this unfolding procedure for a larger class of specifica-
tion dealing with more general formulae than positive con-
ditional ones. Actually, our goal is to be able to propose
a framework of black-box testing for COCASL specifica-
tions [16]. Our goal is also to propose a framework of func-
tional testing for specification including structuration prim-
itives. This last work would take inspiration from [14, 15].
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