
Some general results about proof normalization

Marc Aiguier and Delphine Longuet

Abstract. In this paper, we provide a general setting under which results
of normalization of proof trees such as, for instance, the logicality result in
equational reasoning and the cut-elimination property in sequent or natural
deduction calculi, can be unified and generalized. This is achieved by giving
simple conditions which are sufficient to ensure that such normalization re-
sults hold, and which can be automatically checked since they are syntactical.
These conditions are based on basic properties of elementary combinations of
inference rules which ensure that the induced global proof tree transformation
processes do terminate.
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1. Introduction

Motivation. In many situations in logic, to facilitate the use of a logical system,
or to obtain consistency results for proof systems, or else to automatically prove
theorems, one often uses proof search (or proof construction) strategies. These
strategies enable one to bound the search space for proofs to a given class of trees
having a specific structure. One of the interests is to reduce proof search space
(or even to make proof search feasible). This has been devised in various different
contexts. Here are a few examples: the so-called “logicality result”, which estab-
lishes a correspondence between derivability and convertibility in rewriting for
many equational logics (sub-equational [58], mono-sorted [11], multi-sorted, con-
ditional [40], partial [4], etc.); the cut-elimination result which shows that the cut
rule is redundant for sequent and natural deduction calculi of many logics (classi-
cal first order [33], intuitionistic first order [41], some modal logics [59], linear [34],
deduction modulo [28], etc.); the confluence property of rewrite systems which es-
tablishes that derivability can be proved by “valleys” for many logics dealing with
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transitive relations (equational [20, 8], preorder [42, 52], special relations [51]),1

or by using the Curry-Howard’s isomorphism, normalization results in typed λ-
calculi as initiated by D. Prawitz [48]. More recently, the authors also used such
proof normalization results to show the correctness of procedures based on axiom
unfolding which enable us to generate test data sets from various specification
formalisms [1, 2, 7, 43, 45, 44].

In all these cases, the main difficulty is to show that the full derivability (i.e.
without any specific proof strategy) coincides with the derivability restricted to
a given class of proofs (i.e. with a specific proof strategy). Soundness of a given
strategy of proof search, which means that the restricted derivability is included
into the full one, is obvious, because proofs resulting of such a strategy are par-
ticular instances of the general class of proofs. Completeness, which is expressed
by the converse inclusion, is much more difficult. Indeed, it requires that for any
theorem proved by a tree in the general class, there exists a proof in the restricted
one (i.e. built according to the considered strategy). In most logical systems, com-
pleteness is the consequence of a stronger result which consists in defining basic
transformations to rewrite elementary combinations of inference rules (possibly by
duplicating a sub-derivation), and showing that the global proof tree transforma-
tion which is naturally induced by these basic transformations is normalizing.2 For
instance, concerning the logicality result for the classical equational logic, the ba-
sic transformations consist in “distributing” substitution and context rules above
transitivity, and removing all rules under reflexivity. In sequent calculus, the basic
transformations consist, roughly speaking, in erasing the cut rule under axioms
and moving it above all other rules, in order to eliminate it.

These basic transformations are usually tedious but easy to define. The diffi-
culty is to show that the induced global proof tree transformation is indeed normal-
izing. For instance, proving the result of cut elimination often requires complex
nested inductions, because it is not obvious that the process to “move up” the
cut rule (in order to eliminate it) is terminating [32]. Each time, such results of
normalization of proof trees are established for each underlying logical system in
an ad-hoc way.

Contribution. In this article, we unify and generalize the method of normalization
of proof trees used in sequent calculus, natural deduction, equational reasoning, or
term rewriting into an abstract setting of arbitrary logical systems. Abstraction is
obtained by studying proof tree normalization in the abstract framework of formal
systems. This enables one to be logical system independent. Indeed, in computer
science and mathematics, many logics have been (will be) defined (in the future) to
answer better, in a more suitable way, some specific aspect related to the activity

1Besides, in the equational setting, G. Dowek has shown that the confluence of a rewrite system
can be defined as the cut elimination property of a proof system associated to this rewrite system:
asymmetric deduction modulo [25].
2Our paper does not aim to generalize normalization by evaluation approach, the main idea of
which is to use the semantics for the purpose of normalization as in [10].
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of formalization. By “to answer better”, we mean either the impossibility for ex-
isting formalisms to describe some problems (capabilities) or their unsuitability to
describe problems clearly and concisely enough to be usable (expressivity). What
is observed is that, most of the time, beside the original idea underlying a new
logic, the authors have to develop a lot of inevitable formal results which generalize
(to the new framework) some well-known classical results. It is then very useful
to provide a general framework allowing one to generalize these results as this is
done in this paper for proof trees normalization results.

Related work. Up to now, this kind of approach —i.e. the study of some properties
in the paradigm of “logical-system independency”— has been widely applied to
generalize results in specification theory [13, 24, 36, 56], model theory [5, 6, 23,
49, 50, 54, 55] and theorem deduction [31, 46]. But as far as we know, operational
aspects of logics (here represented by normalization results on proofs) have not
received as much attention at this abstract level. We can cite [3] where an abstract
framework of rewriting is defined and standard results such as logicality, Newman’s
lemma and Knuth-Bendix completion are generalized, or [21, 22] where an abstract
form of the completion process is given.

Nevertheless, some general theorems of strong normalization have been es-
tablished in the case of term rewriting. In this framework, we can cite [17, 18]
where the authors give general theorems about the well-foundedness of a certain
ordering on first-order terms that entails the strong normalization of rewrite sys-
tems. These theorems subsume the strong normalization result we present in this
paper (see Theorem 4.1). However, the sufficient conditions used to prove the well-
foundedness of the underlying ordering require nontrivial proofs when applying to
some concrete cases of rewrite systems, whereas our conditions are syntactical, so
they can be automatically checked (see Condition 1 in Section 4). Moreover, our
general theorem dealing with the weak normalization of proof trees, which is the
main result of this paper, is not taken into account by the theorems established
in [17, 18].

Structure of the paper. The article is organized as follows. In Section 2, we recall
standard definitions and notations about formal systems, deductions and proof
trees. In Section 3, we introduce the class of (proof tree) transformation proce-
dures for which we will express the crucial (shared) arguments of many different
normalization results as generic conditions on allowed transitions. In Section 4, we
formalize a first set of conditions that enables us to prove a strong normalization
result by using standard rewriting techniques. We show that the cut-elimination
procedure for the sequent calculus LK where cut rule premises have the same
context does not satisfy this first set of conditions, and then the underlying cut-
elimination procedure is not strongly normalizing.3 A thorough study of the rea-
sons why such a strong normalization result fails enables us to set off the limits
of standard rewriting techniques for proving termination such as RPO. Then, we

3While the cut-elimination procedure is strongly normalizing when different contexts are allowed
in the premisses of the cut rule (see Section 5.3).
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give a new set of sufficient conditions that enable us to prove a weak normalization
result. In Section 5, we present three instances of our approach: equational reason-
ing and its logicality result, Newman’s lemma that enables to transform any proof
(written as series of peaks) into a valley, and (a version of4) sequent calculus LK
for classical first-order logic and its cut-elimination property. We establish a strong
normalization result for the two first and both a weak and a strong normalization
result for the third one. Finally, in Section 6, as an application of our general-
ization, we present a cut elimination algorithm for the sequent calculus modulo
developed by Dowek, Hardin and Kirchner [26]. This result differs from the original
one developed in [38, 39] which gives a semantic proof of cut elimination whereas
a syntactical proof is given in this paper.

2. Preliminaries

We recall here basic notions of proof theory [8], and we introduce the notion of
deductive system to abstractly deal with any calculus in any logical system. A
deductive system simply is a set of inference rules over a set of formulas.

Definition 2.1 (Deductive System). A deductive system (a so-called calculus) S =
(F,R) consists of:

• a set F whose elements are called formulas5

• a set R of n-ary relations on F , called inference rules.

Given a deductive system, an inference rule defines a set of elementary proof
steps: a rule of arity n (n ≥ 1) is a set of tuples (ϕ1, . . . , ϕn) of formulas of F . Each
sequence (ϕ1, . . . , ϕn) belonging to a rule r of R is called an instance of that rule,
where ϕ1, . . . , ϕn−1 are called its premises and ϕn its conclusion. An instance of

a rule r ∈ R is usually written
ϕ1 . . . ϕn−1

ϕn

r. If n = 1, the instance is called an

axiom and is written
ϕ1

r. In the following, we will denote by I =
⋃

r∈R

r the set of

rule instances.
Instances of inference rules can be composed to build proof trees and proofs.

Definition 2.2 (Proof Tree and Proof). A proof tree π in a deductive system S
is a finite tree whose nodes are labelled by formulas of F such that if an internal
node is labelled by ϕn and its predecessor nodes are labelled by ϕ1, . . . , ϕn−1 from

left to right, then
ϕ1 . . . ϕn−1

ϕn

r is an instance of a rule r ∈ R.

A proof is a proof tree whose leaves are axioms.

Let us notice that we distinguish between proof trees and proofs, proof trees
being only parts of proofs. Therefore, a formula is a proof tree while it is not a
proof.

4This is a version where structural rules are implicit.
5Classically, F is a subset of the set A∗ of all finite words on the alphabet A. In this paper, this
condition will never be used. Therefore, it will not be considered.
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Definition 2.3 (Theorem). A theorem in S is a formula ϕ such that there exists a
proof in S whose conclusion is ϕ. The existence of such a proof is usually denoted
by S ⊢ ϕ.

Notations.

• Given a proof tree π, let LM(π) (resp. LS(π)) denote the multiset6 (resp.
the set7) of leaves of π.8

• We will use the notation {{a1, a2, . . . , an}} to denote a finite multiset.
• A proof tree π of conclusion ϕ is denoted by π : ϕ.
• We write π = (π1, . . . , πn, ϕ)ι, with n ∈ N, the proof tree whose last instance

of an inference rule is ι =
ϕ1, . . . , ϕn

ϕ
r with r ∈ R and such that, for every i,

1 ≤ i ≤ n, πi is the subtree of π of conclusion ϕi.

Using a standard numbering of tree nodes by natural number strings, we can
refer to positions in a proof tree. Thus, given a proof tree π, a position of π is a
string ω ∈ N

∗ which represents the path from the root of π to the subtree whose
conclusion occurs at that position. This subtree is denoted by π|ω . If π′ is a proof
tree, π[π′]ω is the proof tree obtained from π by replacing the subtree π|ω by π′.
The trees π|ω and π′ necessarily have the same root. If π and π′ : ϕ are two proof
trees and ω is a leaf position of π such that π|ω = ϕ, then we use the expression
π ·ω π

′ rather than π[π′]ω. This operation is called composition of π and π′ on leaf
position ω.

3. Proof Transformation Procedure

In all logical calculi where proof search strategies have been applied, the complete-
ness of restricted derivability with respect to the full one is obtained by defining
normalizing proof transformation procedures based on elementary proof tree trans-
formations. When we study most of these procedures, we can observe that they
consist in replacing in proofs some basic patterns, that we will call basic proof trees,
of the form (ι1, . . . , ιn, ϕ)ι where each ιi (1 ≤ i ≤ n) is either an instance of a rule
in R or a formula in F , with proof trees in normal form (i.e. trees that are not
reducible by other proof tree transformations). These basic patterns describe crit-
ical situations that do not respect the strategy because some of the rule instances
ιi (1 ≤ i ≤ n) should not occur over ι. For instance, in the strategy underlying
the logicality result for the equational logic (see Section 5), the substitution rule
must always be applied before the transitivity rule. We then have the following
transformation rule, which allows to transform any proof tree which would not

6In LM(π), all leaves of π are considered. We then have a multiset because several occurrences
of a same formula can occur in π.
7Here, when a formula ϕ of π has several occurrences, only one is considered in LS(π).
8Let us notice that when a proof tree π is a formula ϕ, then LM(π) = LS(π) = {ϕ}, while when
π is an axiom

ϕ
r (and then a proof), LM(π) = LS(π) = ∅.
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respect the strategy into one of the right form:

t = t′′ t′′ = t′

t = t′
Trans.

σ(t) = σ(t′)
Sub.  

t = t′′

σ(t) = σ(t′′)
Sub.

t′′ = t′

σ(t′′) = σ(t′)
Sub.

σ(t) = σ(t′)
Trans.

As another example, we have the following transformation rule in the cut-elimination
result for sequent calculi, since we want the cut rule to move up in the proof in
order to eliminate it:9

Γ, ϕ⇒ ∆ Γ, ϕ′ ⇒ ∆
Γ, ϕ ∨ ϕ′ ⇒ ∆

∨Left
Γ′ ⇒ ∆′, ϕ, ϕ′

Γ′ ⇒ ∆′, ϕ ∨ ϕ′ ∨Right

Γ,Γ′ ⇒ ∆,∆′ Cut  

Γ, ϕ⇒ ∆ Γ′ ⇒ ∆′, ϕ, ϕ′

Γ,Γ′ ⇒ ∆,∆′, ϕ′ Cut
Γ, ϕ′ ⇒ ∆

Γ,Γ′ ⇒ ∆,∆′ Cut

And, in the cut-elimination result for natural deduction, we have for instance the
following transformation rule:

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

∧-intro

Γ ⊢ ϕ
∧-elim  Γ ⊢ ϕ

Definition 3.1 (Basic Proof Tree). Let S = (F,R) be a deductive system. A basic
proof tree is a proof tree of the form (ι1, . . . ιn, ϕ)ι such that for every i, 1 ≤ i ≤ n,
either ιi ∈ F or there exists r ∈ R with ιi ∈ r.

Note that by definition of a proof tree, ι is an instance of a rule in R. A
basic proof tree is then either only a rule instance, or a rule instance whose some
premisses are themselves conclusions of rule instances:

ι =
ϕ1 . . . ϕn

ϕ
or ι =

. . .
ψ1 . . . ψmi

ϕi

. . . ϕj . . .

ϕ

Definition 3.2 (Transformation Procedure). Let S = (F,R) be a deductive system.
A (proof tree) transformation rule for S is a couple π  π′ of proof trees such that
π is a basic proof tree, π and π′ have the same root, and LS(π′) ⊆ LS(π).

A (proof tree) transformation procedure  is a set of transformation rules
such that for each proof tree π′ occurring on the right-hand side of a rule, no
transformation rule can be applied to it.

The transformation of a proof tree consists in applying the rules of the trans-
formation procedure to parts of this tree that match the basic proof trees at the
left-hand side of the rules. Formally, this gives rise to the following definition:

9See Section 5 and [35] for a complete presentation of this result.



Some general results about proof normalization 7

Definition 3.3 (Reductions). Let  be a (proof tree) transformation procedure for
a deductive system S. A proof π can be reduced to a proof π′, denoted by π  S π

′,
if and only if there exists:

• a rule π1  π2,
• a position ω in π, and
• n proofs π′

i : ϕi such that π|ω = (. . . (π1 ·ω1
π′

1) ·ω2
. . .) ·ωn

π′
n where for

LM(π1) = {{ϕ1, . . . , ϕn}}, ω1, . . . , ωn are positions of leaf occurrences of
ϕ1, . . . , ϕn in π1,

such that π′ = π[(. . . (π2 ·ω′

i1
π′

i1
)·ω′

i2
. . .)·ω′

ik

π′
ik

]ω where LM(π2) = {{ϕi1 , . . . , ϕik
}},

1 ≤ i1 < . . . < ik ≤ n and ω′
i1
, . . . , ω′

ik
are positions of leaf occurrences of

ϕi1 , . . . , ϕik
in π2.

A schematic example of a transformation rule is the following:

ϕ1 ϕ2

ψ
r
ϕ3

ϕ
s  

ϕ1

ϕ2 ϕ3

χ
s

ϕ
r

It can be applied to any proof tree containing the pattern given by the left-hand
side of the rule, for instance:10

π1 : ϕ1 π2 : ϕ2

ψ
r
π3 : ϕ3

ϕ
s
π4

γ
t  

π1 : ϕ1

π2 : ϕ2 π3 : ϕ3

χ
s

ϕ
r
π4

γ
t

We can easily show that a transformation procedure can be considered as a
term rewrite system, thus allowing us to use the standard rewriting techniques to
reason about proof tree transformation procedures (see the proof of Theorem 4.1).
As a matter of fact, with every deductive system S = (F,R), we can associate the
following multi-sorted signature ΣS = (S,Op) where:

• S = {sϕ | ϕ ∈ F}
• Op = {fι : sϕ1

× . . .× sϕn−1
→ sϕn

| ι = ϕ1...ϕn−1

ϕn
r ∈ I}

Over the signature ΣS , proofs then are ground terms and proof trees are terms
with variables in an S-indexed set V . We inductively define on the structure of
proof trees a mapping t : ProofTreeS → TΣS

(V ) where TΣ(V ) is the S-indexed set
of terms with variables over Σ and ProofTreeS is the whole set of proof trees over
S, as follows:

• if π is an axiom
ϕ
r, then t(π) = f

ϕ
r,

• if π is a formula ϕ, then t(π) = xϕ where xϕ ∈ Vsϕ
, and

• if π = (π1, . . . , πn, ϕ)ι, then t(π) = fι(t(π1), . . . , t(πn)).

10We recall that π : ϕ denotes a proof tree π of conclusion ϕ.
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Hence, each proof tree transformation rule π  π′ can be transformed into a term
rewrite rule t(π) t(π′), and Definition 3.3 is similar to the definition of rewriting
steps via the transfomation along t. Therefore, by using the standard terminology
available in rewriting, we say that a proof tree to which no transformation rule can
be applied is in normal form. The global transformation S is strongly normalizing
(or terminating) if every reduction sequence is finite, and weakly normalizing if
every proof has a normal form.

Normalization of the global transformation procedure obtained by repeated
application of transformation rules cannot be ensured without supplementary con-
ditions. Moreover, there are some well-known examples of transformation proce-
dures that meet all the requirements of Definition 3.2 and are strongly normalizing
while some others are weakly normalizing (see the next section). In order to take
into account the larger family of transformation procedures, in the next section,
we will study conditions on basic transformation rules which are easy to check, yet
powerful enough to ensure normalization.

4. Abstract Normalization Theorems

This section is devoted to (strong and weak) proof trees normalization theorems.
Their proofs are abstract in the sense that they proceed on the structure of proof
trees of any deductive system.

A basic and powerful idea underlying most of termination methods such as
recursive path ordering (RPO) consists in comparing terms of rewrite rules by first
comparing their root symbols, and recursively comparing the collections of their
immediate subterms [19].

Therefore, start by assuming a well-founded ordering on atomic elements of
proof trees (i.e. rule instances). Hence, given a transformation procedure  , we
assume that a well-founded ordering � on I is supplied. This order is often simple
to define for most pairs of rule instances. Indeed, it is obvious to impose that every
instance ι of some rule that must not occur under some instances ι′ of an other
rule in proof trees has a greater weight for this order than ι′. Sometimes, this
order is defined in a more ad-hoc way for the instances of a same inference rule.
For instance, in the proof of the termination for the cut-elimination result, this
order is defined as follows:

∀@ ∈ {∨,¬, ∃}, Cut ≻ @Right ∼ @Left ∼ Axiom

and

Γ1 ⇒ ∆1, ϕ1 Γ′
1, ϕ1 ⇒ ∆′

1

Γ1,Γ′
1
⇒ ∆1,∆′

1

≻
Γ2 ⇒ ∆2, ϕ2 Γ′

2, ϕ2 ⇒ ∆′
2

Γ2,Γ′
2
⇒ ∆2,∆′

2

⇔ |ϕ2| < |ϕ1|

where |ϕ| is the depth of a formula defined to be supk(1 + |ϕk|) if the ϕi are the
direct sub-formulas of ϕ.

Given a well-founded ordering � on rule instances, we denote by ≺ its strict
part and by ∼ its symmetric closure: ι ∼ ι′ ⇔ ι � ι′ ∧ ι � ι′.
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In most examples of strong normalization results, transformation procedures
 consist more or less in “distributing” some rules over others in order to respect
the proof search strategy (see for instance the above case of the rule Sub. over
the rule Trans.). Condition 1 generalizes this notion of distributivity of some rules
over others.

Condition 1. Let (ι1, . . . , ιn, ϕ)ι  π be a transformation rule. For each
(π′

1, . . . , π
′
m, ϕ

′)ι′ subtree of π, the two following conditions must be satisfied:

1. ι � ι′ if each π′
i ∈ F ∪ I

ι ≻ ι′ otherwise
2. if ι ∼ ι′, then {{ι1, . . . , ιn}} ≻≻ {{ι

′
1
, . . . , ι′m}} where ι′i is the last rule instance

in π′
i and where ≻≻ extends ≻ to multisets on F ∪ I.

Notice that Condition 1 is a particular case of RPO, and then we have the
following obvious result:

Theorem 4.1. If every transformation rule in a transformation procedure  sat-
isfies Condition 1, then  S is strongly normalizing.

Proof. By using our transformation mapping t defined in the previous section, with
a recursive path ordering ≻rpo to order proofs induced by the well-founded relation
(precedence) � on rule instances, we show that t( ) ⊆ ≻rpo . Let (ι1, . . . , ιn, ϕ)ι  

π be a transformation rule. By mathematical induction on π let us show that
t((ι1, . . . , ιn, ϕ)ι) ≻

rpo t(π).

Basic case: Here, two cases have to be considered :
1. π is the formula ϕ. By Definition 3.2, we have LS(π) ⊆
LS((ι1, . . . , ιn, ϕ)ι). Therefore, because RPO has the subterm property,
we conclude t((ι1, . . . , ιn, ϕ)ι) ≻ xϕ.

2. π is an axiom
ϕ
r. By Condition 1.1, we have ι ≻

ϕ
r, and then

t((ι1, . . . , ιn, ϕ)ι) ≻ f
ϕ

r

General case: π is of the form (π1, . . . , πn, ϕ)ι′ . Here two cases have to be con-
sidered:

1. ι ≻ ι′. By the induction hypothesis, for every i, 1 ≤ i ≤ n,
t((ι1, . . . , ιn, ϕ)ι) ≻

rpo t(πi), and then by RPO, t((ι1, . . . , ιn, ϕ)ι) ≻
rpo

t(π).
2. ι ∼ ι′. By Condition 1.1, each πi is in F ∪ I (1 ≤ i ≤ n).

By Condition 1.2, we have {{ι1, . . . , ιn}} ≻≻ {{ι
′
1
, . . . , ι′m}}, and then

{{t(ι1), . . . , t(ιn)}} ≻≻rpo {{t(ι′1), . . . , t(ι
′
m)}}. By RPO, we then conclude

t((ι1, . . . , ιn, ϕ)ι) ≻
rpo t(π).

�

However, problems may occur with transformation rules of the form

(ι1, . . . , ιn, ϕ)ι  π

such that there exists a subtree (ι′
1
, . . . , ι′m, ϕ

′)ι′ of π with ι′j ∈ F ∪ I for every j,
1 ≤ j ≤ m, satisfying:
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• ι ∼ ι′, and
• LM(ι′j) = LM((ι1, . . . , ιn, ϕ)ι)

Indeed, such transformation rules may prevent from using the standard techniques
to prove termination such as RPO, and then from obtaining a strong normalization
result.

An example of such a transformation rule is Rule R1 defined in the cut-
elimination procedure for the sequent calculus LK that considers the following cut
rule:

Γ⇒ ∆, ϕ Γ, ϕ⇒ ∆
Γ⇒ ∆

Cut

Indeed, with such a cut rule, we need weakening as explicit rule in order to allow
such basic transformations:

R1

Γ⇒ ∆, ϕ
Γ′ ⇒ ∆′, ϕ

@Right
Γ′, ϕ⇒ ∆′

Γ′ ⇒ ∆′ Cut  

Γ⇒ ∆, ϕ
Γ,Γ′ ⇒ ∆,∆′, ϕ

Weak.
Γ′, ϕ⇒ ∆′

Γ,Γ′, ϕ⇒ ∆,∆′ Weak.

Γ,Γ′ ⇒ ∆,∆′ Cut

Γ′ ⇒ ∆′ @Right

Here, the instance of Cut in π is equal to the instance ι with respect to �, and its
leaves are exactly the same as those of ι. The only measure that decreases with
such a rule is the number of occurrences of rules @Left and @Right that occur
above Cut in the right-hand side of the rule. Therefore by applying a strategy that,
for instance, first eliminates in proof trees the critical situations (here an instance
of @Left or @Right above an instance of Cut) whose instance of the cut rule is the
heaviest (see above how is defined the weight of a cut rule), this kind of measure
will be sufficient to obtain a result of weak normalization.

For a given transformation procedure, we define the set Elim of rule instances
that have to move up in proof trees or to be eliminated in order to respect the
underlying strategy. These rule instances are those occurring at the left-hand side
of a transformation rule and correspond to critical situations.

Definition 4.2. Let  be a transformation procedure. Let us define the set Elim as
follows:

Elim = {ι | ι ∈ I, ∃ a transformation rule (ι1, . . . , ιn, ϕ)ι  π}

For the cut elimination procedure for instance, Elim contains all the rule
instances of Cut, Weak, and Sub.

Now, we resume the above discussion by the following condition expressed in
our abstract framework. Before giving this condition, let us define the notion of
proof tree length.
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Definition 4.3 (Proof tree length). The length of a proof tree π = (π1, . . . , πn, ϕ)ι,
denoted by |π|, is inductively defined as follows:

|π| =







∑

i

|πi| if ι ∈ Elim

∑

i

|πi|+ 1 otherwise

Hence, the length of a proof π is the number of rule instances that do not
belong to Elim .

Condition 2. Let (ι1, . . . , ιn, ϕ)ι  π be a transformation rule. The four following
conditions must be satisfied:

1. there exists i, 1 ≤ i ≤ n, such that ιi ∈ I \ Elim
2. LM(π) ⊆ LM((ι1, . . . , ιn, ϕ)ι)
3. for every rule instance ι′ occurring in π, ι � ι′

4. for every subproof π′ = (π′
1
, . . . , π′

k, ϕ
′)ι′ of π with ι′ ∈ Elim, |π′| <

|(ι1, . . . , ιn, ϕ)ι|.

Condition 2 being purely syntactical, it can be automatically checked, given
a transformation procedure and a well-founded ordering on rule instances.

Now we arrive at the main theorem of this paper.

Theorem 4.4. If every transformation rule of a transformation procedure  S sat-
isfies Condition 2, then  S is weakly normalizing.

Proof. The theorem is obtained by generalizations of Tait’s proof [53].

It is well-known that all well-founded sets are isomorphic to a unique ordinal.
Note d : (I,�)→ α, where α is an ordinal, this isomorphism.

Let π = (π1, . . . , πn, ϕ)ι be a proof. Then, we define the degree of π, denoted
by ∂(π), to be d(ι) + |π|.

Let π = (π1, . . . , πn, ϕ)ι be a proof. Then, we define the measure of π, denoted
by m(π), to be the multiset:

{{∂(π′) | π′ : subproof of π whose last inference rule belongs to Elim}}

To prove the theorem, we start by proving the two following lemmas.

Lemma 4.5. Let (ι1, . . . , ιn, ϕ)ι  π be a transformation rule. Let π1, . . . , πn be n
proofs such that for every i, 1 ≤ i ≤ n, πi : ιi if ιi ∈ F or πi = (πi1 , . . . , πimi

, ϕi)ιi

otherwise (i.e. ∃r ∈ R, ιi ∈ r). Let π′ be the proof obtained by applying the
transformation rule to π′ = (π1, . . . , πn, ϕ)ι. If for every i, 1 ≤ i ≤ n, ∂(πi) <
∂(π′), then for every subproof π′′ of π′ whose last inference rule belongs to Elim,
∂(π′′) < ∂(π′).
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Proof. By Conditions 2.2 and 2.4, we know that no rule instance of I \ Elim has
been introduced in π′′, and by Condition 2.1, that one of them has been removed.
Therefore, we have |π′′| < |π′|. Now, by Condition 2.3 and the fact that for every
i, 1 ≤ i ≤ n, ∂(πi) < ∂(π′), we can conclude that ∂(π′′) < ∂(π′). �

Lemma 4.6. For every proof π : ϕ which is not in normal form, there exists a proof
π : ϕ such that m(π) << m(π).11

Proof. As π is not in normal form, there exists a subproof π′ of π that can be trans-
formed by applying a transformation rule. Let us call such a subproof a reducible
proof. Let π′ be such a reducible proof with the greatest degree. By Lemma 4.5, we
know that for every subproof π′′ of π′ (the proof obtained after applying the trans-
formation to π′) whose last inference rule belongs to Elim , we have ∂(π′′) < ∂(π′).
Among these subproofs, there are all the subproofs π′′

1 , . . . , π
′′
k that have been in-

troduced by the right-hand side of the transformation rule. Therefore, the measure
of π (the proof obtained from π by replacing π′ with π′) can be obtained by replac-
ing the degree of π′ with the degrees of π′′

1
, . . . , π′′

k which are all less than ∂(π′),
and then m(π) << m(π). �

The proof of Theorem 4.4 is then obtained by iterating Lemma 4.6. �

5. Applications

In this section, in order to illustrate our approach with some concrete examples, we
apply our general method to classical results, which are, respectively, the logical-
ity result in equational logic, Newman’s lemma in rewriting theory and Gentzen
cut-elimination result for a sequent calculus for classical first-order logic where
structural rules are implicit (which is a quite standard formulation of the calcu-
lus). For each of them, we prove normalization results, respectively strong for the
two first and both strong and weak for the last one. In the literature, each of
them have been extended to many other logic calculi but, each time the under-
lying (meta)proof methodology is pretty much the same and it can be seen as a
particular instance of our general abstract approach.

5.1. Logicality

Before stating the logicality result, let us first give the deductive system for equa-
tional logic. Let Σ be a signature, that is a set of function names, each one equipped
with an arity in N. Let V be a set of variables. We denote by TΣ(V ) the set of
terms with variables in V . Let Γ be a set of equations, that are sentences of the
form t = t′ with t, t′ ∈ TΣ(V ). Therefore, the deductive system associated to Σ
and Γ is given by the pair S = (F,R) where F is the set of all equations of the
form t = t′ with t, t′ ∈ TΣ(V ) and R is the set of rule instances generated by the
standard rule schemes recalled below.

11<< is the extension to multisets of the order on proof degrees. As the order on proof degrees
is well-founded, then it is known that so is <<.
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Let C be any term of TΣ(V ∪ {�}) with a unique occurrence of �.12 Let
C[t] be the result of replacing in C the occurrence of � by t ∈ TΣ(V ), and let
σ : V → TΣ(V ) be a substitution. The considered rule schemes are:

Axiom
t = t′ ∈ Γ
t = t′

Ref.
t = t

Sym.
t = t′

t′ = t

Cont.
t = t′

C[t] = C[t′]
Sub.

t = t′

σ(t) = σ(t′)
Trans.

t = t′ t′ = t′′

t = t′′

S ⊢ t = t′ is usually written Γ ⊢ t = t′.

A classical result due to G. Birkhoff [11] ensures that equational reasoning
(given by derivability according to the rules above) coincides with convertibility
in rewriting for equational logic. This property, named logicality [60], is expressed
by:

Γ ⊢ t = t′ ⇐⇒ t
∗
↔Γ t

′ (Γ: set of equations)

where ↔Γ is the convertibility relation defined as the closure of equations of Γ

under symmetry (Sym.), substitution (Sub.) and context (Cont.), and
∗
↔Γ is the

closure of↔Γ under reflexivity (Ref.) and transitivity (Trans.). Hence,
∗
↔Γ actually

defines proof search (building) strategies which select proof trees π composed of
instances in R such that no instance of Trans. occurs over instances of Sym., Sub.
and Cont.

Completeness of such strategies can be shown by using the following basic
proof tree transformations:

Sub.
Trans.

t = t′′ t′′ = t′

t = t′

σ(t) = σ(t′)
 Trans.

Sub.
t = t′′

σ(t) = σ(t′′)
Sub.

t′′ = t′

σ(t′′) = σ(t′)
σ(t) = σ(t′)

12Intuitively, the special variable � represents a “hole”, so that C can be seen as a context.



14 Marc Aiguier and Delphine Longuet

The cases of Sym. and Cont. correspond to a similar transformation, that is a
distribution of Sym. and Cont. over Trans.

Sub.
Ref.

t = t
σ(t) = σ(t)

 Ref.
σ(t) = σ(t)

Trans.
Ref.

t = t
...

t = t′

t = t′
 

...
t = t′

Sym.
Ref.

t = t
t = t

 Ref.
t = t

Trans.

...
t = t′

Ref.
t′ = t′

t = t′
 

...
t = t′

Cont.
Ref.

t = t
C(t) = C(t)

 Ref.
C(t) = C(t)

Let ≻ be the well-founded ordering defined by:

Sym. ∼ Sub. ∼ Cont. ≻ Trans. ≻ Ref. ∼ Axiom

As we have already observed, the transformation rules consist in distributing
instances of Sym., Sub. and Cont. over instances of Trans., and erasing all rule
instances occurring under Ref.’s ones. Therefore, all transformation rules are:

• either of the form

ι
Trans.

ϕ
 Trans.

ι1 ι2
ϕ

with ι, ι1, ι2 ∈ r and r ∈ {Sub., Cont., Sym.}
• or of the form

ι
Ref.

ϕ
 Ref.

ϕ

In the first case, ι ≻ Trans., ι ∼ ιj and LS(ιj) ⊆ LS(Trans.) for j = 1, 2,
while in the second case, ι ≻ Ref. Therefore, all transformation rules satisfy Con-
dition 1, and then by Theorem 4.1 the logicality procedure is strongly normalizing.

5.2. Newman’s Lemma

It is well-known that from any locally confluent and terminating rewrite system
R, all proofs written as series of peaks can be transformed into valleys by remov-
ing and replacing, step by step, local peaks by equivalent valleys. Although there
exists a more direct proof of Newman’s lemma, to show that our results can be
applied to a large family of normalization results, we are going to formalize the
process that underlies Newman’s lemma by a terminating transformation proce-
dure that meets all the requirements given in Section 4. First, let us introduce the
underlying deductive system. Let R be a rewrite system, that is a binary relation
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→ ⊆ TΣ(V ) × TΣ(V ), which is terminating and locally confluent. The associated
deductive system S = (F,R) is then defined as follows:13

• F is the set of all sentences of the form u→R v, u
∗
→R v and u

∗
↔R v

• R is the set of inference rules

Axiom
u→ v ∈ R

u→R v
Rew.

u→R v

u
∗
→R v

Der/Pr.
u

∗
→R v

u
∗
↔R v

Cont.
u

∗
→R v

C[u]
∗
→R C[v]

Sub.
u

∗
→R v

σ(u)
∗
→R σ(v)

Peak
u R

∗
← w

∗
→R v

u
∗
↔R v

Valley
u

∗
→R w R

∗
← v

u
∗
↔R v

Proof
u

∗
↔R w

∗
↔R v

u
∗
↔R v

Deriv.
u

∗
→R w

∗
→R v

u
∗
→R v

Basic transformation rules then are the following:

Peak

Deriv.
u R

∗
← u′ R

∗
← w

u R
∗
← w w

∗
→R v

u
∗
↔R v

 

Proof

Der/Pr
u R

∗
← u′

u
∗
↔R u′

Peak
u′ R

∗
← w

∗
→R v

u′
∗
↔R v

u
∗
↔R v

Peak
u R

∗
← w

Deriv.
w

∗
→R v′

∗
→R v

w
∗
→R v

u
∗
↔R v

 

Proof

Peak
u R

∗
← w

∗
→R v′

u
∗
↔R v′

Der/Pr
v′

∗
→R v

v′
∗
↔R v

u
∗
↔R v

Peak

Rew.
u R ← w→R v

u R
∗
← w R

∗
→ v

u
∗
↔R v

 Valley
u

∗
→R x R

∗
← v

u
∗
↔R v

14

13We suppose that the rewrite system R does not contain trivial rules of the form u → u.
14Such x exists and can be computed because R is locally confluent. Moreover, it can be computed
because R is terminating.
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Proof

Valley
u

∗
→R x R

∗
← w

u
∗
↔R w

Der/Pr
w

∗
→R v

w
∗
↔R v

u
∗
↔R v

 

Proof

Der/Pr
u

∗
→R x

u
∗
↔R x

Der/Pr
x R

∗
← w

∗
→R v

x
∗
↔R v

u
∗
↔R v

Proof

Der/Pr
u R

∗
← u′

u
∗
↔R u′

Valley
u′

∗
→R x R

∗
← v

u′
∗
↔R v

u
∗
↔R v

 

Proof

Peak
u R

∗
← u′

∗
→R x

u
∗
↔R x

Der/Pr
x

∗
←R v

x
∗
↔R v

u
∗
↔R v

The transformation procedure defined by the above basic transformations
satisfies Condition 1 for the well-founded ordering � defined as follows. We denote

by > the well-founded ordering on TΣ(V ) defined by u > v ⇔ u 6= v ∧ u
∗
→R v.

Peak, Proof ≻ Rew ∼ Cont. ∼ Der/Pr. ∼ Sub. ∼ Valley ∼ Deriv.

ι
u1 @ u2 @ u3

u1

∗
↔R u3

≻ ι′
u′1 @′ u′2 @′ u′3
u′1

∗
↔R u′3

⇐⇒







(∀i ∈ {1, 2, 3}, ui
∗
→R u′i

∧ ∃j ∈ {1, 2, 3}, uj > u′j)
∨ u′

1
@′ u′

2
@′ u′

3

subproof of u1 @ u2 @ u3

with ι, ι′ ∈ Proof ∪ Peak and @,@′ ∈ {
∗
↔R,

∗
→R}.

Peak
u1 R

∗
← w

∗
→R u2

u
∗
↔R v

≻ u
∗
→R v ⇐⇒ ∃j ∈ {1, 2}, uj > u

All the transformation rules satisfy Condition 1, then the procedure is strongly
normalizing.

5.3. Gentzen’s Cut Elimination

First, let us introduce the deductive system for (a version of) the sequent calculus
LK for classical first-order predicate logic. Here, we restrict ourselves to the log-
ical connectives {¬,∨} and the quantifier ∃. It is well-known that other classical
connectives and quantifiers can be defined from this restricted set. First, we recall
the basic notions and notations of first-order logic and sequent calculus.

In the case of first-order logic, a signature Σ = (Op, P ) contains two sets of
operation names and predicate names, and each operation and predicate name is
equipped with an arity in N. Σ-atoms are formulas p(t1, . . . , tn) where p ∈ P and
every ti (1 ≤ i ≤ n) is a term in TΣ(V ). Well-formed Σ-formulas are then either
atoms or sentences of the form ¬ϕ, ϕ∨ψ and ∃x.ϕ where ϕ and ψ are well-formed
Σ-formulas and x is a variable in V . The notions of free and bound variable are
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defined as usual, and we write ϕ[x/t] for clash of variables-avoiding substitution
of t for x in ϕ.

In the formulation of classical sequent calculus chosen here, a Σ-sequent is
any pair Γ ⇒ ∆ where Γ and ∆ are two finite sets of well-formed Σ-formulas. In
the following, we will write Γ, ϕ and Γ,Γ′ to mean Γ∪{ϕ} and Γ∪Γ′, respectively.
Our choice to consider sets instead multisets (or even lists) of formulas in the
definition of sequents eliminates contraction and exchange as explicit structural
rules.

Given a signature Σ = (Op, P ), the deductive system S = (F,R) for Σ
associated to Gentzen-style sequent calculi is defined as follows:

• F is the set of Σ-sequents15

• R contains all the instances of the following rule schemes:

Γ, ϕ⇒ ∆, ϕ
Ax.16

Γ, ϕ⇒ ∆ Γ, ϕ′ ⇒ ∆

Γ, ϕ ∨ ϕ′ ⇒ ∆
∨Left

Γ⇒ ∆, ϕ, ϕ′

Γ⇒ ∆, ϕ ∨ ϕ′
∨Right

Γ⇒ ∆, ϕ

Γ,¬ϕ⇒ ∆
¬Left

Γ, ϕ⇒ ∆

Γ⇒ ∆,¬ϕ
¬Right

Γ, ϕ[x/y]⇒ ∆

Γ, ∃x.ϕ⇒ ∆
∃Left

Γ⇒ ∆, ϕ[x/t]

Γ⇒ ∆, ∃x.ϕ
∃Right

Γ⇒ ∆, ϕ Γ, ϕ⇒ ∆

Γ⇒ ∆
Cut

where the ∃Left rule obeys the usual eigenvariable condition, stating that x
is not free in Γ,∆.

In the cut rule, ϕ is called the cut formula. Finally, we use the standard
terminology of principal formula with respect to a rule r as follows:

– ¬ϕ is principal with respect to ¬Left and ¬Right,
– ϕ ∨ ϕ′ is principal with respect to ∨Left and ∨Right, and
– ∃x.ϕ is principal with respect to ∃Left and ∃Right,

In [33], Gentzen showed that all instances of the cut rule can be eliminated
from proof trees for a version of classical sequent calculus where structural rules are
explicit. To achieve this purpose, he gave a constructive proof of the cut-elimination
result, by defining an effective procedure to eliminate cut instances from a proof
tree π whose conclusion is a tautology A and whose leaves are axioms, so as to
obtain a cut-free proof tree π′ proving A from axioms. This procedure is based on
basic proof transformations which can be modeled in our abstract framework.

15Note that this definition is independent from the chosen structure for sequents, so that it can
be generalized to other sequent calculi.
16It is well known that this formulation of the axioms makes the structural rule Weakening
admissible in the calculus.
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First, we need to add to the set R of inference rules the two following admis-
sible rules:

Γ⇒ ∆

σ(Γ)⇒ σ(∆)
Sub.

where σ : V → TΣ(V ) is a substitution and σ(Γ) = σ(ϕ1), . . . , σ(ϕn) when Γ =
ϕ1, . . . , ϕn.

Γ⇒ ∆

Γ′ ⇒ ∆′
Weak

where Γ ⊆ Γ′ and ∆ ⊆ ∆′.

Let us call the resulting extended system of rules R′. The intuitive reason of such
an extension of R to R′, is that, in usual cut elimination proofs for calculi with
implicit structural rules given in the literature [32, 41], these two supplementary
rules are replaced by obvious intermediary lemmas, which are situated at a meta-
theoretical level. Since we aim to see the cut-elimination procedure as a rewriting
procedure, we do need to shift them at the object level. Note that, because of the
admissibility of Sub. and Weak., there is a proof via R of a tautology A if and only
if there is a proof of A via R′. Moreover, our method will be such that cut-free
proofs with respect to R′ are actually cut-free proofs using only rules in R.

Weak normalization result. Gentzen’s result (and, in particular, the termination
of the cut-elimination procedure, which is the difficult part) can be shown by using
the transformation rules described below. Such a set of transformation rules can
be organized in four cases:

1. Case where the cut formula is not principal with respect to at least one of
the inferences leading immediately to the premises of the cut. Here, we give
transformations for the case where right rules are applied so as to get the left
premise of the cut rule, but one can generalize such transformations to the
symmetric case in a standard way.

Γ⇒ ∆, ϕ
Γ′ ⇒ ∆′, ϕ

@Right
Γ′, ϕ⇒ ∆′

Γ′ ⇒ ∆′ Cut  

Γ⇒ ∆, ϕ
Γ,Γ′ ⇒ ∆,∆′, ϕ

Weak.
Γ′, ϕ⇒ ∆′

Γ,Γ′, ϕ⇒ ∆,∆′ Weak.

Γ,Γ′ ⇒ ∆,∆′ Cut

Γ′ ⇒ ∆′ @Right

where @ ∈ {∨,¬, ∃} and Γ′ = Γ except for the ¬Right rule, where Γ′ = Γ,¬ψ
for some formula ψ.

2. Case where the cut formula is principal with respect to both inferences leading
immediately to the premises of the cut. In this case we have the following
proof tree transformations:
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Γ, ϕ⇒ ∆ Γ, ϕ′ ⇒ ∆
Γ, ϕ ∨ ϕ′ ⇒ ∆

∨Left
Γ⇒ ∆, ϕ, ϕ′

Γ⇒ ∆, ϕ ∨ ϕ′ ∨Right

Γ⇒ ∆
Cut  

Γ, ϕ⇒ ∆
Γ, ϕ⇒ ∆, ϕ′ Weak.

Γ⇒ ∆, ϕ, ϕ′

Γ⇒ ∆, ϕ′ Cut
Γ, ϕ′ ⇒ ∆

Γ⇒ ∆
Cut

Γ⇒ ∆, ϕ
Γ,¬ϕ⇒ ∆

¬Left
Γ, ϕ⇒ ∆

Γ⇒ ∆,¬ϕ
¬Right

Γ⇒ ∆
Cut  

Γ⇒ ∆, ϕ Γ, ϕ⇒ ∆
Γ⇒ ∆

Cut

Γ, ϕ[x/y]⇒ ∆
Γ, ∃x.ϕ⇒ ∆

∃Left
Γ⇒ ∆, ϕ[x/t]
Γ⇒ ∆, ∃x.ϕ

∃Right

Γ⇒ ∆
Cut  

Γ, ϕ[x/y]⇒ ∆
Γ, ϕ[x/y][y/t]⇒ ∆

Sub.
Γ⇒ ∆, ϕ[x/t]

Γ⇒ ∆
Cut

3. Case where at least one premise of the cut rule is an axiom.

Γ, ϕ⇒ ∆
Ax.

Γ⇒ ∆, ϕ
Γ⇒ ∆

Cut  Γ⇒ ∆
Ax.

The dual case (i.e. the rule Ax. is applied on the right premise of the cut
rule) is handled in the same way.

4. Finally, the case remains where the rules Sub. and Weak. have a premise
which is the conclusion of some instances of @Left and @Right for @ ∈
{∧,∨, ∃}, or Ax. Here, we can easily show that Sub. and Weak. pass over
rules in @Left and @Right rules where @ ∈ {∨,∧, ∃}, and are canceled out
when they are occurring under instances of Ax. The transformations are
similar to the ones for logicality.

We have already noticed in Section 4 that the transformations given above
satisfy Condition 2 for the well-founded ordering � defined as follows:

∀@ ∈ {∨,¬, ∃}, Cut ≻ Weak. ∼ Sub. ≻ @Left ∼ @Right ∼ Ax.

Γ1 ⇒ ∆1, ϕ1 Γ1, ϕ1 ⇒ ∆1

Γ1 ⇒ ∆1

Cut ≻
Γ2 ⇒ ∆2, ϕ2 Γ′

2, ϕ2 ⇒ ∆′
2

Γ2,Γ
′
2 ⇒ ∆2,∆

′
2

Cut

⇔
|ϕ2| < |ϕ1|

where |ϕ| is the depth of formula ϕ defined to be supk(1 + |ϕk|) if the ϕi are the
direct sub-formulas of ϕ. Therefore, by Theorem 4.4, the cut-elimination procedure
as presented here is weakly normalizing.
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Strong normalization result. We can observe that all the transformation rules of
Cases 2., 3., and 4. satisfy Condition 1. Only the transformation rules of Case 1.
do not satisfy this condition. This is due to the fact that the cut rule has the form

Γ⇒ ∆, ϕ Γ, ϕ⇒ ∆
Γ⇒ ∆

Cut

But if we consider the cut rule with the following form

Γ⇒ ∆, ϕ Γ′, ϕ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′ Cut

the transformation rules of Case 1. become

Γ⇒ ∆, ϕ
Γ′ ⇒ ∆′, ϕ

@Right
Γ′′, ϕ⇒ ∆′′

Γ′,Γ′′ ⇒ ∆′,∆′′ Cut  

Γ⇒ ∆, ϕ Γ′′, ϕ⇒ ∆′′

Γ,Γ′′ ⇒ ∆,∆′′ Cut

Γ′,Γ′′ ⇒ ∆′,∆′′ @Right

where @ ∈ {∨,¬, ∃} and Γ′ = Γ except for the ¬Right rule, where Γ′ = Γ,¬ψ
for some formula ψ. The other rules of Case 2. are noticeably similar. Now, all
of these transformation rules satisfy Condition 1, and then by Theorem 4.1, the
cut-elimination procedure is strongly normalizing.

Sequent calculus with explicit structural rules. In cut-elimination procedures for
sequent calculus with explicit structural rules (i.e. contraction and weakening, and
then sequents are defined by lists rather than sets of formulas), it is well-known
that infinite reduction sequences may happen. Indeed, in a proof tree, when con-
traction occurs over cuts, this leads to the following transformation:

R2

Γ⇒ ∆, ϕ, ϕ
Γ⇒ ∆, ϕ

Contr.
Γ, ϕ⇒ ∆

Γ⇒ ∆
Cut  

Γ⇒ ∆, ϕ, ϕ
Γ, ϕ⇒ ∆

Γ, ϕ⇒ ∆, ϕ
Weak

Γ⇒ ∆, ϕ
Cut

Γ, ϕ⇒ ∆
Γ⇒ ∆

Cut

Notice that both Conditions 1 and 2 do not hold for R2. Condition 1(i) is not
verified since Cut should be strictly greater than any rule instance in π whose
premises are not only formulas or rule instances, which does not hold for the last
instance of Cut. Condition 2(ii) is not verified since the sequent Γ ⇒ ϕ,∆ is
duplicated. Moreover, Condition 2(iv) is not verified either since Weak 6∈ Elim .17

For such sequent calculi, some normalizing cut-elimination procedures have
been developed. The first proof of strong normalization has been given by Dragalin
in 1979 [30]. More recently, other proofs of strong normalization of cut-elimination
procedures have been given in [12, 14, 37, 57]. All of these strong results are

17We recall that the weakening rules is explicit.
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obtained either by “camouflaging” contractions into introduction or cut rules, or
by transforming the cut rule in order to prevent contractions from occurring over
cut rules. For the latter, this is how E. Tahhan Bittar in [12] enters upon strong
normalization proofs for cut-elimination. The cut rule in [12], called Mix rule, is
defined as follows:

Γ ⊢ ∆, ϕn Γ′, ϕm ⊢ ∆′

Γ,Γ′ ⊢ ∆,∆′ Mix

where ϕn means ϕ, . . . , ϕ
︸ ︷︷ ︸

n times

. For such a calculus, Rule R2 above is then transformed

as follows:

Γ ⊢ ∆, ϕ, ϕ
Γ ⊢ ∆, ϕ

Contr.
Γ′, ϕ ⊢ ∆′

Γ,Γ′ ⊢ ∆,∆′ Mix  
Γ ⊢ ∆, ϕ, ϕ Γ′, ϕ ⊢ ∆′

Γ,Γ′ ⊢ ∆,∆′ Mix

By using the precedence order:

∀@ ∈ {∨,¬, ∃,Contr.,Weak}, Mix ≻ @Right ∼ @Left ∼ Axiom

we easily show that this cut-elimination procedure satisfies Condition 1. Of course,
considering the Mix rule with the form

Γ ⊢ ∆, ϕn Γ, ϕm ⊢ ∆
Γ ⊢ ∆

leads to a weak normalization result.

6. Cut-Elimination in Deduction modulo

Recently, sequent calculi for first-order logic have been extended by G. Dowek, Th.
Hardin and C. Kirchner [26] to some computations on formulas. This extension is
based on the fact that some axioms can be successfully replaced by rewrite rules
on formulas. This leads to a faster proof-search and more readable proofs. The cut-
elimination result given here differs from Hermant’s one [38, 39]. Indeed, Hermant
gives a semantic proof of cut elimination whereas a syntactical proof is given in
this paper by defining an algorithm that transforms a proof into a cut-free one.

6.1. Sequent Calculus Modulo

First, let us introduce the deductive system for the sequent calculus modulo for
classical first-order predicate logic. We follow the same notations and conventions
for first-order logic and sequents as in Subsection 5.3.

In the sequel, we suppose that the reader is accustomed with the elementary
definitions of rewriting theory as found in the introductory chapters of textbooks
on the subject [8, 20]. We only introduced the following definition and notations:

Definition 6.1. Let Σ be a signature. A formula rewrite rule is a pair of formulas
ϕ → ψ such that ϕ is a Σ-atom and all free variables of ψ occur in ϕ. A rewrite
system R is a set of formula rewrite rules.
For a rewrite system R, we denote by →R the rewriting relation induced by R,
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∗
→R the transitive and reflexive closure of →R and =R its transitive, reflexive and
symmetric closure.

Given a signature Σ = (Op, P ) and a rewrite system R, the deductive system
S = (F,R) for Σ associated to Gentzen-style sequent calculi modulo R is defined
as follows:

• F is the set of Σ-sequents
• R contains all the instances of the following rule schemes:

Γ, ϕ⇒ ∆, ψ
Ax. if ϕ =R ψ

Γ, ϕ⇒ ∆ Γ, ϕ′ ⇒ ∆
Γ, ψ ⇒ ∆

∨Left
Γ⇒ ∆, ϕ, ϕ′

Γ⇒ ∆, ψ
∨Right if ϕ ∨ ϕ′ =R ψ

Γ⇒ ∆, ϕ
Γ, ψ ⇒ ∆

¬Left
Γ, ϕ⇒ ∆
Γ⇒ ∆, ψ

¬Right if ¬ϕ =R ψ

Γ, ϕ[x/y]⇒ ∆
Γ, ψ ⇒ ∆

∃Left
Γ⇒ ∆, ϕ[x/t]

Γ⇒ ∆, ψ
∃Right if ∃x.ϕ =R ψ

Γ⇒ ∆, ϕ Γ, ψ ⇒ ∆
Γ⇒ ∆

Cut if ϕ =R ψ

where the ∃Left rule obeys the usual eigenvariable condition, stating that x
is not free in Γ,∆.

In the cut rule, the pair (ϕ, ψ) is called the cut formula. Finally, we
use the standard terminology of principal formula with respect to a rule r as
follows: any ψ such that

– ψ =R ¬ϕ is principal with respect to ¬Left and ¬Right,
– ψ =R ϕ ∨ ϕ′ is principal with respect to ∨Left and ∨Right, and
– ψ =R ∃x.ϕ is principal with respect to ∃Left and ∃Right,

6.2. Cut-Elimination Algorithm

It has been shown in [29, 39] that the cut elimination property for the sequent
calculus modulo for the first-order logic18 depends on the rewrite system consid-
ered. Indeed, rewrite systems with rewrite rules on formulas define theories, and
it is well-known that cut-elimination is not satisfied in general for theories. For in-
stance, suppose the signature Σ is only composed of the constant R and the binary
predicate ∈. Then, consider the theory defined by the confluent rewrite system R
composed of the unique rewrite rule: R ∈ R → ¬R ∈ R which is Russell’s para-
dox. Obviously, we can prove the sequent ⊢ (which is a tautology for the sequent

18This is also true for the propositional and intuitionistic fragment.
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calculus modulo R):

R ∈ R ⊢ R ∈ R
Axiom

R ∈ R,R ∈ R ⊢
¬-R

R ∈ R ⊢
C-L

R ∈ R ⊢ R ∈ R
Axiom

⊢ R ∈ R,R ∈ R
¬-L

⊢ R ∈ R
C-R

⊢
Cut

Obviously,R is not terminating. However, it has been shown that termination
of rewrite systems is not sufficient to get the cut-elimination property. Indeed, for
the same signature as above, if we consider the theory defined by the confluent
and terminating rewrite system

R ∈ R→ ∀y((∀x(¬x ∈ R⇒ ¬x ∈ y))⇒ ¬R ∈ y)

it has been shown in [27] that the empty sequent ⊢ can also be proved and then the
theory does not have the cut elimination property. Hermant in [39] then showed
by semantic arguments that for every confluent rewrite system compatible with
a well-founded order > on formulas (and then terminating) which satisfies the
subformula property, the cut elimination property holds. Here, we show that this
condition also algorithmically entails the cut elimination property. We then assume
a well-founded order > on formulas that has the subformula property:

• ϕ1 ∨ ϕ2 > ϕi

• ¬ϕ > ϕ
• ∃x.ϕ > ϕ[x/t]

Definition 6.2. A rewrite system R is said compatible with > if and only if
→R ⊆ >.

Therefore, a confluent rewrite system R compatible with > is strongly nor-
malizing, and then the normal form of a formula ϕ exists and is unique. In the
following, we will denote the normal form of ϕ by ϕ↓.

Lemma 6.3.

1. (ϕ1 ∨ ϕ2)↓ = ϕ1↓ ∨ ϕ2↓

2. (@ ϕ)↓ = @ ϕ↓ where @ ∈ {∃x}x∈V ∪ {¬}.

Proof. Results from the form of formula rewrite rules whose left-hand side is a
Σ-atom. �

As for the classical sequent calculus (see Section 5.3), when considering the
cut rule with the above form, to give a syntactical proof of the cut-elimination
property, we need to add to the set R of inference rules the three following admis-
sible rules:

Γ⇒ ∆

σ(Γ)⇒ σ(∆)
Sub.

where σ : V → TΣ(V ) is a substitution and σ(Γ) = σ(ϕ1), . . . , σ(ϕn) when Γ =
ϕ1, . . . , ϕn.
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Γ⇒ ∆

Γ′ ⇒ ∆′
Weak

where Γ ⊆ Γ′ and ∆ ⊆ ∆′.

Γ, ϕ ⊢ ∆

Γ, ϕ↓ ⊢ ∆
↓-L

Γ ⊢ ∆, ϕ

Γ ⊢ ∆, ϕ↓
↓-R

We already explained the reason for the two first rules in Subsection 5.3. The
third rule comes from the fact that we are dealing with confluent rewrite systems
compatible with a well-founded order > on formulas. Let us call the resulting
extended system of rules R′. We will see just below that our method is such that
cut-free proofs with respect to R′ are actually cut-free proofs using only rules in
R.

Lemma 6.4. ϕ[x/t]↓ = ϕ↓[x/t]

Proof. By induction on the structure of the formula ϕ. �

Therefore, Gentzen’s result (and, in particular, the termination of the cut-
elimination procedure, which is the difficult part) can be shown by using the basic
transformation rules described below, that are noticeably similar to the ones given
in Section 5.3. Therefore, we have the following transformation rules that can also
be organized in 4 cases.

1. Case where the cut formula is not principal with respect to at least one of
the inferences leading immediately to the premises of the cut. Here, we give
the transformations for the case where right rules are applied so as to get the
left premise of the cut rule, but one can generalize such transformations to
the symmetric case in a standard way.

Γ⇒ ∆, ϕ
Γ′ ⇒ ∆′, ϕ

@Right
Γ′, ϕ′ ⇒ ∆′

Γ′ ⇒ ∆′ Cut  

Γ⇒ ∆, ϕ
...

Weak.

Γ,Γ′ ⇒ ∆,∆′, ϕ
Weak.

Γ′, ϕ′ ⇒ ∆′

...

Weak.

Γ,Γ′, ϕ′ ⇒ ∆,∆′ Weak.

Γ,Γ′ ⇒ ∆,∆′ Cut

Γ′ ⇒ ∆′ @Right

where @ ∈ {∨,¬, ∃} and Γ′ = Γ except for the ¬Right rule, where Γ′ = Γ,¬ψ
for some formula ψ.

2. Case where the cut formula is principal with respect to both inferences leading
immediately to the premises of the cut. In this case we have the following
proof tree transformation:



Some general results about proof normalization 25

Γ, ϕ1 ⇒ ∆ Γ, ϕ′
1
⇒ ∆

Γ, ψ1 ⇒ ∆
∨Left

Γ⇒ ∆, ϕ2, ϕ
′
2

Γ⇒ ∆, ψ2

∨Right

Γ⇒ ∆
Cut  

Γ, ϕ1 ⇒ ∆
Γ, ϕ1↓ ⇒ ∆

↓Left

Γ, ϕ1↓ ⇒ ∆, ϕ′
2↓

Weak.

Γ⇒ ∆, ϕ2, ϕ
′
2

Γ⇒ ∆, ϕ2↓, ϕ
′
2

↓Right

Γ⇒ ∆, ϕ2↓, ϕ
′
2↓

↓Right

Γ⇒ ∆, ϕ′
2↓

Cut
Γ, ϕ′

1 ⇒ ∆
Γ, ϕ′

1↓ ⇒ ∆
↓Left

Γ⇒ ∆
Cut

This transformation is correct because we have respectively ψ1 =R ψ2, ψ1 =R

ϕ1∨ϕ
′
1 and ψ2 =R ϕ2∨ϕ

′
2. Therefore, we have ϕ1∨ϕ

′
1 =R ϕ2∨ϕ

′
2, and then

by Lemma 6.3 ϕ1↓∨ϕ
′
1↓ = ϕ2↓∨ϕ

′
2↓, hence we conclude that ϕ1↓ = ϕ2↓ and

ϕ′
1↓ = ϕ′

2↓.
For similar reasons to the first transformation, the two following ones

are also correct. Moreover, in the last transformation, the way we use the
rules ↓Left and ↓Right is correct by Lemma 6.4.

Γ⇒ ∆, ϕ
Γ, ψ ⇒ ∆

¬Left
Γ, ϕ′ ⇒ ∆
Γ⇒ ∆, ψ′ ¬Right

Γ⇒ ∆
Cut  

Γ⇒ ∆, ϕ
Γ⇒ ∆, ϕ↓

↓Right
Γ, ϕ′ ⇒ ∆
Γ, ϕ′

↓ ⇒ ∆
↓Left

Γ⇒ ∆
Cut

Γ, ϕ[x/y]⇒ ∆
Γ, ψ ⇒ ∆

∃Left
Γ⇒ ∆, ϕ′[x/t]

Γ⇒ ∆, ψ′ ∃Right

Γ⇒ ∆
Cut  

Γ, ϕ[x/y]⇒ ∆
Γ, ϕ↓[x/y]⇒ ∆

↓Left

Γ, ϕ↓[x/y][y/t]⇒ ∆
Sub.

Γ⇒ ∆, ϕ′[x/t]
Γ⇒ ∆, ϕ′

↓[x/t]
↓Right

Γ⇒ ∆
Cut

3. Case where at least one premise of the cut rule is an axiom.

Γ, ϕ⇒ ∆
Ax.

Γ⇒ ∆, ϕ
Γ⇒ ∆

Cut  Γ⇒ ∆

The dual case (i.e. the rule Ax. is applied on the right premise of the cut
rule) is handled in the same way.

4. Finally, the case remains where the rules Sub. Weak. and ↓Left and ↓Right
have a premise which is the conclusion of some instances of @Left and @Right
for @ ∈ {¬,∨, ∃}, or Ax. Here, we can easily show that these three rules can
move over rules in @Left and @Right rules where @ ∈ {∨,¬, ∃}, and are can-
celed out when they occur under instances of Ax. The basic transformations
are similar to the ones of the logicality result for the equational logic. For
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instance, we have the following transformation:

Γ, ϕ⇒ ∆ Γ, ϕ′ ⇒ ∆
Γ, ψ ⇒ ∆

∨Left

Γ, ψ↓ ⇒ ∆
↓Left  

Γ, ϕ⇒ ∆
Γ, ϕ↓ ⇒ ∆

↓Left
Γ, ϕ′ ⇒ ∆
Γ, ϕ′

↓ ⇒ ∆
↓Left

Γ, ψ↓ ⇒ ∆
∨Left

This transformation is correct by Lemma 6.3.

Let us consider the well-founded order ≥ on rule instances defined as follows:

Cut ≻ Weak. ∼ Sub. ∼ ↓Left ∼ ↓Right ≻ @Left ∼ @Right ∼ Ax.

where @ ∈ {∨,¬, ∃}, and

Γ1, ϕ1 ⇒ ∆1 Γ1 ⇒ ∆1, ψ1

Γ1 ⇒ ∆1

Cut ≻
Γ2, ϕ2 ⇒ ∆2 Γ2 ⇒ ∆2, ψ2

Γ2 ⇒ ∆2

Cut

⇐⇒
{ϕ1, ψ1} ≫ {ϕ2, ψ2}

where ≫ is the extension of the order on formulas to multisets of formulas.
By this well-founded order, we can easily check that the above transforma-

tion rules satisfy Condition 2. Therefore, by Theorem 4.4, the syntactical cut-
elimination procedure presented here is weakly normalizing. Considering the cut
rule with the form

Γ, ϕ⇒ ∆ Γ′ ⇒ ∆′, ψ
Γ,Γ′ ⇒ ∆,∆′ Cut

leads to a strong normalization result.

7. Conclusions and Perspectives

In this paper, we give a method to obtain results of normalization of proof trees
independently of the underlying deductive system. This is achieved by generalizing
the observation that some inference rules move over or are canceled out when they
occur under any other rules. This generalization is expressed by a set of basic proof
tree transformations which, when the induced global proof transformation is ter-
minating, ensures the completeness of the corresponding proof strategy. However,
termination cannot be ensured in general. Therefore, two conditions on the struc-
ture of basic proof tree transformations are given, which are sufficient to ensure
such a result of termination. These two conditions allow us to obtain an abstract
strong and an abstract weak normalization result, respectively. We would be able
to increase the number of examples of already known normalization results such
as cut-elimination for standard modal propositional sequent calculi for the logics
K, K4, T, S4, for linear logic sequent calculus and/or proof-nets (when proof-nets
are presented under the form of proof structures which are built according to the
rules of linear sequent calculus as in [35]), or for display calculi [9, 16], and showing
that all of them meet the conditions given in the paper.

In order to validate our approach, we plan to continue this work by submiting
our “meta proofs” to a generic theorem proof assistant, as, for instance, Isabelle [47]
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or Coq [15], as it is done for a specific proof of strong normalization for the case of
display calculi in [16]. This enables one to certify, as a result, all existing and future
normalization results. Indeed, it would be sufficient to check that the proof tree
transformation rules which underlie the normalization result meet the sufficient
conditions of Section 4.
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gories of pre-institutions. In C. Rauszer, editor, Algebraic Methods in Logic and in
Computer Science, volume 28 of Banach Center Publ., pages 67–94, 1993.

[50] A. Salibra and G. Scollo. Interpolation and compactness in categories of pre-
institutions. Mathematical Structures in Computer Science, 6:261–286, 1996.



30 Marc Aiguier and Delphine Longuet

[51] W. Marco Schorlemmer. Term rewriting in a logic of special relations. In 7th In-
ternational Conference on Algebraic Methodology and Software Technology, volume
1548 of Lecture Notes in Computer Science, pages 178–195. Springer, 1998.

[52] G. Struth. Non-symmetric rewriting. Technical report, MPI für Informatik, 1996.

[53] W.-W. Tait. Normal derivability in classical logic. In J. Barwise, editor, The Syntax
and Semantics of Infinitary Languages, pages 204–236. Springer Verlag, 1989.

[54] A. Tarlecki. On the existence of free models in abstract algebraic institutions. The-
oretical Computer Science, 37:269–304, 1986.

[55] A. Tarlecki. Quasi-varieties in abstract algebraic institutions. Journal of Computer
and System Science, 33(3):269–304, 1986.

[56] A. Tarlecki. Algebraic Foundations of Systems Specification, chapter Institutions: An
abstract Framework for Formal Specifications, pages 105–131. IFIP State-of-the-Art
Reports. Springer, 1999.

[57] C. Urban and G.-M. Bierman. Strong normalisation of cut-elimination in classical
logic. Acta Informaticae, 45(1-2):123–155, 2001.

[58] V. van Oostrom. Sub-Birkhoff. In 7th International Symposium on Functional and
Logic Programming, volume 2998 of Lecture Notes in Computer Science, pages 180–
195. Springer, 2004.

[59] L.-A. Wallen. Automated Deduction for Non Classical Logics. The MIT Press, 1990.

[60] T. Yamada, J. Avenhaus, C. Loria-Saenz, and A. Middeldorp. Logicality of condi-
tional rewrite systems. Theoretical Computer Science, 236(1,2):209–232, 2000.

Marc Aiguier
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