
Specification-Based Testing for CoCasl’s Modal
Specifications

Delphine Longuet and Marc Aiguier

IBISC CNRS FRE 2873 - University of Évry Val d’Essonne
523 place des terrasses de l’Agora, F-91000 Évry

{delphine.longuet,marc.aiguier}@ibisc.univ-evry.fr

Abstract. Specification-based testing is a particular case of black-box
testing, which consists in deriving test cases from an analysis of a for-
mal specification. We present in this paper an extension of the most
popular and most efficient selection method widely used in the algebraic
framework, called axiom unfolding, to coalgebraic specifications, using
the modal logic provided by the CoCasl specification language.

Keywords: Specification-based testing, axiom unfolding, coalgebraic spec-
ifications, modal logic, CoCasl.

Black-box testing refers to any method used to validate software systems in-
dependently of their implementation. Specification-based testing is a particular
case of black-box testing, which consists of the dynamic verification of a system
with respect to its specification [1,2,3]. The system under test is executed on a
finite subset of its possible input data to check its conformance with respect to
the specification requirements.

The testing process is classically divided into two principal phases:

1. The selection phase where some selection criteria are defined to split test
sets into subsets in order to manage their size.

2. The generation phase where some techniques and tools based on constraint
solving are defined in order to generate some test cases in each test set to be
submitted to the system under test.

In this paper, we are interested in the selection phase. More particularly, we
will extend to CoCasl specifications a very popular and very efficient selec-
tion method, called axiom unfolding, which has extensively been studied in the
framework of algebraic specifications [1,2,3,4,5,6,7,8,9].

CoCasl is a coalgebraic extension of the algebraic specification language
Casl that allows to specify processes as coalgebraic types dealing with data
defined as algebraic types [10]. CoCasl’s modal logic is syntactical sugar to
express properties on such processes, like safety and fairness properties. We then
propose in this paper a selection method for testing dynamic systems specified
with CoCasl’s modal logic.

The usual approach of black-box testing for dynamic systems is conformance
testing [11,12,13,14,15]. In conformance testing, specifications, systems and test

T. Mossakowski et al. (Eds.): CALCO 2007, LNCS 4624, pp. 356–371, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Specification-Based Testing for CoCasl’s Modal Specifications 357

purposes are classically represented by input output transition systems. Test
cases are then execution traces selected in the specification by using classic tech-
niques from the automata theory such as synchronised product, symbolic eval-
uation, etc. Recently, some selection methods from test purposes expressed as
temporal properties has been investigated (e.g. see [16]). Taking advantage of the
fact that specifications are transition systems, model-checking techniques have
been used to select trace sets. Here, CoCasl specifications are logical theories.
Hence, our selection method, based on axiom unfolding, will be algorithmically
defined by defining a search proof strategy. This strategy will enable one to bound
the search space for proofs to a given class of trees having a specific structure
(see Section 3). However, the aim of the unfolding procedure will not be to find
the entire proof of a test purpose ϕ, but rather to stretch further the execution of
the unfolding procedure in order to make increasingly big proof whose remaining
lemmas will define a “partition” of ϕ. Hence, the procedure will be able to be
stopped at any time when the obtained partition will be fine enough according to
tester’s judgement or needs. Completeness of the unfolding procedure will then
be established by showing that derivability restricted to the unfolding strategy
coincides with the full derivability (i.e. without any specific proof strategy).

The paper is organised as follows. Section 1 briefly presents CoCasl spec-
ification language, especially cotype definition. Then CoCasl’s modal logic is
introduced, and is given a sequent calculus. To set the framework we work within,
Section 2 recalls the relevant definitions from [3] we will use in this paper, such
as exhaustive test set, and selection criteria and their associated properties. We
also prove in this section the important result of the existence of a reference
exhaustive test set, allowing to start the selection procedure with. After having
recalled in Section 3.1 the general notions of test set and constrained test set
from [17], Section 3.2 introduces the unfolding procedure from which is defined a
family of selection criteria for CoCasl’s modal specifications. Selection criteria
thus defined are proved to be sound and complete in Section 3.3.

1 CoCasl’s Modal Logic

CoCasl extends Casl specification language by enriching basic specifications
with dual forms of algebraic constructs used in Casl to define inductive data-
types. The basic dual form is the cotype construct which is used to specify
processes. A cotype declaration defines a coinductive process by declaring se-
lectors, also called observers, and constructors. Unlike in Casl specifications,
constructors here are optional. For example, the two following cotypes can be
declared in CoCasl:

spec Moore =
sorts In, Out
cotype State ::= (next : In → State;

observe : Out)
end

spec List =
sort Nat
cotype List ::= empty |

insert(head :? Nat;
tail :? List)

end

358 D. Longuet and M. Aiguier

The first declaration declares the two observers next : In × State → State and
observe : State → Out . The second similarly declares observers head and tail over
the cotype List, but also constructors empty : List and insert : Nat×List → List ,
where Nat is an imported sort from the local environment. The parts of the
declaration separated by vertical bars are called alternatives. For instance, in
the List specification, alternatives are defined by both constructors empty and
insert. Observers may be unary like observe, or may have additional parameters,
which have to come from the local environment, like next. Both observers and
constructors may be partial. Observers are partial as soon as the cotype is defined
by several alternatives. As cotypes are dual for types, cotype declarations can be
strengthened by declaring a cogenerated cotype to restrict the class of models
to fully abstract ones, or a cofree cotype to restrict models to the terminal one.
For a complete presentation of CoCasl language, the reader may refer to [10].

To express properties on processes declared in CoCasl, a multi-sorted modal
logic has been defined in [10], where modalities are defined from observers used
to describe system evolutions. All the sorts defined in the cotype are called non-
observable, while sorts from the local environment are called observable. The set
of non-observable sorts defines a multi-sorted state space, with observers either
directly producing an observable value, or making the system state evolve.

Actually, the modal logic presented here is both a restriction and an extension
of the one presented in [10]. This is a restriction because we only consider here
quantifier-free formulae. But the logic we present is also an extension because
atomic formulae are not restricted to equations but may involve any predicate.
The restriction to quantifier-free formulae is due to the fact that existentially
quantified formulae are impossible to deal with from a testing point of view. As a
matter of fact, testing a formula of the form ∃x ϕ(x) requires to exhibit a witness
value a such that ϕ(a) is evaluated as “true”by the system under test. Of course,
there is no general way to find out such a relevant value, but to simply prove
that the system satisfies the property. This led us to conclude that existential
properties are not testable [8].

Syntax. A CoCasl signature Σ = (S, F, P, V) consists of a set S of sorts with
a partition Sobs and T of observable and non-observable sorts respectively, a set
F of operation names, each one equipped with an arity in S∗ × S, a set P of
predicate names, each one equipped with an arity in S+ and an S-indexed set
V of variables. For all operations f : s1 × . . . × sn → s in F and all predicates
p : s1 × . . . × sn in P , there exists at most one i, 1 ≤ i ≤ n, such that si ∈ T .
We make a distinction between operations coming from the local environment,
i.e. operations f : s1 × . . . × sn → s with s1, . . . , sn, s ∈ Sobs on the one hand,
and constructors and observers, that are operations f : s1 × . . . × sn × s → s′

with s ∈ T on the other hand. Constructors have a non-observable result sort,
while observers may be with observable result sort s′ ∈ Sobs (they are also
called attributes) or with non-observable result sort s′ ∈ T (these are also called
methods). Constructors and methods are only distinguished from each other
thanks to the cotype declaration: the above List declaration declares empty
and insert as constructors, head as an observer with observable sort, and tail as

Specification-Based Testing for CoCasl’s Modal Specifications 359

an observer with non-observable sort. We call an observer f : s1 × . . . × sn ×
s → s′ observer of cotype s. The set F of operations names is then a partition
F = Fobs � FΩ � (Fs)s∈T where Fobs is the set of operations from the local
environment, FΩ is the set of constructors and for all s ∈ T , Fs is the set of
observers of cotype s. Since a cotype may be declared using several alternatives,
observers for a given cotype are actually defined for a given alternative of this
cotype. For a cotype s having m alternatives, we then have Fs =

∐
1≤j≤m Fs,j

where Fs,j is the set of observers for the jth alternative of cotype s. The set P of
predicates is also a partition Pobs � (Ps)s∈T where Pobs is the set of predicates
only involving observable sorts , and for each s ∈ T , Ps is the set of predicates
p : s1 × . . . × sn × s. The above List declaration gives the following CoCasl

signature.
Sobs = {Nat} T = {List}
FΩ = {empty : List , insert : Nat × List → List} PList = {def : List}
FList,1 = ∅
FList,2 = {head : List → Nat , tail : List → List}

where alternative 1 corresponds to the empty list, and alternative 2 to a list built
with constructor insert.

Given a signature Σ = (S, F, P, V), TΣ(V) is the S-set of terms with vari-
ables in V defined inductively from variables in V and operations of F : for each
operation f : s1 × . . . × sn → s ∈ Fobs ∪ FΩ , f(t1, . . . , tn) ∈ TΣ(V)s, where
each ti ∈ TΣ(V)si , 1 ≤ i ≤ n; for each observer f : s1 × . . . × sn × s → s′,
f(t1, . . . , tn) ∈ TΣ(V)s′ , where each ti ∈ TΣ(V)si , 1 ≤ i ≤ n. Notice that, for
observers, the sort s has been removed. This allows to consider states as implicit,
as usual with modal logic. The set of ground terms TΣ is defined as the set of
terms built over the empty set of variables TΣ(∅). A substitution is any mapping
σ : V → TΣ(V) that preserves sorts. Substitutions are naturally extended to
terms with variables and then to formulae.

Σ-atomic formulae are sentences of the form p(t1, . . . , tn) where p : s1 × . . . ×
sn ∈ Pobs or p : s1 × . . . × sn × s ∈ Ps, and ti ∈ TΣ(V)si for each i, 1 ≤ i ≤ n.
A term t with non-observable sort leads to modalities [t], 〈t〉, [t∗] and 〈t∗〉,
intuitively meaning“all next state”,“some next state”,“always”and“eventually”,
respectively. Modalities can be extended to finite sequences {t1, . . . , tn}, where
[{t1, . . . , tn}]ϕ and 〈{t1, . . . , tn}〉ϕ stand respectively for the conjunction and
the disjunction of the modal formulae obtained for the corresponding individual
modalities. Formulae are then built following the syntax:

ϕ, ψ ::= true | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ ⇒ ψ | [t]ϕ | 〈t〉ϕ | [t∗]ϕ | 〈t∗〉ϕ
| [{t1, . . . , tn}]ϕ | 〈{t1, . . . , tn}〉ϕ | [{t1, . . . , tn}∗]ϕ | 〈{t1, . . . , tn}∗〉ϕ

The set of modalities is denoted by MΣ(V). For(Σ) is the set of all Σ-formulae.
A specification Sp = (Σ,Ax) consists of a signature Σ and a set Ax of formulae
often called axioms. The List declaration above generates, besides the signature
we gave, the following axioms, as well as the five axioms specifying that the
equality predicate is the existential equality:

360 D. Longuet and M. Aiguier

¬def (head(empty)) head(insert(n, l)) = n
¬def (tail(empty)) tail(insert(n, l)) = l
x = x t = t′ ⇒ t′ = t t = t′ ∧ t′ = t′′ ⇒ t = t′′

t1 = t′
1 ∧ · · · ∧ tn = t′

n ∧ def (f(t1, . . . , tn)) ⇒ f(t1, . . . , tn) = f(t′
1, . . . , t

′
n)

def (f(t1, . . . , tn)) ⇒ def (ti) (strictness) t = t′ ⇒ def (t) (definability)

Semantics. Given a signature Σ = (S, F, P, V), we denote by Σobs the “observ-
able subsignature” (S, Fobs � FΩ , Pobs , V) of Σ. A Σobs-model A is then a first-
order structure, that is an S-indexed set A, equipped for each operation name
f : s1 × . . . × sn → s ∈ Fobs � FΩ with a mapping fA : As1 × . . . × Asn → As,
and for each predicate name p : s1 × . . . × sn ∈ Pobs with an n-ary relation
pA ⊆ As1 × . . . × Asn .

Since several cotypes can be declared in CoCasl, the set of states E is said
multi-sorted and is defined as a product E =

∏
s∈T Es where for each s ∈ T ,

Es = As. Σ-models are then coalgebras (E, α : E → FE) of the functor F such
that FE =

∏
s∈T FEs and which, for each s ∈ T , associates to Es the set FEs

defined as follows:

FEs =
∐

1≤j≤m

(
∏

f :s1×...×sn×s→s′∈Fs,j

s′∈Sobs

A
As1×...×Asn

s′ ×
∏

f :s1×...×sn×s→s′∈Fs,j

s′∈T

E
As1×...×Asn

s′

)

×
∏

p:s1×...×sn×s∈Ps

2As1×...×Asn

where sort s is defined by m alternatives. 1 We denote by Mod(Σ) the category
whose objects are Σ-models, i.e. the category Coalg(F) of coalgebras over F .

Given a Σ-model (E, α) over a first-order structure A, we denote by A :
TΣobs → A the unique homomorphism that maps any Σobs ground term f(t1, . . . ,
tn) to its value fA(tA1 , . . . , tAn). A Σ-model is said reachable on data if A is
surjective.

Given a Σ-model (E, α), a Σ-interpretation in A is any mapping ν : V → A
preserving sorts. Given an interpretation of variables ν and a state e = (es)s∈T ∈
E, the interpretation of terms in TΣ(V) ν�

e : TΣ(V) → M is built in the usual way
for variables and operations in Fobs ∪FΩ , and in the following way for observers:
if f : s1 × . . .× sn × s → s′ ∈ Fs,j is an observer with observable result sort then
ν�

e(f(t1, . . . , tn)) = (πf ◦κj ◦πs ◦α)(e)(ν�
e(t1), . . . , ν�

e(tn)), where: πs : E → Es is
the canonical projection to the s-sorted part of a state; assuming that the sort
s is declared by j alternatives, κj is the canonical injection to alternative j; and
πf is the canonical projection from alternative j of Es to the interpretation of f ;
if f : s1 × . . .× sn × s → s′ ∈ Fs,j is an observer with non-observable result sort,
then ν�

e(f(t1, . . . , tn)) = e′ such that e′ = (e′s)s∈T ∈ E with e′s′′ = es′′ for all
s′′ �= s′, and es′ = (πf ◦ κj ◦ πs ◦ α)(e)(ν�

e(t1), . . . , ν
�
e(tn)). By abuse of notation,

the extension ν�
e of ν will be denoted by νe.

The satisfaction of a Σ-formula ϕ by (E, α) for an interpretation ν and a
state e, denoted by (E, α) |=ν,e ϕ, is inductively defined on the structure of
ϕ: (E, α) |=ν,e true always holds; (E, α) |=ν,e p(t1, . . . , tn) for p ∈ Pobs if and

1 If A and B are two sets, we denote by BA the set of all mappings from A to B.

Specification-Based Testing for CoCasl’s Modal Specifications 361

only if (νe(t1), . . . , νe(tn)) ∈ pA; (E, α) |=ν,e p(t1, . . . , tn) for p ∈ Ps if and
only if (νe(t1), . . . , νe(tn)) ∈ πp ◦ πs(e); (E, α) |=ν,e [t]ψ if and only if for all
e′ ∈ E such that νe(t) = e′, (E, α) |=ν,e′ ψ. The other modalities can be defined
as derived notions. Actually, we have the following elementary equivalences:2

〈t〉ϕ ≡ ¬[t]¬ϕ; [t∗]ϕ ≡ ϕ ∧ [t][t∗]ϕ; [{t1, . . . , tn}]ϕ ≡ [t1]ϕ ∧ . . . ∧ [tn]ϕ. Boolean
connectives are interpreted as usual. (E, α) validates a formula ϕ, denoted by
(E, α) |= ϕ, if and only if for every interpretation ν : V → A and every state
e ∈ E, (E, α) |=ν,e ϕ. Given Ψ ⊆ For (Σ) and two Σ-models (E, α) and (E′, α′),
(E, α) is Ψ -equivalent to (E′, α′), denoted by (E, α) ≡Ψ (E′, α′), if and only if we
have: ∀ϕ ∈ Ψ, (E, α) |= ϕ ⇔ (E′, α′) |= ϕ. Given a specification Sp = (Σ,Ax), a
Σ-model (E, α) is an Sp-model if for every ϕ ∈ Ax , (E, α) |= ϕ. Mod(Sp) is the
full subcategory of Mod(Σ), objects of which are all Sp-models. A Σ-formula ϕ
is a semantic consequence of a specification Sp = (Σ,Ax), denoted by Sp |= ϕ,
if and only if for every Sp-model (E, α), we have (E, α) |= ϕ. Sp• is the set of
all semantic consequences.

Calculus. A calculus for quantifier-free modal CoCasl specifications is defined
by the following inference rules, where Γ |∼ Δ is a sequent such that Γ and Δ
are two sets of Σ-formulae:

Γ,ϕ |∼ Δ,ϕ
Taut

Γ |∼ Δ ∈ Sp

Γ |∼ Δ
Ax

Γ |∼ Δ,ϕ

Γ,¬ϕ |∼ Δ
Left-¬ Γ,ϕ |∼ Δ

Γ |∼ Δ,¬ϕ
Right-¬

Γ,ϕ,ψ |∼ Δ

Γ,ϕ∧ψ |∼ Δ
Left-∧ Γ |∼ Δ,ϕ Γ |∼ Δ,ψ

Γ |∼ Δ,ϕ∧ψ
Right-∧ Γ |∼ Δ,ϕ Γ,ψ |∼ Δ

Γ,ϕ⇒ψ |∼ Δ
Left-⇒

Γ,ϕ |∼ Δ Γ,ψ |∼ Δ

Γ,ϕ∨ψ |∼ Δ
Left-∨ Γ |∼ Δ,ϕ,ψ

Γ |∼ Δ,ϕ∨ψ
Right-∨ Γ,ϕ |∼ Δ,ψ

Γ |∼ Δ,ϕ⇒ψ
Right-⇒

Γ |∼ ϕ

[t]Γ |∼ [t]ϕ
Nec

Γ |∼ Δ

σ(Γ) |∼ σ(Δ)
Subs

Γ |∼ Δ,ϕ Γ ′,ϕ |∼ Δ′

Γ,Γ ′ |∼ Δ,Δ′ Cut

where [t]Γ = {[t]γ | γ ∈ Γ}, 〈t〉Γ = {〈t〉γ | γ ∈ Γ} and σ(Γ) = {σ(γ) | γ ∈
Γ}. This calculus is the standard Gentzen sequent calculus for modal logic K
which underlies CoCasl’s logic, from which we removed the axiom scheme called
Kripke distribution axiom: [t](ϕ ⇒ ψ) ⇒ ([t]ϕ ⇒ [t]ψ), since it is of no interest
for our unfolding procedure. From rule Nec, we can derive the following rules,
which will be helpful later:

Γ |∼ ϕ

[t∗]Γ |∼ [t∗]ϕ Nec*
Γ |∼ ϕ

[{t1,...,tn}]Γ |∼ [{t1,...,tn}]ϕ Necn

Γ |∼ ϕ,Δ

[t]Γ |∼ [t]ϕ,〈t〉Δ
Γ,ϕ |∼ Δ

[t]Γ,〈t〉ϕ |∼ 〈t〉Δ
Γ |∼ Δ

[t]Γ |∼ 〈t〉Δ

In order to manipulate less complex formulae, we take advantage of the fact
that the inference rules associated to Boolean connectives define an automatic
process that allows to transform any sequent |∼ ϕ, where ϕ is a modal formula,
into a set of sequents Γ |∼ Δ where every formula in Γ and Δ is of the form

2 Two formulae ϕ and ψ are said elementarily equivalent, denoted by ϕ ≡ ψ, if and only
if for each Σ-model (E, α), for each interpretation ν and every state e, (E, α) |=ν,e

ϕ ⇔ (E, α) |=ν,e ψ.

362 D. Longuet and M. Aiguier

α1 . . . αnψ, where αi ∈ MΣ(V) for all i, 1 ≤ i ≤ n, and ψ ∈ For (Σ) is a formula
not beginning with a modality. Let us call such sequents normalised sequents.

More precisely, these normalised sequents are obtained by eliminating every
boolean connectives which is not in the scope of a modal operator with the help
of the above sequent calculus. Such a syntactic transformation can be done since
the inference rules associated to boolean connectives are reversible: given an in-

ference rule
ϕ1 . . . ϕn

ϕ
amongst {Left-@, Right-@} where @ ∈ {¬, ∧, ∨, ⇒}, we

have
∧

1≤i≤n ϕi ≡ ϕ. Then, applying reversed inference rules for boolean con-
nectives to any sequent leads to an equivalent set of normalised sequents, which
allows to only deal with normalised sequents. Therefore, in the following, we will
suppose that specification axioms are normalised sequents. These transforma-
tions enable us to remove the rules associated to boolean connectives from the
unfolding procedure.

Example 1 (Running Example)
To illustrate our approach, we continue here the specification of the List cotype.
We specify two additional observers odd : List → List and even : List → List
which give a list containing all the elements occurring in oddly numbered places
of the original list, in evenly numbered places respectively. We have the following
modal axioms:3

• head = n ⇔ 〈odd〉head = n
• [odd][tail]ϕ ⇔ [tail][tail][odd]ϕ
• [even]ϕ ⇔ [tail][odd]ϕ

We don’t specify the data part here, since we are only interested in specifying
the process part. Axioms are then transformed into normalised sequents, as
explained above. For example, the first axiom head = n ⇔ 〈odd〉head = n,
which is equivalent to the formula head = n ⇒ 〈odd〉head = n ∧ 〈odd〉head =
n ⇒ head = n, leads to the two sequents head = n |∼ 〈odd〉head = n and
〈odd〉head = n |∼ head = n.

1. head = n |∼ 〈odd〉head = n 4. [tail][tail][odd]ϕ |∼ [odd][tail]ϕ
2. 〈odd〉head = n |∼ head = n 5. [even]ϕ |∼ [tail][odd]ϕ
3. [odd][tail]ϕ |∼ [tail][tail][odd]ϕ 6. [tail][odd]ϕ |∼ [even]ϕ

Due to lack of space, we don’t give a more complex and larger example here,
but another example dealing with the CoCasl’s modal specification of a cash
machine may be found in the long version of this paper [18].

2 Testing from Logical Specifications

The work presented in Section 3 comes within the general framework of testing
from formal specifications defined in [3]. So that the paper is as self-contained
as possible, we succinctly introduce this framework and we instantiate it to the
CoCasl’s formalism presented in Section 1.
3 The second and third axioms actually are axiom schemes, i.e. they denote the sets

of all their instances with any formula substituted for ϕ.

Specification-Based Testing for CoCasl’s Modal Specifications 363

Following previous works [1,3,7,9,19], given a specification Sp = (Σ, Ax), the
basic assumption is that the system under test can be assimilated to a model
of the signature Σ. Test cases are then Σ-formulae which are semantic conse-
quences of the specification Sp (i.e. elements of Sp•). As these formulae are to be
submitted to the system, test case interpretation is defined in terms of formula
satisfaction. When a test case is submitted to a system, it has to yield a verdict
(success or failure). Hence, test cases have to be directly interpreted as “true”
or “false” by a computation of the system. Obviously, systems can’t deal with
formulae containing non-instantiated variables, so test cases have to be ground
formulae, that is formulae where all variables have been replaced with actual
values. These “executable” formulae are called observable. Then a test case is
any observable semantic consequence. If we denote by Obs ⊆ For(Σ) the set
of observable formulae, then a test set T is any subset of Sp• ∩ Obs . Since the
system under test is considered to be a Σ-model P , T is said to be successful for
P if and only if ∀ϕ ∈ T, P |= ϕ.

The interpretation of test cases submission as a success or failure is related to
the notion of system correctness. Following an observational approach [20], to be
qualified as correct with respect to a specification Sp, a system is required to be
observationally equivalent to a model of Mod(Sp) up to the observable formulae
of Obs , that is, they have to validate exactly the same observable formulae.

Definition 1 (Correctness). P is correct for Sp via Obs, denoted by
CorrectObs(P,Sp), if and only if there exists a model M in Mod(Sp) such that
M ≡Obs P .4

A test set allowing to establish the system correctness is said exhaustive. For-
mally, an exhaustive set is defined as follows:

Definition 2 (Exhaustive test set). Let K ⊆ Mod(Σ). A test set T is ex-
haustive for K with respect to Sp and Obs if and only if

∀P ∈ K, P |= T ⇐⇒ CorrectObs(P,Sp)

The existence of an exhaustive test set means that systems belonging to the
class K are testable with respect to Sp via Obs, since correctness can be as-
ymptotically approached by submitting a (possibly infinite) test set. Hence, an
exhaustive test set is appropriate to start the process of selecting test sets. How-
ever, such an exhaustive set does not necessarily exist, depending on the nature of
both specifications and systems (whence the usefulness of subclass K of systems
in Definition 2), and on the chosen set of observable formulae. For instance, we
will need here to assume that the system under test is reachable on data. Among
all the test sets, the biggest one is the set Sp• ∩Obs of observable semantic con-
sequences of the specification. Hence, to start the selection phase of the testing
process, we first have to show that Sp• ∩ Obs is exhaustive. This holds for every
system reachable on data as stated by Theorem 1.

4 Equivalence of Σ-models with respect to a set of formulae is defined in Section 1.

364 D. Longuet and M. Aiguier

Theorem 1. Let Sp = (Σ, Ax) be a specification. Then the test set Sp• ∩ Obs
is exhaustive for every model reachable on data.

Idea of the proof. Considering a system S reachable on data, we use classic re-
sults of the coalgebra theory [21] to build a final coalgebra elementary equivalent
to S with respect to Obs, and then show that a well-chosen subcoalgebra of it
(also elementary equivalent to S up to Obs) is a model of specification Sp.

The entire proof may be found in [18]. �

The challenge, when dealing with specifications defined as logical theories, con-
sists in managing the size of Sp• ∩ Obs, which is most of the time infinite. In
practice, experts apply some selection criteria in order to extract a set of test
cases of sufficiently reasonable size to be submitted to the system. The under-
lying idea is that all test cases satisfying a considered selection criterion reveal
the same class of incorrect systems, intuitively those corresponding to the fault
model captured by the criterion. For example, the criterion called uniformity
hypothesis states that test cases in a test set all have the same power to make
the system fail.

A classic way to select test data with a selection criterion C consists in splitting
a given starting test set T into a family of test subsets {Ti}i∈IC(T) such that T =
∪i∈IC(T) Ti holds. A test set satisfying such a selection criterion simply contains
at least one test case for each non-empty subset Ti. The selection criterion C is
then a coverage criterion according to the way C is splitting the initial test set
T into the family {Ti}i∈IC(T) . This is the method that we will use in this paper
to select test data, known under the term of partition testing.

Definition 3 (Selection criterion). A selection criterion C is a mapping
P(Sp•∩Obs) → P(P(Sp•∩Obs)).5 For a test set T , we note |C(T)| = ∪i∈IC(T) Ti

where C(T) = {Ti}i∈IC(T). T ′ satisfies C applied to T , noted by T ′ � C(T) if
and only if: ∀i ∈ IC(T), Ti �= ∅ ⇒ T ′ ∩ Ti �= ∅.

To be pertinent, a selection criterion should ensure some properties between the
starting test set and the resulting family of test sets:

Definition 4 (Properties). Let C be a selection criterion and T be a test set.
C is said sound for T if and only if |C(T)| ⊆ T . C is said complete for T if and
only if |C(T)| ⊇ T .

These properties are essential for an adequate selection criterion: soundness en-
sures that test cases will be selected within the starting test set (i.e. no test is
added) while completeness ensures that no test from the initial test set is lost. A
sound and complete selection criterion then preserves exactly all the test cases
of the initial test set, up to the notion of equivalent test cases.

5 For a given set X, P(X) denotes the powerset of X.

Specification-Based Testing for CoCasl’s Modal Specifications 365

3 Selection Criteria Based on Axiom Unfolding

In this section, we study the problem of test case selection for quantifier-free
modal CoCasl specifications, by adapting a selection criteria based on unfold-
ing of quantifier-free first-order formulae recently defined in the first-order spec-
ifications setting [17].

3.1 Test Sets for Modal CoCasl Formulae

We recall here general definitions of test sets from [17]. The selection method
that we are going to define takes inspiration from classic methods that split the
initial test set of any formula considered as a test purpose.

Succinctly, for a modal CoCasl formula ϕ, our method consists in splitting
the initial test set for ϕ into many test subsets, called constrained test sets for
ϕ, and choosing any input in each non-empty subset. First, let us define what
test set and constrained test set for a modal CoCasl formula are.

Definition 5 (Test set). Let ϕ be a modal formula, called test purpose. The
test set for ϕ, denoted by Tϕ, is the set defined as follows:

Tϕ = {ρ(ϕ) | ρ : V → TΣ, ρ(ϕ) ∈ Sp• ∩ Obs}

Note that ϕ may be any formula, not necessarily in Sp•. When ϕ /∈ Sp• then
Tϕ = ∅. Constrained test sets will be sets generated by our unfolding procedure.
They are defined as follows.

Definition 6 (Constrained test set). Let ϕ be a modal formula (the test
purpose), C be a set of modal formulae called Σ-constraints, and σ : V → TΣ(V)
be a substitution. A test set for ϕ with respect to C and σ, denoted by T(C,σ),ϕ,
is the set of ground formulae defined by:

T(C,σ),ϕ = {ρ(σ(ϕ)) | ρ : V → TΣ , ∀ψ ∈ C, ρ(ψ) ∈ Sp• ∩ Obs}
The couple 〈(C, σ), ϕ〉 is called a constrained test purpose.

Note that the test purpose ϕ of Definition 5 can be seen as the constrained test
purpose 〈({ϕ}, Id), ϕ〉.

3.2 Unfolding Procedure

Given a test purpose ϕ, the unfolding procedure will then replace the initial
constrained test purpose 〈({ϕ}, Id), ϕ〉 with a set of constrained test purposes
〈(C, σ), ϕ〉. This will be achieved by matching (up to unification), formulae in C
for any constrained test purpose 〈(C, σ), ϕ〉 with the specification axioms. Hence,
step by step, we will see that the unfolding procedure is building a proof tree of
conclusion ϕ having the following structure :

– no instance of cut occurs over instances of substitution and necessitation
– no instance of substitution occurs over instances of necessitation

366 D. Longuet and M. Aiguier

– there is no instance of cut with two instances of cut occurring over it.

Hence, the unfolding procedure will only involve cut, substitution and necessita-
tion rules. In order to allow many applications of the necessitation rule at each
step of the unfolding procedure, let us define the following relation R over tuples
of modality sequences.

Definition 7. Let p, q ∈ N. R ⊆ (MΣ(V)∗)p × (MΣ(V)∗)q is defined for all
(M1, . . . , Mp) ∈ (MΣ(V)∗)p and (N1, . . . , Nq) ∈ (MΣ(V)∗)q as follows:

(M1, . . . , Mp)R(N1, . . . , Nq) if and only if
1. there exists n ∈ N such that for all i, j, 1 ≤ i ≤ p, 1 ≤ j ≤ q, there exists

αi
1, . . . , αi

n and βi
1, . . . , βi

n such that Mi = αi
1 . . . αi

n and Nj = βj
1 . . . βj

n

2. for all l, 1 ≤ l ≤ n, α1
l , . . . , α

p
l and β1

l , . . . , βq
l are such that:

(a) there exists t ∈ TΣ(V) such that for all i, j, 1 ≤ i ≤ p, 1 ≤ j ≤ q, αi
l

and βj
l all equal to [t] or 〈t〉, or αi

l and βj
l all equal to [t∗] or 〈t∗〉

(b) for all i, j, 1 ≤ i ≤ p, 1 ≤ j ≤ q, αi
l = [t] and βj

l = 〈t〉 (resp. αi
l = [t∗]

and βj
l = 〈t∗〉), except perhaps either for one k, 1 ≤ k ≤ p, such that

αk
l = 〈t〉 (resp. αk

l = 〈t∗〉), or for one k, 1 ≤ k ≤ q, such that βk
l = [t]

(resp. βk
l = [t∗]).

This relation then ensures the following proposition.

Proposition 1. Let γ1, . . . , γp |∼ δ1, . . . , δq be any sequent. Let (M1, . . . , Mp) ∈
(MΣ(V)∗)p and (N1, . . . , Nq) ∈ (MΣ(V)∗)q such that (M1, . . . , Mp)R(N1, . . . ,
Nq). Then there exists a proof tree of conclusion M1γ1, . . . , Mpγp |∼ N1δ1, . . . ,
Nqδq composed only of instances of the necessitation rule.

We can now proceed with the presentation of the unfolding procedure. The
procedure inputs are:

– a modal CoCasl specification Sp = (Σ, Ax) where axioms of Ax have been
transformed into normalised sequents (see Section 1)

– a modal formula ϕ representing the test purpose 〈({ϕ}, Id), ϕ〉
– a family Ψ of couples (C, σ) where C is a set of Σ-constraints in the form of

normalised sequents, and σ is a substitution V → TΣ(V).

Test sets for ϕ with respect to couples (C, σ) are naturally extended to Ψ as fol-
lows: TΨ,ϕ =

⋃

(C,σ)∈Ψ

T(C,σ),ϕ. The first set Ψ0 only contains the couple composed

of the set of normalised sequents obtained from the modal formula ϕ under test
and the identity substitution.

The unfolding procedure is expressed by the two following rules:6

Reduce Ψ ∪ {(C ∪ {Γ |∼ Δ}, σ′)}
Ψ ∪ {(σ(C), σ ◦ σ′)} ∃γ ∈ Γ, ∃δ ∈ Δ s.t. σ(γ) = σ(δ), σ mgu

6 The most general unifier (or mgu) of two terms γ and δ is the most general substi-
tution σ such that σ(γ) = σ(δ).

Specification-Based Testing for CoCasl’s Modal Specifications 367

Unfold
Ψ ∪ {(C ∪ {φ}, σ′)}

Ψ ∪
⋃

(c,σ)∈Tr(φ)

{(σ(C) ∪ c, σ ◦ σ′)}

where Tr(φ) for φ = γ1, . . . , γm |∼ δ1, . . . , δn is the set of couples

{(c, σ) | Cond(c, σ)}

where, for each couple, c is the following set

{σ(γp+1), . . . , σ(γm), σ(N ′
iζi) |∼ σ(δq+1), . . . , σ(δn)}1≤i≤k⋃

{(σ(γp+1), . . . , σ(γm) |∼ σ(M ′
iξi), σ(δq+1), . . . , σ(δn)}1≤i≤l

and the condition on (c, σ) denoted by Cond(c, σ) is the following: there exists
an axiom ψ1, . . . , ψp, ξ1, . . . , ξl |∼ ζ1, . . . , ζk, ϕ1, . . . , ϕq ∈ Ax with k, l ∈ N, 1 ≤
p ≤ m and 1 ≤ q ≤ n, and there exists a unifier σ such that

– for all 1 ≤ i ≤ p, there exists Mi ∈ MΣ(V)∗ such that σ(Miψi) = σ(γi),
– for all 1 ≤ i ≤ q, there exists Ni ∈ MΣ(V)∗ such that σ(Niϕi) = σ(δi),
– for all 1 ≤ i ≤ l and for all 1 ≤ j ≤ k, M ′

i , N
′
j ∈ MΣ(V)∗ with (M1, . . . , Mp,

M ′
1, . . . , M

′
l)R(N1, . . . , Nq, N

′
1, . . . , N

′
k)

The Reduce rule eliminates tautologies from constraints sets (up to substitu-
tion), which are without interest for the unfolding procedure. The Unfold rule
is closely related to the one given in [17] although more complicated because of
modalities. Roughly speaking, this rule consists in replacing the formula φ with
the set c of constraints, φ being the conclusion of an instance of the Cut rule,
and the constraints in c being the premisses of this rule instance which do not
directly come from a substitution (up to some applications of the necessitation
rule) of an axiom of the specification. The relevance of the method is due to the
fact that testing σ(φ) comes to test the formulae of c, which will be proved in
the next subsection. The particular case where no formula has to be cut is taken
into account, since k and l may be equal to zero. Tr(φ) is then a couple (∅, σ),
and it is the last step of unfolding for this formula.

Each unification with an axiom leads to as much couples (c, σ) as there are
ways to instantiate M ′

1, . . . , M
′
l and N ′

1, . . . , N
′
k so that (M1, . . . , Mp, M

′
1, . . . , M

′
l)

and (N1, . . . , Nq, N
′
1, . . . , N

′
k) belong to R. So the initial formula φ is replaced

with, at least, as much sets of formulae as there are axioms to which it can
be unified. The definition of Tr(φ) being based on unification, this set is com-
putable if the specification Sp has a finite set of axioms. Therefore, given an
atomic formula ψ, we have the selection criterion Cψ that maps any T(C,σ′),ϕ to
(T(σ(C\{φ})∪c,σ◦σ′),ϕ)(c,σ)∈Tr(φ) if φ ∈ C, and to TC,ϕ otherwise.

We write 〈Ψ, ϕ〉 �U 〈Ψ ′, ϕ〉 to mean that Ψ ′ can be derived from Ψ by applying
Reduce or Unfold. An unfolding procedure is then any program, whose inputs
are a CoCasl’s modal specification Sp and a modal formula ϕ, and uses the
above inference rules to generate the sequence 〈Ψ0, ϕ〉 �U 〈Ψ1, ϕ〉 �U 〈Ψ2, ϕ〉 . . .

368 D. Longuet and M. Aiguier

Termination of the unfolding procedure is unlikely, since it is not checked,
during its execution, whether the formula ϕ is a semantic consequence of the
specification or not. Actually, this will be done during the generation phase, not
handled in this paper. As we already explained in the introduction, the aim of the
unfolding procedure is not to find the complete proof of formula ϕ, but to make
a partition of Tϕ increasingly fine. Hence the procedure can be stopped at any
moment, when the obtained partition is fine enough according to the judgement
or the needs of the tester. The idea is to stretch further the execution of the
procedure in order to make increasingly big proof trees whose remaining lemmas
are constraints. If ϕ is not a semantic consequence of Sp, then this means that,
among remaining lemmas, some of them are not true, and then the associated
test set is empty.

Example 2 (Lists). Let us suppose that we want to test the formula [even][tail]
head = a ⇒ [tail][tail][even]head = b. Then, to perform the first step of the
unfolding procedure on the initial family of couples:

Ψ0 = {({[even][tail]head = a |∼ [tail][tail][even]head = b}, Id)}

leads to the following family of couples:

Ψ1 = {({[even][tail]〈odd〉head = n0 |∼ [tail][tail][even]head = m0}, σ1), (1)
({〈even〉[tail]〈odd〉head = n0 |∼ [tail][tail][even]head = m0}, σ1), (1)
({[even]〈tail〉〈odd〉head = n0 |∼ [tail][tail][even]head = m0}, σ1), (1)
({〈even〉〈tail〉〈odd〉head = n0 |∼ [tail][tail][even]head = m0}, σ1), (1)
({[tail][odd][tail]head = n0 |∼ [tail][tail][even]head = m0}, σ1), (5)
({[even][tail]head = n0 |∼ [tail][tail][even]〈odd〉head = m0}, σ2), (2)
({[even][tail]head = n0 |∼ [tail][tail][tail][odd]head = m0}, σ2)} (6)

where σ1 : a �→ n0, b �→ m0, n �→ n0 and σ2 : a �→ n0, b �→ m0, n �→ m0. Each
couple of Ψ1 is labelled by the number of the axiom used for the unfolding of the
initial formula.

The first four couples of Ψ1 come from the unification of the initial for-
mula with axiom (1). Since σ1(M1ψ1) = σ1(γ1), where M1 = [even][tail], ψ1
is the formula head = n and γ1 is head = a, the resulting constraints are
the sequents σ1(N ′

1ζ1) |∼ σ1(δ1) where ζ1 is the formula 〈odd〉head = n, δ1 is
[tail][tail][even]head = b, and N ′

1 must be such that M1RN1. According to the
definition of R, several N1 suit, namely [even][tail], 〈even〉[tail], [even]〈tail 〉 and
〈even〉〈tail 〉, whence the four constraints generated by the unification with ax-
iom (1).

Notice that the formula under test is a consequence of the specification if and
only if a = b. The unfolding may then generate two kinds of constrained test sets:
those whose substitution σ is such that σ(a) = σ(b), which will lead to test cases
since they are consequences of the specification, and those where σ(a) �= σ(b),
which are not test cases. Here, when a constraint is unified with both sides of
axiom (1) or (2), the substitution collapses a and b and the resulting constrained
test set is a potential test case.

The unfolding procedure can not distinguish between these two kinds of con-
strained test sets, but this distinction will be done before submitting them to the

Specification-Based Testing for CoCasl’s Modal Specifications 369

system, by applying a ground substitution ρ to any formula in constrained test
purposes. Since, by definition, ρ(ψ) has to be a consequence of the specification,
constrained test sets where σ(a) �= σ(b) will not be submitted to the system.

The application of the procedure on another example may be found in [18].
Until now, the unfolding procedure has been defined in order to cover the

behaviours of one test purpose, represented by the formula ϕ. When we are
interested in covering more widely the exhaustive set Sp• ∩ Obs, a strategy
consists in ordering modal formulae with respect to their size, as follows:

Φ0 = { |∼ p(x1, . . . , xn) | p : s1 × . . . × sn ∈ P, ∀i, 1 ≤ i ≤ n, xi ∈ Vsi}

Φn+1 ={ |∼ ¬ψ, |∼ [m]ψ, |∼ ψ1@ψ2 | m ∈ MΣ(V),@ ∈ {∧, ∨, ⇒},ψ, ψ1, ψ2 ∈ Φn}

Then, to manage the size (often infinite) of Sp• ∩ Obs , we start by choosing
k ∈ N, and then we apply for every i, 1 ≤ i ≤ k, the above unfolding procedure
to each formula belonging to Φi. Of course, this requires that signatures are finite
so that each set Φi is finite too.

3.3 Soundness and Completeness

Here, we prove the two properties that make the unfolding procedure relevant
for the selection of appropriate test cases, i.e. that the selection criterion defined
by the procedure is sound and complete for the initial test set we defined.

Theorem 2. If 〈Ψ, ϕ〉 �U 〈Ψ ′, ϕ〉, then TΨ,ϕ = TΨ ′,ϕ.

Idea of the proof. To prove the soundness of the procedure comes to prove that
the initial formula ϕ can be derived from the constraints replacing it in the
procedure. Thus we prove that the test set obtained by the application of the
procedure does not add new test cases. Then, to prove the completeness of the
procedure, we prove that there necessarily exists a proof tree of conclusion ϕ
having a certain structure, and then that the procedure generates all possible
constraints for testing ϕ. We thus prove that no test cases are lost. As explained
just before, we can observe that our unfolding procedure defines a proof search
strategy that enables to limit the search space to the class of proof trees having
the following structure:

– no instance of cut occurs over instances of substitution and necessitation
– no instance of substitution occurs over instances of necessitation
– there is no instance of cut with two instances of cut occurring over it.

We then have to prove that the derivability defined by our unfolding strat-
egy coincides with the full derivability. We then define basic transformations
to rewrite proof trees into ones having the above structure, and show that the
induced global proof tree transformation is weakly normalising.

The entire proof may be found in [18]. �

370 D. Longuet and M. Aiguier

4 Conclusion

In this paper, we have extended the method for selecting test cases known as
axiom unfolding to coalgebraic specifications of dynamic systems. As in the al-
gebraic specifications setting, our unfolding procedure consists in dividing the
initial test set for a formula into subsets. The generation of a test set for this
formula then arises from the selection of one test case in each resulting subset.
We have proved this procedure to be sound and complete, so that test cases
are preserved at each step. We have also proved the exhaustiveness of the set
of observable consequences of the specification for every reachable system, and
proposed a strategy to cover this exhaustive test set.

Ongoing research concerns several aspects. First, we have to specialize our
unfolding procedure by handling (strong and existential) equality in a more effi-
cient way. We lose here the strong equality, and the advantage of equality being
a congruence. Then we have to extend this work to the very recent extension
of CoCasl logic [22]. This logic deals with modalities at a more abstract level
than the one presented here, using Pattinson’s predicate liftings. This extension
of CoCasl allows to specify in several modal logics that were not handled with
basic CoCasl, such as probabilistic modal logic. Defining testing for such an
extension of CoCasl would allow us to handle a larger variety of modal for-
malisms in our framework. Another important future work will be to include
structuration, such as provided by Casl and CoCasl languages, in our frame-
work, both on its first-order side, by extending our work developed in [17], and
on its coalgebraic side, by extending the present work. This work will surely take
inspiration from [6,23].

References

1. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifica-
tions: a theory and a tool. Software Engineering Journal 6(6), 387–405 (1991)

2. Gaudel, M.C.: Testing can be formal, too. In: Mosses, P.D., Schwartzbach, M.I.,
Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915,
pp. 82–96. Springer, Heidelberg (1995)

3. Le Gall, P., Arnould, A.: Formal specification and test: correctness and oracle. In:
Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Recent Trends in Data Type Specifi-
cation. LNCS, vol. 1130, pp. 342–358. Springer, Heidelberg (1996)

4. Marre, B.: LOFT: a tool for assisting selection of test data sets from algebraic spec-
ifications. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995,
FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 799–800. Springer, Heidel-
berg (1995)

5. Aiguier, M., Arnould, A., Boin, C., Le Gall, P., Marre, B.: Testing from alge-
braic specifications: test data set selection by unfolding axioms. In: Grieskamp,
W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 203–217. Springer, Heidel-
berg (2006)

6. Machado, P., Sannella, D.: Unit testing for Casl architectural specifications. In:
Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 506–518. Springer,
Heidelberg (2002)

Specification-Based Testing for CoCasl’s Modal Specifications 371

7. Arnould, A., Le Gall, P., Marre, B.: Dynamic testing from bounded data type
specifications. In: Hlawiczka, A., Simoncini, L., Silva, J.G.S. (eds.) Dependable
Computing - EDCC-2. LNCS, vol. 1150, pp. 285–302. Springer, Heidelberg (1996)

8. Aiguier, M., Arnould, A., Le Gall, P.: Exhaustive test sets for algebraic specification
correctness. Technical report, IBISC - Université d’Évry-Val d’Essonne (2006)

9. Arnould, A., Le Gall, P.: Test de conformité: une approche algébrique. Technique
et Science Informatiques, Test de logiciel 21, 1219–1242 (2002)

10. Mossakowski, T., Schröder, L., Roggenbach, M., Reichel, H.: Algebraic-coalgebraic
specification in CoCasl. Journal of Logic and Algebraic Programming 67(1-2),
146–197 (2006)

11. Yannakakis, M., Lee, D.: Testing finite state machines. In: Symposium on Theory
of Computing (STOC’91), pp. 476–485. ACM Press, New York (1991)

12. Tretmans, J.: Testing labelled transition systems with inputs and outputs. In: In-
ternational Workshop on Protocols Test Systems (IWPTS’95) (1995)

13. Rusu, V., du Bousquet, L., Jéron, T.: An approach to symbolic test generation. In:
Integrated Formal Methods (IFM ’00), pp. 338–357. Springer, Heidelberg (2000)

14. Frantzen, L., Tretmans, J., Willemse, T.: Test generation based on symbolic spec-
ifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
1–15. Springer, Heidelberg (2005)

15. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for
test purpose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom
2006. LNCS, vol. 3964, pp. 1–18. Springer, Heidelberg (2006)

16. Ammann, P., Ding, W., Xu, D.: Using a model checker to test safety proper-
ties. In: International Conference on Engineering of Complex Computer Systems
(ICECCS’01), pp. 212–221 (2001)

17. Aiguier, M., Arnould, A., Le Gall, P., Longuet, D.: Test selection criteria for
quantifier-free first-order specifications. In: Fundamentals of Software Engineering
(FSEN’07). Lecture Notes in Computer Science (to appear)

18. Longuet, D., Aiguier, M.: Specification-based testing for CoCasl’s modal specifica-
tions. Technical report, IBISC - Université d’Évry-Val d’Essonne (2007) Available
at http://www.ibisc.fr/~dlonguet/publications_gb.html

19. Bernot, G.: Testing against formal specifications: a theoretical view. In: Abramsky,
S. (ed.) TAPSOFT 1991, CCPSD 1991, and ADC-Talks 1991. LNCS, vol. 494, pp.
99–119. Springer, Heidelberg (1991)

20. Hennicker, R., Wirsing, M., Bidoit, M.: Proof systems for structured specifications
with observability operators. Theoretical Computer Science 173(2), 393–443 (1997)

21. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Sci-
ence 249, 3–80 (2000)

22. Schröder, L., Mossakowski, T.: Coalgebraic modal logic in CoCasl. In: Recent
Trends in Algebraic Specification Techniques (WADT’06). LNCS, vol. 4409, pp.
128–142 (2007)

23. Machado, P.: Testing from structured algebraic specifications. In: Rus, T. (ed.)
AMAST 2000. LNCS, vol. 1816, pp. 529–544. Springer, Heidelberg (2000)

http://www.ibisc.fr/~dlonguet/publications_gb.html

	Specification-Based Testing for $CoCasl$’s Modal Specifications
	$CoCasl$'s Modal Logic
	Testing from Logical Specifications
	Selection Criteria Based on Axiom Unfolding
	Test Sets for Modal $CoCasl$ Formulae
	Unfolding Procedure
	Soundness and Completeness

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

