
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Proof-Guided Test Selection from First-Order
Specifications with Equality

Delphine Longuet · Marc Aiguier · Pascale

Le Gall

the date of receipt and acceptance should be inserted later

Abstract This paper deals with test case selection from axiomatic specifications whose

axioms are quantifier-free first-order formulas with equality. We first prove the exis-

tence of an ideal exhaustive test set to start the selection from. We then propose an

extension of the test selection method called axiom unfolding, originally defined for

algebraic specifications, to quantifier-free first-order specifications with equality. This

method basically consists of a case analysis of the property under test (the test purpose)

according to the specification axioms. It is based on a proof search for the different

instances of the test purpose. Since the calculus is sound and complete, this allows us

to provide a full coverage of this property. The generalisation we propose allows to deal

with any kind of predicate (not only equality) and with any form of axiom and test

purpose (not only equations or Horn clauses). Moreover, it improves our previous works

with efficiently dealing with the equality predicate, thanks to the paramodulation rule.

Keywords Specification-based testing · quantifier-free first-order specifications ·
selection criteria · test purpose · axiom coverage · unfolding · proof tree normalisation

Introduction

Testing. Testing is a very common practice in the software development process. It is

used at different steps of development to detect failures in a software system. The aim

is not to prove the correctness of the system but only to ensure a certain confidence

degree in its quality.

The principle of software testing is to execute the system on a finite subset of its

possible inputs. The testing process is usually decomposed into three phases:

Delphine Longuet
Laboratoire Spécification et Vérification, ENS de Cachan, 61 avenue du Président Wilson, F-
94235 Cachan Cedex
E-mail: longuet@lsv.ens-cachan.fr

Marc Aiguier · Pascale Le Gall
Laboratory of Mathematics Applied to Systems (MAS), École Centrale Paris, Grande Voie des
Vignes, F-92295 Châtenay-Malabry
E-mail: marc.aiguier@ecp.fr, pascale.legall@ecp.fr

2

1. The selection of a relevant subset of the set of all possible inputs of the system,

called a test set

2. The submission of this test set to the system

3. The decision of the success or the failure of the test set submission, also known as

the “oracle problem”.

Different strategies may be used to select test sets, thus defining several approaches

to testing. The selection method called black-box testing is based on the use of a (formal

or informal) specification as a reference object describing the intended behaviour of

the system, without any knowledge of the implementation [7,11,8,18]. This allows in

particular to use the same test set at different steps of the system development, if the

specification does not change. Moreover, when the specification is formal, i.e. written

in a mathematical formalism, both the selection phase and the oracle problem become

easier to answer. On one hand, the specification of the different system behaviours

(as axioms or paths for example) allows to select relevant test sets, by coverage of

those behaviours. On the other hand, the oracle problem can be more easily solved

since the result of a test can be deduced or even computed from the specification. The

decision of the success of the test submission is then possible provided that there exists

a means to compare the submission result and the expected output. Depending on the

chosen formalism, if the system specification is executable for example, the selection

and decision phases can even be automated.

Formal framework. The formalisation of the testing process allowed by the use of for-

mal specifications requires some hypotheses and observability restrictions, concerning

both the system under test and tests themselves. Test hypotheses on the system un-

der test state that its behaviour can be described by a formal model. Moreover, it is

assumed that test cases can be represented by formal objects that the system is able

to understand. For instance in Tretmans’ framework [31], since the specification is an

Input Output Labelled Transition System (IOLTS), the system under test is assumed

to be an IOLTS as well, in order to be able to compare the behaviours they both

describe. Test cases are then traces, that are sequences of inputs and outputs, chosen

from the specification and which the system must be able to perform.

Sometimes, observability restrictions are used to select test cases that can be inter-

preted as successful or not when performed by the system under test. For instance, in

the framework of testing from equational specifications, where test cases are equations,

the oracle problem comes from the distance between the abstract level of data type

specification and concrete implementations. Intuitively, data types can be implemented

according to concrete data representations such that it becomes difficult to state the

appropriate abstraction/concretisation relation between the specified data types and

implemented ones. The most common way to deal with this difficulty is to base the

decision procedure of the success/failure only on the equality procedures provided in

the programming language used to implement the system. Such sorts provided with a

decidable predefined equality procedure are called observable. If we suppose that the

implementation provides all the operations of the specification with an appropriate

profile, then all ground terms used in the specification can be translated into compu-

tations within the implementation under test. These two assumptions explain that in

the algebraic testing setting, test cases are usually represented as particular formulas,

called observable formulas to refer to the oracle problem. These formulas are built from

ground equations over observable sorts.

3

When such conditions (test hypotheses on the system and observability restrictions)

are precisely stated, it becomes possible to formally define the testing activity [31,19,14,

17]. In particular, the notion of correctness of a system with respect to its specification

can be defined up to these conditions, as well as important properties on test sets

connecting the correctness to the success of a test set submission. A test set must

at least not reject correct systems. Conversely, a test set should ideally reject any

incorrect system. Unfortunately, it is well-known that in practice, testing is a very

partial validation process: only few incorrect systems are rejected by a given test set.

Nevertheless, if one would indefinitely continue to add new well-chosen test cases,

one would expect that asymptotically any incorrect system could be rejected. In our

framework, when testing from logical specifications, such an ideal test set is called

exhaustive and is the starting point to the selection of a finite test set to submit to

the system. In the approach called partition testing, the selection phase consists first

in splitting an exhaustive test set into what we could call behavioural equivalence

classes, and then in choosing one test case in each of these classes, thus building a

finite test set which covers these behaviours. The first step is the definition of selection

criteria characterising equivalence classes of behaviours, while the second step is the

generation of test cases representing each of these behaviours. The assumption here,

called the uniformity hypothesis, is that test cases in a class all are equivalent to make

the system fail with respect to the behaviour they characterise.

Contribution. This paper addresses the definition of selection criteria in the framework

of testing from first-order specifications with equality. Such specifications are classically

used to specify standard software, i.e. software which computes results by manipulat-

ing complex data structures but with quite simple control structures.1 Testing from

algebraic specifications2 has already been extensively studied [7,19,14,6,25,5,23,24,4,

1,3]. Selection issues in particular have been investigated. The most popular selection

method which has been studied is the one called axiom unfolding [6,7,25,1]. It consists

in dividing the exhaustive set into subsets according to criteria derived from the spec-

ification axioms. The fundamental idea behind this method is to use the well-known

and efficient proof techniques of algebraic specifications for selecting test cases. Test

cases must be consequences of the specification axioms, so they must be able to be

proved as theorems in the theory defined by the specification. In other words, they can

be deduced from the specification axioms using the calculus associated to the specifica-

tion formalism. The idea behind axiom unfolding is to refine the initial exhaustive test

set, replacing the initial property under test by the set of its different instances that

can be deduced from the specification axioms. Intuitively, it consists of a case analysis.

These particular cases of the initial property can themselves be unfolded and so on,

leading to a finer and finer partition of the exhaustive test set. One must then prove

that the obtained test set is as powerful as the initial one, that is no test is lost (the

strategy is then said to be sound) and no test is added (the strategy is complete).

1 In this sense, standard software differentiate from reactive systems, that are often char-
acterised by the fact that they do not compute a result but rather maintain an interaction
with their environment. Manipulated data structures are often very simple while control is
very complex (parallel execution. . .). Many works have been dedicated to testing reactive and
communicating systems, among which [20,27,31,30,12,13].

2 Algebraic specifications are a restriction of first-order specifications where the only predi-
cate is equality and axioms are only equations or universal Horn clauses.

4

In this paper, we propose to extend the test selection method based on axiom

unfolding to a larger class of axiomatic specifications: quantifier-free first-order spec-

ifications with equality. Compared to other works on axiom unfolding [25,1], the en-

largement is twofold. First, we do not reduce atomic formulas to equations but also

consider any kind of predicates. Secondly, formulas are not restricted to Horn clauses

(called conditional positive formulas when dealing with equational logic).

This extension allows us to answer one of the main drawbacks of test selection

methods for algebraic specifications: the very strong condition on systems needed to

ensure the existence of an exhaustive test set. We actually proved in [3] that, when

dealing with conditional positive specifications (i.e. equational specifications where

axioms are under the form of a conjunction of equations implying an equation) and

when test cases are equations only, an exhaustive test set only exists under a condition

we called initiality, which requires the system under test to behave like the specification

on the equations appearing in the premises of the axioms.3 Since the system under test

is supposed to be hidden in this framework of black-box testing, this condition can

never be verified. We will show in this paper that when dealing with quantifier-free

first-order specifications and ground first-order formulas as test cases, no condition on

systems is needed to ensure the existence of an exhaustive test set.

Our first goal was to consider the whole classical first-order language. However, we

showed in [3] that proving the existence of an exhaustive test set for such specifications

boiled down to show the correctness of the system under test itself. Testing a formula of

the form ∃X,ϕ(X) would actually amount to exhibit a witness value a such that ϕ(X)

is interpreted as true by the system when substituting X by a. Of course, there is no

general way to exhibit such a pertinent value, but notice that astonishingly, exhibiting

such a value would amount to simply prove the system with respect to the initial

property. Thus, generally speaking, existential properties are not testable.

Related work. Other approaches of collaborations between proof and testing have re-

cently been studied. For instance, testing can complement proof when a complete

formal proof of the program correctness is not available [21]. Testing the weak parts

of the proof, like pending lemmas, helps to gain confidence in the correctness of the

program. In this approach, the testing process is not studied on its own, but rather as

a complementary pragmatic approach to formal proof. Thus, exhaustivity or selection

criteria are not investigated since the properties to test are given by the missing parts

of the proof.

Closer to our own approach are the work [11,25,8,10,9]. The properties under test

are directly derived from the axioms of the specification. A property under test is

rewritten into a set of elementary properties, so that testing each of these properties

separately is equivalent to testing the initial property. Intuitively, the rewriting of the

initial property comes down to making a case analysis. This case analysis gives rise

to a partition of the test set, such that at least a test case will be selected in each

subset of the partition. For instance, either Boolean expressions are transformed into

equivalent disjunctive normal forms, each conjunction becoming a set of the partition,

or conditional axioms are reduced to equations by keeping only variable substitutions

validating preconditions. In general, the family of elementary properties covers all the

instances of the initial property, thus proving the soundness and the completeness of

the selection criteria defined by the rewriting procedure for a given property. However,

3 See [3] for a complete presentation of this result.

5

for all these works, axioms are necessarily the starting point of the testing process and

more complicated properties involving several axioms are not considered. Since the

aim of testing is to make the program under test fail, it is important to cover as many

different behaviours as possible to have a hope to detect a failure. What we provide

here is a more general approach allowing any formula to be tested, not only axioms

and with non restricted form, given a quantifier-free first-order specification.

Some works on specification-based testing [23,22] have already considered a similar

class of formulas. They propose a mixed approach combining black-box and white-box

testing to deal with the problem of non-observable data types. From the selection

point of view, they do not propose any particular strategy, but only the substitution

of axiom variables for some arbitrarily chosen data. On the contrary, following the

specification-based testing framework proposed in [19], we characterise an exhaustive

test set for such specifications. Moreover, by extending the unfolding-based selection

criteria family defined for conditional positive equational specifications, we define a

sound and complete unfolding procedure devoted to the coverage of quantifier-free

first-order axioms.

Structure of the paper. The organisation of the paper follows the framework defined

in [19], that we instantiate with the formalism of quantifier-free first-order logic. Sec-

tion 1 recalls standard notations of quantifier-free first-order logic and gives the sequent

calculus our selection method is based on. It also provides the example which is going to

be used all along the paper. Section 2 sets the formal framework for testing from logical

specifications: the underlying test hypotheses and observability restrictions are given,

the notion of correctness of a system with respect to its specification is defined and

an exhaustive test set for quantifier-free first-order specifications is characterised. In

Section 3, the selection method by means of selection criteria is presented. We present

our own selection method by axiom unfolding in Section 4 and prove its soundness and

completeness.

This paper is an extension of [2] where we defined a test selection method based

on axiom unfolding for first-order specifications but where equality was handled as

any other predicate. We were thus loosing the natural, concise and efficient reasoning

associated to equality: the replacement of equal by equal. We solve this problem here

by using an additional inference rule called paramodulation. The paramodulation rule

originally belongs to a calculus used as a refutational theorem proving method for first-

order logic with equality [29]. Following the same principles that lead to resolution,

Robinson and Wos introduced the paramodulation rule to replace several steps of

resolution by an instantiation and the replacement of a subterm. In this paper, we

then propose to define our test selection method based on axiom unfolding using a

sequent calculus enriched by paramodulation.

1 Preliminaries

1.1 Quantifier-free first-order specifications with equality

Syntax. A (first-order) signature Σ = (S, F, P, V) consists of a set S of sorts, a set F of

operation names each one equipped with an arity in S∗×S, a set P of predicate names

each one equipped with an arity in S+ and an S-indexed set of variables V . In the

6

sequel, an operation name f of arity (s1 . . . sn, s) will be denoted by f : s1×. . .×sn → s,

and a predicate name p of arity (s1 . . . sn) will be denoted by p : s1 × . . .× sn.

Given a signature Σ = (S, F, P, V), TΣ(V) and TΣ are both S-indexed sets of terms

with variables in V and ground terms, respectively, freely generated from variables and

operations in Σ and preserving arity of operations. A substitution is any mapping

σ : V → TΣ(V) that preserves sorts. Substitutions are naturally extended to terms

with variables.

Σ-atomic formulas are formulas of the form t = t′ with t, t′ ∈ TΣ(V)s or p(t1, . . . , tn)

with p : s1×. . .×sn and ti ∈ TΣ(V)si for each i, 1 ≤ i ≤ n. A Σ-formula is a quantifier-

free first-order formula built from atomic formulas and Boolean connectives ¬, ∧, ∨ and

⇒. As usual, variables of quantifier-free formulas are implicitly universally quantified.

A Σ-formula is said ground if it does not contain variables. Let us denote For(Σ) the

set of all Σ-formulas.

A specification Sp = (Σ,Ax) consists of a signature Σ and a set Ax of quantifier-free

formulas built over Σ. Formulas in Ax are often called axioms.

Semantics. A Σ-model M is an S-indexed set M = (Ms)s∈S equipped for each f :

s1 × . . . × sn → s ∈ F with a mapping fM : Ms1 × . . . ×Msn → Ms and for each

predicate p : s1 × . . . × sn with an n-ary relation pM ⊆ Ms1 × . . . ×Msn . Mod(Σ) is

the set of all Σ-models.

Given a Σ-modelM, a Σ-assignment in M is any mapping ν : V →M preserving

sorts, i.e. ν(Vs) ⊆ Ms. Assignments are naturally extended to terms with variables.

A Σ-model M satisfies for an assignment ν a Σ-atomic formula p(t1, . . . , tn) if and

only if (ν(t1), . . . , ν(tn)) ∈ pM. The satisfaction of a Σ-formula ϕ for an assignment

ν by M, denoted by M |=ν ϕ, is inductively defined on the structure of ϕ from the

satisfaction for ν of atomic formulas of ϕ and using the classic semantic interpretation

of Boolean connectives. M validates a formula ϕ, denoted by M |= ϕ, if and only if

for every assignment ν : V →M , M |=ν ϕ.

Given Ψ ⊆ For(Σ) and two Σ-models M and M′, M is Ψ -equivalent to M′,
denoted by M≡Ψ M′, if and only if we have: ∀ϕ ∈ Ψ, M |= ϕ⇐⇒M′ |= ϕ.

Given a specification Sp = (Σ,Ax), a Σ-model M is an Sp-model if for every

ϕ ∈ Ax,M |= ϕ. Mod(Sp) is the subset of Mod(Σ) whose elements are all Sp-models.

A Σ-formula ϕ is a semantic consequence of a specification Sp = (Σ,Ax), denoted by

Sp |= ϕ, if and only if for every Sp-model M, we have M |= ϕ. Sp• is the set of all

semantic consequences.

Herbrand model. Given a set of quantifier-free formulas Ψ ⊆ For(Σ), let us denote

HTΣ
the Σ-model, classically called the Herbrand model of Ψ ,

– defined by the Σ-algebra

– whose carrier is TΣ/≈ where ≈ is the congruence on terms in TΣ defined by

t ≈ t′ if and only if Ψ |= t = t′

– whose operation meaning is defined for every operation f : s1×. . .×sn → s ∈ F
by the mapping fHTΣ : ([t1], . . . , [tn]) 7→ [f(t1, . . . , tn)]

– such that ([t1], . . . , [tn]) ∈ pHTΣ if and only if Ψ |= p(t1, . . . , tn).

This structure is valid since by definition, ≈ is a congruence (i.e. compatible with

operations and predicates). It is easy to show that Ψ |= ϕ ⇔ HTΣ
|= ϕ for every

ground formula ϕ, and then HTΣ
∈ Mod((Σ,Ψ)).

7

Calculus. A calculus for quantifier-free first-order specifications is defined by the fol-

lowing inference rules, where Γ ` ∆ is a sequent such that Γ and ∆ are two multisets

of quantifier-free first-order formulas:

Γ, ϕ ` ∆,ϕTaut
Γ ` ∆Ax (Γ ` ∆ ∈ Ax)

Γ ` ∆, t = t
Ref

Γ ` ∆, s = t Γ ′ ` ∆′, ϕ[r]

σ(Γ), σ(Γ ′) ` σ(∆), σ(∆′), σ(ϕ[t])
Para

(σ mgu of s and r,

r not a variable)

Γ ` ∆,ϕ
Γ,¬ϕ ` ∆ Left-¬ Γ, ϕ ` ∆

Γ ` ∆,¬ϕRight-¬

Γ, ϕ, ψ ` ∆
Γ,ϕ ∧ ψ ` ∆ Left-∧ Γ ` ∆,ϕ Γ ` ∆,ψ

Γ ` ∆,ϕ ∧ ψ Right-∧

Γ, ϕ ` ∆ Γ,ψ ` ∆
Γ,ϕ ∨ ψ ` ∆ Left-∨ Γ ` ∆,ϕ, ψ

Γ ` ∆,ϕ ∨ ψ Right-∨

Γ ` ∆,ϕ Γ, ψ ` ∆
Γ,ϕ⇒ ψ ` ∆ Left-⇒ Γ, ϕ ` ∆,ψ

Γ ` ∆,ϕ⇒ ψ
Right-⇒

Γ ` ∆
σ(Γ) ` σ(∆)

Subs
Γ ` ∆,ϕ Γ ′, ϕ ` ∆′

Γ, Γ ′ ` ∆,∆′ Cut

Since we only consider quantifier-free formulas, rules for the introduction of quan-

tifiers are useless.

Normalisation of sequents. Since the inference rules associated to Boolean connectives

are reversible, they can be used from bottom to top to transform any sequent ` ϕ,

where ϕ is a quantifier-free formula, into a set of sequents Γi ` ∆i where every formula

in Γi and ∆i is atomic. Such sequents will be called normalised sequents.

This transformation is very useful, since we can show that every proof tree can be

transformed into a proof tree of same conclusion and such that Para, Cut and Subs rules

never occur under rule instances associated to Boolean connectives. This only holds

under the assumption that axioms and tautologies introduced as leaves are normalised

sequents. Then, all the sequents manipulated at the top of the proof tree are normalised,

while the bottom of the proof tree only consists in applying rules to introduce Boolean

connectives.

This transformation is obtained from basic transformations defined as rewriting

rules where Ã is the rewriting relation between elementary proof trees. For instance,

the following rewriting rule allows to make any instance of the Cut rule go over an

instance of the Left-¬ rule occurring on its left-hand side:

Γ ` ∆,ψ, ϕ
Γ,¬ϕ ` ∆,ψ Left-¬

Γ ′, ψ ` ∆′
Γ, Γ ′,¬ϕ ` ∆,∆′ Cut Ã

Γ ` ∆,ψ, ϕ Γ ′, ψ ` ∆′
Γ, Γ ′ ` ∆,∆′, ϕ Cut

Γ, Γ ′,¬ϕ ` ∆,∆′ Left-¬

The other basic transformations are defined in the same way. Therefore, using proof

terms for proofs, with a recursive path ordering >rpo to order proofs induced by the

well-founded relation (precedence) > on rule instances

Ax, Taut > Para, Cut, Subs > Left-@, Right-@, where @ ∈ {¬,∧,∨,⇒}

8

we show that the transitive closure of Ã is contained in the relation >rpo, and thus

that Ã is terminating.

This last result states that every sequent is equivalent to a set of normalised se-

quents, which allows to only deal with normalised sequents. Therefore, in the following,

we will suppose that the specification axioms are given under the form of normalised

sequents.

Remark. The normalised sequents can obviously be transformed into formulas in

clausal form. Then the Cut rule can be replaced by the rule

{ϕ} ∪ ¬Γ ∪∆ {¬ϕ} ∪ ¬Γ ′ ∪∆′
¬Γ ∪ ¬Γ ′ ∪∆ ∪∆′

We can easily show that in a proof tree, the substitution rule can always be applied

just before the cut rule instead of just after, since it does not change the proof:

Γ ` ∆,ϕ Γ ′, ϕ ` ∆′
Γ, Γ ′ ` ∆,∆′ Cut

σ(Γ), σ(Γ ′) ` σ(∆), σ(∆′) Subs Ã

Γ ` ∆,ϕ
σ(Γ) ` σ(∆), σ(ϕ)

Subs
Γ ′, ϕ ` ∆′

σ(Γ ′), σ(ϕ) ` σ(∆′) Subs

σ(Γ), σ(Γ ′) ` σ(∆), σ(∆′) Cut

It is then possible to combine the substitution and the cut rules to obtain the classical

resolution rule:
{ϕ} ∪ ¬Γ ∪∆ {¬ϕ′} ∪ ¬Γ ′ ∪∆′

σ(¬Γ ∪ ¬Γ ′ ∪∆ ∪∆′)
where σ is a unifier of ϕ and ϕ′.

Actually, as we will see afterwards, this is the rule of resolution which is imple-

mented in our unfolding algorithm. However, we believe that using the sequent calculus

makes the completeness proof easier.

The soundness and completeness of the resolution calculus with paramodulation

is well-known [29]. Therefore, the sequent calculus presented above is also sound and

complete. Thus, for a given set of formulas, the set of syntactic and semantic conse-

quences of these formulas coincide: theorems for this set of formulas are exactly its

semantic consequences. From now on, we will then speak about theorems and semantic

consequences without making any difference, in the framework of first-order logic.

1.2 Running example

By way of illustration, we give a specification of sorted lists of positive rationals, using

the notations from the algebraic specification language Casl [26].

We first give a specification of naturals, built from constructors 0 and successor s.

The addition add and the multiplication mult on naturals are specified as usual, as well

as the predicate “less than” ltn. The constructor operation / then builds rationals

from pairs of naturals. Two rationals x/y and u/v are equal if x× v = u× y. Since we

consider only positive rationals, x/y is less than u/v (ltr predicate) if x× v is less than

u× y.
Lists of rationals are then built from constructors [] and :: as usual. The insertion

insert of a rational in a sorted list needs to consider four cases: the list is empty, then

the rational becomes the only element of the list; the first element of the list is equal

9

to the rational to insert, then the element is not repeated; the first element of the list

is greater than the rational to insert, then it is inserted at the head; the first element

of the list is less than the rational to insert, then the insertion is tried in the rest of

the list. The membership predicate isin is specified saying that there is no element in

the empty list, and that searching for an element in a non-empty list comes down to

finding it at the head of the list or to searching it in the rest of the list.

spec RatList =

types Nat ::= 0 | s(Nat)

Rat ::= / (Nat ,Nat)

List ::= [] | :: (Rat ,List)

ops add : Nat ×Nat → Nat

mult : Nat ×Nat → Nat

insert : Rat × List → List

preds ltn : Nat ×Nat

ltr : Rat × Rat

isin : Rat × List

vars x, y, u, v: Nat ; e: Rat ; l: List

• add(x, 0) = x

• add(x, s(y)) = s(add(x, y))

• mult(x, 0) = 0

• mult(x, s(y)) = add(x,mult(x, y))

• ltn(0, s(x))

• ¬ltn(x, 0)

• ltn(s(x), s(y))⇔ ltn(x, y)

• x/s(y) = u/s(v)⇔ mult(x, s(v)) = mult(u, s(y))

• ltr(x/s(y), u/s(v))⇔ ltn(mult(x, s(v)),mult(u, s(y)))

• insert(x/s(y), []) = x/s(y) :: []

• x/s(y) = e⇒ insert(x/s(y), e :: l) = e :: l

• ltr(x/s(y), e)⇒ insert(x/s(y), e :: l) = x/s(y) :: e :: l

• ltr(e, x/s(y))⇒ insert(x/s(y), e :: l) = e :: insert(x/s(y), l)

• ¬isin(x/s(y), [])

• isin(x/s(y), e :: l)⇔ x/s(y) = e ∨ isin(x/s(y), l)

end

Axioms are then transformed into normalised sequents, as explained above. For

example, the normalisation of the right-to-left implication of the axiom

isin(x/s(y), e :: l)⇔ x/s(y) = e ∨ isin(x/s(y), l)

leads to the two normalised sequents 19 and 20 (see below) thanks to the following

proof tree:

x/s(y) = e ` isin(x/s(y), e :: l) isin(x/s(y), l) ` isin(x/s(y), e :: l)

x/s(y) = e ∨ isin(x/s(y), l) ` isin(x/s(y), e :: l)
Left-∨

` x/s(y) = e ∨ isin(x/s(y), l) ⇒ isin(x/s(y), e :: l)
Right-⇒

Using the same transformation, the normalisation of the specification axioms leads to

the following 20 sequents:

10

1. ` add(x, 0) = x

2. ` add(x, s(y)) = s(add(x, y))

3. ` mult(x, 0) = 0

4. ` mult(x, s(y)) = add(x,mult(x, y))

5. ` ltn(0, s(x))

6. ltn(x, 0) `
7. ltn(s(x), s(y)) ` ltn(x, y)

8. ltn(x, y) ` ltn(s(x), s(y))

9. x/s(y) = u/s(v) ` mult(x, s(v)) = mult(u, s(y))

10. mult(x, s(v)) = mult(u, s(y)) ` x/s(y) = u/s(v)

11. ltr(x/s(y), u/s(v)) ` ltn(mult(x, s(v)),mult(u, s(y)))

12. ltn(mult(x, s(v)),mult(u, s(y))) ` ltr(x/s(y), u/s(v))

13. ` insert(x/s(y), []) = x/s(y) :: []

14. x/s(y) = e ` insert(x/s(y), e :: l) = e :: l

15. ltr(x/s(y), e) ` insert(x/s(y), e :: l) = x/s(y) :: e :: l

16. ltr(e, x/s(y)) ` insert(x/s(y), e :: l) = e :: insert(x/s(y), l)

17. isin(x/s(y), []) `
18. isin(x/s(y), e :: l) ` x/s(y) = e, isin(x/s(y), l)

19. x/s(y) = e ` isin(x/s(y), e :: l)

20. isin(x/s(y), l) ` isin(x/s(y), e :: l)

From now on, the axioms of the specification RatList will only be used under this

normalised form, we will only refer to these 20 normalised axioms.

2 Testing from logical specifications

2.1 Test hypotheses and observability restrictions

To be able to test a system against its specification, a general common semantic frame-

work must be provided where the system and the specification behaviours can be com-

pared. The system is assumed to implement sorts, operations and predicates given in

the specification signature. In other words, given a logical specification (Σ,Ax), it gives

an interpretation to symbols in Σ. Its behaviour is then considered as a Σ-model, that

is an element of Mod(Σ). For instance, an implementation of the RatList specification

must implement naturals, rationals and lists, as well as the associated operations and

predicates. Lists may be implemented with a list type in the programming language

Caml or as arrays or linked lists in C for instance.

The system under test being a formal model, the properties it validates may be

expressed as formulas. Test cases that are going to be submitted to the system are

then formulas built over the specification signature, which are elements of For(Σ). For

instance, properties to test on an implementation of RatList could be:

insert(1/2, 1/4 :: 2/3 :: []) = 1/4 :: 1/2 :: 2/3 :: []

isin(2/6, 1/6 :: 1/3 :: 1/2 :: [])

isin(3/4, l)⇒ isin(mult(3, n)/mult(4, n), l)

isin(x, l)⇒ insert(x, l) = l

However, not every formula can be submitted to the system. The system must be

able to evaluate the success or failure of the test case it is executed on. Actually, the

11

third and fourth formulas above cannot be evaluated by a program, since they contain

variables, that the program does not know how to interpret. Formulas that can be

evaluated by the system under test are called observable formulas. Test cases then are

chosen among observable formulas. When dealing with first-order specifications, the

only requirement is that test cases must not contain non-instantiated variables. Test

cases for the third and fourth properties above must then be ground instances of these

formulas:

isin(3/4, 1/2 :: 3/4 :: [])⇒ isin(mult(3, 5)/mult(4, 5), 1/2 :: 3/4 :: [])

isin(3/4, 12/16 :: [])⇒ isin(mult(3, 4)/mult(4, 4), 12/16 :: [])

isin(3/5, [])⇒ insert(3/5, []) = []

isin(2/6, 1/6 :: 1/3 :: [])⇒ insert(2/6, 1/6 :: 1/3 :: []) = 1/6 :: 1/3 :: []

Observable formulas then are all ground formulas. The set of observable formulas is

denoted by Obs.

We suppose in this paper that all sorts are observable, i.e. provided with a reli-

able decidable equality procedure in the system under test. Dealing with non observ-

able sorts adds technical issues which would make the paper more difficult to read.

Actually, two facts should be taken into account [15]: non observable equalities are

observed through successive applications of functions leading to an observable result,

usually called observable contexts; more embarrassing, one cannot in a pure black-box

testing approach rely on some information based on non-observable equalities whose

occurrences are in premisses of conditional equational formulas or more generally in

negative positions in the axioms [22].

2.2 Correctness and exhaustivity

Under these hypotheses, it is possible to formally define the notion of correctness of a

system with respect to its specification.

This notion is closely related to the interpretation of the submission of test cases.

Since the system is considered as a formal model S ∈ Mod(Σ) and a test case is a

ground formula ϕ ∈ For(Σ), the success of the submission of ϕ to S is defined in terms

of formula satisfaction: ϕ is successful for S if and only if S |= ϕ. A test set T being

a set of test cases, that is T ⊆ For(Σ), T will be said successful for S if and only if

every test case in T is successful: S |= T if and only if for all ϕ ∈ T , S |= ϕ.

Following an observational approach [16], a system will be considered as a correct

implementation of its specification if, as a model, it cannot be distinguished from a

model of the specification. Since the system can only be observed through the observ-

able formulas it satisfies, it is required to be equivalent to a model of the specification

up to these observability restrictions.

Definition 1 (Correctness) A system S is correct for Sp via Obs, denoted by

CorrectObs(S,Sp), if and only if there exists a model M in Mod(Sp) such that M
validates exactly the same observable formulas as S: M≡Obs S.

This means that, to be correct, an implementation of the specification must at least

satisfy all the observable formulas that the specification satisfies. The implementation

cannot do nothing for instance. In other words, since by definition, all models of Sp

satisfy the observable consequences of the specification, then a correct implementation

should satisfy any such formula by construction. In the opposite case, if such a formula

12

is not satisfied, the system cannot be considered as observationally equivalent to a

model of the specification.

It is now possible to link the correctness of a system to the success of the submission

of a test set. The first property required on a test set is that it does not reject correct

systems. For instance, a correct implementation of RatList would be rejected by test

cases like ltr(1/2, 1/3) or isin(2/5, []) which do not hold for the specification. It could

also be rejected by a test case like insert(1/2, 3/4 :: 1/3 :: []) = 1/2 :: 3/4 :: 1/3 :: []

which is not part of the specification (the operation insert is not specified for unsorted

lists). Therefore, such test cases are not wanted. A test set that does not reject correct

systems is called unbiased. Thus, if a system fails for an unbiased test set, it is proved

to be incorrect.

Conversely, if a test set rejects any incorrect system (but perhaps also correct ones),

it is called valid. Then if a system passes a valid test set, it is proved to be correct.

Incorrect implementations would not be rejected by tautologies like 1/2 = 1/2 for

instance. As another example, an incorrect implementation of the operation isin for

which isin(x, l) always holds would not be rejected by test cases like isin(3/4, 3/4 :: [])

or isin(1/2, 1/3 :: 1/2 :: []), that do not cover all the specified behaviours. Such test

sets are not sufficient to reject incorrect systems, they cannot form a valid test set.

An ideal test set would have at the same time the unbias and validity properties.

The success of the submission of such a test set would actually prove the correctness

of the system. Such a test set is called exhaustive.

Definition 2 (Exhaustivity) Let K ⊆ Mod(Σ) be a class of models. A test set T is

exhaustive for K with respect to Sp and Obs if and only if

∀S ∈ K, S |= T ⇔ CorrectObs(S,Sp)

Let us point out that the notion of correctness is defined up to some class of models,

denoted generically by K. In the most general case, K is simply the whole classMod(Σ).

It corresponds to the fact that no additionnal test hypotheses are made on the system,

except the basic ones stating that the system can be modelled by a formal model. In

practice, one can count on some particular knowledge on the system. For instance, if

the specification includes the Boolean data type, it is quite natural to count on the

fact that the two truth value are not equal in the system. All reliable information on

the system which can be translated into formal hypotheses can be used to restrict the

class of models to consider as a reference. The set K precisely captures in an abstract

way all the hypotheses applied on the system.

The existence of an exhaustive test set ensures that it is possible to prove the

correctness of the system under test with respect to its specification. To put it in a

dual way, it ensures that for any incorrect system, there exists a test case making this

system fail. Therefore, it is relevant to test this system with respect to its specification

since its correctness can be asymptotically approached by submitting a potentially

infinite test set. As a correctness reference, the exhaustive test set is then appropriate

to start the selection of a finite test set of reasonable size.

2.3 Existence of an exhaustive test set

However, as we proved in [3], depending on the nature of the specification, on the

observability restrictions and on the class of systems K, an exhaustive test set does not

necessarily exist.

13

The most natural ideal test set one could think of is the set of all ground instances

of the specification axioms. However, it might happen that due to observability restric-

tions, some of these formulas cannot be chosen as test cases.

For instance, in practice, when dealing with algebraic specifications, test cases are

restricted to ground equations on terms of particular sorts called observable sorts. These

sorts are those equipped with an equality predicate in the programming language used

to implement the system under test. In general, basic sorts like Booleans or integers

are observable, but more complex data types like lists, trees or sets are not. Therefore,

an axiom that would be an equation between terms of non-observable sort cannot be

submitted as a test case since the oracle problem cannot be solved by the system

under test. A classical answer to this problem is to assume that non-observable sorts

are observable through observable contexts. For instance, a list L may be compared to

another list L′ by first comparing their first element head(L) and head(L′), then their

second one head(tail(L)) and head(tail(L′)), and so on. Then lists are most of the time

observed through contexts head(tailn(•)) which is, in general, sufficient.

Another problem arises when specification axioms are not themselves equations, but

for instance positive conditional formulas, that are a conjunction of equations implying

an equation. In this case, axioms cannot be directly submitted as test cases, since they

do not have the required form for test cases. A condition then has to be imposed to

the system under test to ensure that the satisfaction of test cases as equations by the

system is sufficient to prove the satisfaction of axioms. This condition is called initiality

and imposes that the system under test behaves like the initial algebra (and so like the

specification) on premises of axioms. The class K must then be restricted to systems

satisfying this initiality condition. The interested reader may refer to [3] to a full study

of conditions ensuring exhaustivity for algebraic specifications.

Moreover, as mentioned in the introduction, since the aim of testing is to make the

system fail, the larger the exhaustive test set is, the better and the finer the detection

of failures will be.

Among all possible test sets, the largest one is the set of semantic consequences

of the specification. As a matter of fact, to be correct, the system under test must be

observationally equivalent to a model of the specification, it must then satisfy exactly

the same observable formulas as this model does. Now, formulas satisfied by all the

models of a specification are by definition the semantic consequences of this specifica-

tion, which set is denoted by Sp•. The system must then satisfy exactly the semantic

consequences of the specification which are observable, i.e. formulas in Sp• ∩Obs.

We show here that considering a specification Sp with quantifier-free first-order

axioms and the set of all ground first-order formulas as the set of observable formulas

Obs, the exhaustivity of Sp• ∩Obs holds without conditions on the system under test,

that is K = Mod(Σ).

Theorem 1 Let Sp = (Σ,Ax) be a quantifier-free first-order specification and Obs be

the set of all ground first-order formulas. Then Sp• ∩Obs is exhaustive for Mod(Σ).

Proof (⇒) Let S be a system, i.e. S ∈ Mod(Σ), such that S |= Sp• ∩Obs. Let us show

that CorrectObs(S,Sp).

Define Th(S) = {ϕ ∈ Obs | S |= ϕ}. Let HTΣ
∈ Mod(Σ) be the Herbrand

model of Th(S). By definition, we have that S ≡Obs HTΣ
. Let us then show that

HTΣ
∈ Mod(Sp). Let ϕ be an axiom of Sp. Let ν : V → HTΣ

be an assignment. By

definition, ν(ϕ) is a ground formula. By hypothesis, S |= ν(ϕ) and then HTΣ
|= ν(ϕ).

We conclude that HTΣ
|=ν ϕ.

14

(⇐) Suppose that there existsM∈ Mod(Sp) such thatM≡Obs S. Let ϕ ∈ Sp•∩Obs.

By hypothesis, M |= ϕ, then S |= ϕ as well.

In [3], we generalised Theorem 1 by distinguishing observable and non-observable

sorts. This requires a syntactical condition on the specification, where non-observable

atomic formulas must only appear at “positive” positions in the axioms (ϕ is at a

positive position and ψ at a negative position in ϕ ∧ ¬ψ or in ψ ⇒ ϕ for instance).

See [3] for a complete presentation of this result. We do not consider non-observable

sorts here for sake of simplicity.

3 Selection criteria

When it exists, the exhaustive test set is the starting point for the selection of a

practical test set. In practice, experts apply selection criteria on a reference test set in

order to extract a test set of reasonable size to submit to the system. The underlying

idea is that all the test cases satisfying a certain selection criterion allow to detect the

same class of incorrect systems. A selection criterion can then be seen as representing

a fault model.

A selection criterion can be defined with respect to the size of the input data for

instance, or with respect to the different specified behaviours of a given functionality.

As an example, let us consider an implementation of the operation computing the

multiplication of two square matrices of size n × n, n ≥ 0. One can consider that, if

the implementation is not correct, it can be detected for small values of n, say less

than 5. For n ≥ 5, it can be assumed that the implementation will behave in a uniform

way. This selection criteria is called the regularity hypothesis [7]. The implementation

is assumed to behave in a uniform way for all input data of size greater than a given

value. Therefore, in our example, it is sufficient to submit one test case for each value

of n between 1 and 4, and one test case for n ≥ 5, for instance with n = 7.

To give an example of another selection criterion, let us consider a function whose

behaviour depends on a given threshold value t for one of its argument a. This function

has three distinct behaviours, for a < t, a = t and a > t. One can consider that the

implementation of this function will behave in a uniform way for each of these sets of

values. This selection criterion is called the uniformity hypothesis [7]. The implemen-

tation is assumed to behave in a uniform way for all input data respecting a given

constraint. In other words, this hypothesis states that the test sets defined by these

constraints form equivalent classes of behaviours, then submitting one test case for

each of these classes is sufficient. Therefore, it is sufficient to submit one test case with

a < t, one with a = t and one with a > t to test the function of our example.

These two hypotheses are very classical since [7]. They have been used in and

adapted to other contexts, for instance in the framework of conformance testing for

reactive systems [28]. Most of the existing selection methods are based on them. The

selection method presented in this paper is in particular based on the uniformity hy-

pothesis. It is obvious that this hypothesis makes more sense for small test sets than

for very large ones. The aim then is to divide the initial exhaustive test set into smaller

sets, so that this hypothesis can be applied in a meaningful way.

A classical method for selecting test sets with respect to a selection criterion C

consists in dividing a reference test set T into a family of test subsets {Ti}i∈IC(T) in

such a way to preserve all test cases, i.e. T =
S
i∈IC(T)

Ti. The application of a selection

15

criterion associates a family of test sets to a given test set. All test cases in a test set

Ti are supposed to be equivalent to detect systems which are incorrect with respect to

the fault model captured by Ti. The application of a selection criterion to a given test

set T allows to refine this test set. The obtained test subsets are more “specialised”

than the initial test set, they correspond to more precise fault models than the one

associated with T .

Definition 3 (Selection criterion) Let Exh be an exhaustive test set. A selection

criterion C is a mapping4 P(Exh)→ P(P(Exh)).

For all T ⊆ Exh, C(T) being a family of test sets {Ti}i∈IC(T) where IC(T) is the

set of indexes associated with the application of criterion C to T , we denote by |C(T)|
the set

[

i∈IC(T)

Ti.

The construction of a test set relevant to a selection criterion must benefit from

the division obtained by the application of this criterion. Test cases must be chosen so

as not to loose any of the cases captured by the criterion.

Definition 4 (Satisfaction of a selection criterion) Let T ⊆ Exh be a test set

and C be a selection criterion. A test set T ′ satisfies the criterion C applied to T if

and only if:

T ′ ⊆ |C(T)| ∧ ∀i ∈ IC(T), Ti 6= ∅ ⇒ T ′ ∩ Ti 6= ∅

A test set satisfying a selection criterion contains at least one test case of each

subset Ti of the initial test set, when Ti is not empty. A selection criterion may then

be considered as a coverage criterion, according to the way it divides the initial test

set. It can be used to cover a particular aspect of the specification. In this paper, the

definition of selection criteria will be based on the coverage of the specification axioms.

This selection method is called partition testing.

Example 1 If we come back to the RatList specification, the insert operation is spec-

ified inductively by four axioms. Testing this operation comes down to testing the

generic formula insert(r, L) = L′, where r, L, L′ are variables. Now, testing a formula

consists in finding input data, that are ground substitutions to apply to the formula,

in order to submit it to the program, bringing into play at least once each of these four

axioms. Therefore, the set of test cases associated to the insert operation

T = { insert(r, L) = L′ | r, L, L′ ∈ TΣ , insert(r, L) = L′ ∈ Sp• }

can be split into four subsets:

T1 T2 T3

T4C
T

4 For a given set X, P(X) denotes the set of all subsets of X.

16

T1 = { insert(x/s(y), []) = x/s(y) :: [] | x, y ∈ TΣ }
T2 = { insert(x/s(y), e :: l) = e :: l | x/s(y) = e, x, y, e, l ∈ TΣ }
T3 = { insert(x/s(y), e :: l) = x/s(y) :: e :: l | ltr(x/s(y), e), x, y, e, l ∈ TΣ }
T4 = { insert(x/s(y), e :: l) = e :: insert(x/s(y), l) | ltr(e, x/s(y)), x, y, e, l ∈ TΣ }

The three last sets can be split again according to the axioms specifying the equality

between rationals (in the case of test set T2), the ltr predicate (T3 and T4) and the

insert operation (T4).

The relevance of a selection criterion is determined by the link between the initial

test set and the family of test sets obtained by the application of this criterion.

Definition 5 (Properties) Let C be a selection criterion and T be a test set.

– C is said sound for T if and only if |C(T)| ⊆ T
– C is said complete for T if and only if |C(T)| ⊇ T

These properties are essential for the definition of an appropriate selection criterion.

The soundness of a criterion ensures that test cases are really selected among the initial

test set. The application of the criterion does not add any new test case. Additional

test cases may actually bias the test set, making a correct system fail. Reciprocally,

if the selection criterion is complete, no test case of the initial test set is lost. If some

test cases are missing, an incorrect system may pass the test set, while it should have

failed on the missing test cases. A sound and complete selection criterion then has the

property to preserve exactly all the test cases of the test set it divides, and then to

preserve the unbias and the validity (and so the exhaustivity) of the initial test set.

4 Axiom unfolding

Building a test set to submit to the system consists in defining a method for dividing the

initial test set into subsets and then, assuming the uniformity hypothesis, in choosing

one test case in each of the obtained subsets. We will here present our method for

defining relevant selection criteria in order to guide the final choice of the test cases.

The application of the selection criteria will allow to refine the initial test set by

characterising test subsets which respect given constraints on the input data.

4.1 Test sets for quantifier-free first-order formulas

The selection method we are going to present is called axiom unfolding and is based

on a case analysis of the specification. This procedure was first defined for positive

conditional specifications [6,7,25,1], i.e. axioms are formulas where a conjunction of

equations implies another equation. In this setting, test cases are only equations. The

exhaustive test set is the set of equations of the form f(t1, . . . , tn) = t where f is an

operation of the signature, t1, . . . , tn, t are ground terms and such that this equation is

a semantic consequence of the specification. To divide this initial test set comes down

to dividing each test set associated to a given operation of the signature. The equation

f(t1, . . . , tn) = t characterising this test set (when f is given) is called a test purpose.

The operation f is specified by a certain number of axioms in the specification, which

define the behaviour of this operation by cases, according to the different values of its

17

inputs. The set of test cases for f will then be divided according to these different cases,

that are the different axioms specifying this operation, as we showed in the previous

section in Example 1.

Here, we generalise this procedure to quantifier-free first-order specifications. Since

a test case may be any quantifier-free first-order formula, dividing the initial exhaustive

test set comes down to dividing each test set associated to a given formula, chosen to

be a test purpose. The test set associated to a formula naturally is the set of ground

instances of this formula which are consequences of the specification.

Definition 6 (Test set for a formula) Let Sp = (Σ,Ax) be a quantifier-free first-

order specification. Let ϕ be a quantifier-free first-order formula, called test purpose.

The test set for ϕ, denoted by Tϕ, is the following set:

Tϕ = {ρ(ϕ) | ρ : V → TΣ , ρ(ϕ) ∈ Sp• ∩Obs}

Note that the formula taken as a test purpose may be any formula, not necessarily

a semantic consequence of the specification. However, only substitutions ρ such that

ρ(ϕ) is a semantic consequence of Sp will be built at the generation step.

Example 2 Here are some test purposes for the signature of the specification RatList,

with examples of associated test cases.

add(x, 0) = x. Since add(x, 0) = x is an axiom, all ground instances of this formula

are test cases: add(0, 0) = 0, add(6, 0) = 6, etc.

ltr(u, v). This predicate is under-specified, the case where a rational is of the form x/0

is not taken into account, so there cannot be tests on this case. Test cases may be:

ltr(1/3, 1/2), ltr(4/8, 4/6), etc.

add(m,n) = mult(m, 2). Only cases where m = n are semantic consequences of the

specification, such as add(2, 2) = mult(2, 2), add(5, 5) = mult(5, 2), etc.

insert(r, l) = []. The formula is never satisfied for any ground instance of r and l, so

there is no possible test case.

As we showed on Example 1, the test set for a formula is divided into subsets,

that are themselves test sets for different instances of the initial test purpose, under

certain constraints. Each of these test subsets can be characterised by a substitution

σ, allowing to map the initial test purpose to its corresponding instance, and a set of

constraints C. For instance, the test set T2 of Example 1

T2 = { insert(x/s(y), e :: l) = e :: l | x/s(y) = e, x, y, e, l ∈ TΣ }

may be characterised by the pair (C, σ) where

C = {x/s(y) = e} σ : r 7→ x/s(y)

L 7→ e :: l

L′ 7→ e :: l

These test subsets, obtained by the application of a criterion, will be called constrained

test sets.

Definition 7 (Constrained test set) Let Sp = (Σ,Ax) be a quantifier-free first-

order specification. Let ϕ be a quantifier-free first-order formula. Let C be a set of

quantifier-free first-order formulas called Σ-constraints and σ : V → TΣ(V) be a

18

substitution. A test set for ϕ constrained by C and σ, denoted by T(C,σ),ϕ, is the

following set of ground formulas:

T(C,σ),ϕ = {ρ(σ(ϕ)) | ρ : V → TΣ , ρ(σ(ϕ)) ∈ Sp• ∩Obs,

∀ψ ∈ C, ρ(ψ) ∈ Sp• ∩Obs}

The pair ((C, σ), ϕ) is called a constrained test purpose.

Note that the test purpose of Definition 6 can be seen as the constrained test

purpose (({ϕ}, Id), ϕ).

Example 3 Examples of constrained test purposes may be the following:

`
(∅ , σ : x 7→ s(u)), add(x, 0) = x

´

`
({ltn(3, x)} , Id), add(x, 0) = x

´

`
({ltn(x, z)} , σ : u 7→ x/s(y)), ltr(u, v)

´
v 7→ z/s(y)

As another example, to come back to Example 1 where we split the test set associ-

ated to insert(r, L) = L′ into four subsets, we can express each of them as constrained

test purposes as follows:

`
(∅ , σ1 : r 7→ x/s(y)), insert(r, L) = L′

´
L 7→ []

L′ 7→ x/s(y) :: []

`
({x/s(y) = e} , σ2 : r 7→ x/s(y)), insert(r, L) = L′

´
L 7→ e :: l

L′ 7→ e :: l

`
({ltr(x/s(y), e)} , σ3 : r 7→ x/s(y)), insert(r, L) = L′

´
L 7→ e :: l

L′ 7→ x/s(y) :: e :: l

`
({ltr(e, x/s(y))} , σ4 : r 7→ x/s(y)), insert(r, L) = L′

´
L 7→ e :: l

L′ 7→ e :: insert(x/s(y), l)

Only this kind of constrained test purposes, built from a case analysis of the specifica-

tion axioms, will be of interest. The aim of the unfolding procedure we will introduce

in the next section is to build such test sets.

4.2 Unfolding procedure

In practice, the initial test purpose is not constrained. The aim of the unfolding pro-

cedure is to replace it with a set of constrained test purposes, using the specification

axioms. This procedure is an algorithm with the following inputs:

– a quantifier-free first-order specification Sp = (Σ,Ax) where axioms of Ax have

been transformed into normalised sequents

19

– a quantifier-free first-order formula ϕ seen as the initial test purpose.

As we already said, the initial test purpose ϕ can be seen as the constrained test

purpose (({ϕ}, Id), ϕ), or even ((C0, Id), ϕ) where C0 is the set of normalised sequents

obtained from ϕ. Let Ψ0 be the set containing the initial constraints of test purpose ϕ,

the pair (C0, Id). Constrained test sets for formulas are naturally extended to sets of

pairs Ψ as follows:

TΨ,ϕ =
[

(C,σ)∈Ψ
T(C,σ),ϕ

The initial test set Tϕ then is the set TΨ0,ϕ.

The aim of the procedure is to divide this set according to the different cases in

which formula ϕ holds. These cases correspond to the different instances of ϕ that can

be proved as theorems, i.e. that can be deduced from the specification axioms using

the calculus we gave in Section 1. So basically, the procedure searches for those proof

trees that allow to deduce (instances of) the initial test purpose from the specification

axioms. However, the aim is not to build the complete proofs of these instances of ϕ,

but only to make a partition of TΨ0,ϕ increasingly fine. A first step in the construction

of the proof tree of each instance will give us pending lemmas, constraints remaining

to prove that, together with the right substitution, characterise each instance of ϕ.

We will thus be able to replace Ψ0, which contains only one constraint, with a set of

constraints Ψ1 characterising each instance of ϕ that can be proved from the axioms.

The set Ψ1 can itself be replaced with a bigger set Ψ2 obtained from a second step in

the construction of the previous proof trees, and so on. The procedure can be stopped

at any moment, as soon as the tester is satisfied with the obtained partition.

Note that the procedure only intends to divide the test set associated to a given

formula, by returning a set of constraints which characterise each set of the partition.

The generation phase, not handled in this paper, consists in choosing one test case in

each set of the partition (assuming the uniformity hypothesis) by solving the constraints

associated to each set (which might be an issue in itself, due to the nature of these

constraints).

The general case. As already explained, the procedure tries to divide the initial test set

associated to a test purpose ϕ into test subsets by searching for proof trees of different

instances of ϕ from the specification axioms. To achieve this purpose, it tries to unify

the test purpose with an axiom, or more precisely, it tries to unify a subset of the

test purpose’s subformulas with a subset of an axiom’s subformulas. Hence, if the test

purpose is a normalised sequent of the form

γ1, . . . , γp, . . . , γm ` δ1, . . . , δq, . . . , δn

the procedure tries to unify a subset of {γ1, . . . , γm, δ1, . . . , δn} with a subset of the

formulas of an axiom. Then it looks for a specification axiom of the form

ψ1, . . . , ψp, ξ1, . . . , ξl ` ϕ1, . . . , ϕq, ζ1, . . . , ζk

such that it is possible to unify ψi and γi for all i, 1 ≤ i ≤ p, and ϕi and δi for all i,

1 ≤ i ≤ q.
Now we have to ensure that it is actually possible to prove (an instance of) the

test purpose from this axiom. The inference rule which is fundamental at this stage is

the Cut rule. It allows at the same time to delete the subformulas of the axiom that

20

cannot be unified with subformulas of the test purpose, and to add the subformulas of

the test purpose that do not exist in the axiom. To give a general picture, we have the

following matching between the two formulas:

to delete to delete

Axiom ψ1, . . . , ψp| {z },
z }| {
ξ1, . . . , ξl `ϕ1, . . . , ϕq| {z },

z }| {
ζ1, . . . , ζk

unification unification

Test purpose
z }| {
γ1, . . . , γp, γp+1, . . . , γm| {z }`

z }| {
δ1, . . . , δq, δq+1, . . . , δn| {z }

to add to add

The additional formulas of the axiom and the missing formulas of the test purpose will

be added or deleted thanks to applications of the cut rule. The proof will then consist

of two steps.

1. First, we apply to the axiom the substitution σ that allows the unification.

2. Then, we cut one by one each formula of the axiom that cannot be unified with a

subformula of the test purpose. This gives us a set of lemmas (the proof tree leaves)

needed to complete the proof, the constraints. The last subformula to be cut also

allows to add the missing subformulas. This is possible because in the premises of

the rule, Γ , ∆ and Γ ′, ∆′ may be different.

The unifying substitution σ and the set of constraints given by the pending lemmas

thus define a constrained test set characterising the instance of the test purpose we

manage to prove.

If we denote by Γ the set of formulas {γ1, . . . , γp}, Γ ′ the set {γp+1, . . . , γm}, ∆
the set {δ1, . . . , δq} and ∆′ the set {δq+1, . . . , δn}, we get a proof tree of the following

form:

...

σ(Γ ′) ` σ(ξl), σ(∆′)

...

` σ(ξ1)

ST

σ(Γ), σ(ξ2), . . . , σ(ξl)`σ(∆)
Cut

...
Cut

σ(Γ), σ(ξl) ` σ(∆)
Cut

σ(Γ), σ(Γ ′) ` σ(∆), σ(∆′) Cut

where ST is the following subtree:

Subs
Γ, ξ1, . . . , ξl ` ∆, ζ1, . . . , ζk Ax

σ(Γ), σ(ξ1), . . . , σ(ξl) ` σ(∆), σ(ζ1), . . . , σ(ζk)

...

σ(ζ1) `
σ(Γ), σ(ξ1), . . . , σ(ξl) ` σ(ζ2), . . . , σ(ζk), σ(∆)

Cut

...
Cut

σ(Γ), σ(ξ1), . . . , σ(ξl) ` σ(∆), σ(ζk)
Cut

...

σ(ζk) `
σ(Γ), σ(ξ1), . . . , σ(ξl) ` σ(∆)

Cut

As this proof tree shows, after having applied the substitution unifying some subfor-

mulas of the axiom with some subformulas of the test purpose (the formula to prove),

l+ k applications of the Cut rule allow to delete the l subformulas of the left-hand side

of the axiom and the k subformulas of its right-hand side, and moreover, allow to add

the formulas of Γ ′ and ∆′.

21

The case of equality. In order to deal more efficiently with equality, this is the paramod-

ulation rule that is used. When an axiom contains an equation, it can be used to replace

a subterm of a formula with another subterm, equal to it according to this axiom. This

rule makes the procedure more efficient to handle equality than standard first-order

calculus, since it allows to use the replacement of equal by equal principle. So the pro-

cedure tries to unify a subterm of a subformula of the test purpose with one of the

members of an equation in an axiom. Hence, if the test purpose is a normalised sequent

of the form

γ1, . . . , γp, . . . , γm ` δ1, . . . , δq, . . . , δn
the procedure tries to unify a subterm of δn (for instance) with one of the two sides

of an equation appearing in an axiom. It also tries, as previously, to unify a subset of

{γ1, . . . , γm, δ1, . . . , δn−1} with a subset of the formulas of the axiom. Then it looks

for a specification axiom of the form

ψ1, . . . , ψp, ξ1, . . . , ξl ` ϕ1, . . . , ϕq, ζ1, . . . , ζk, s = t

such that it is possible to unify a subterm of δn with t (for instance), ψi and γi for all

i, 1 ≤ i ≤ p, and ϕi and δi for all i, 1 ≤ i ≤ q. The general picture is the following:

to delete to delete

Axiom ψ1, . . . , ψp| {z },
z }| {
ξ1, . . . , ξl `ϕ1, . . . , ϕq| {z },

z }| {
ζ1, . . . , ζk, s = t|{z}

unification unification unif.

Test purpose
z }| {
γ1, . . . , γp, γp+1, . . . , γm| {z }`

z }| {
δ1, . . . , δq, δq+1, . . . , δn−1| {z }, δn

z}|{
[r]

to add to add

The test purpose can then be proved from this axiom in three steps:

1. We first apply to the axiom the substitution σ that allows the unification.

2. Then we apply the paramodulation rule twice to replace the subterm of δn with

the other side of the equation s and to add the missing formulas.

3. Finally, we apply the Cut rule k + l times as previously to delete the subformulas

of the axiom that cannot be unified with subformulas of the test purpose.

We take the same notations as previously and additionnally, we denote by Ω the set of

formulas {ξ1, . . . , ξl} and by Λ the set {ζ1, . . . , ζk}. Since the subterm r of δn can be

unified with t by σ, we get the following proof tree, which ends like the previous one

with a serie of applications of the Cut rule:

` σ(t) = σ(r)

Subs
Γ,Ω ` ∆,Λ, s = t

Ax

σ(Γ), σ(Ω) ` σ(∆), σ(Λ), σ(s) = σ(t)

...

σ(Γ ′) ` σ(∆′), σ(δn[s])

σ(Γ), σ(Ω), σ(Γ ′) ` σ(∆), σ(Λ), σ(∆′), σ(δn[t])
Para

σ(Γ), σ(Ω), σ(Γ ′) ` σ(∆), σ(Λ), σ(∆′), σ(δn[r])
Para

...

σ(Γ), σ(Γ ′) ` σ(∆), σ(∆′), σ(δn[r])
Cut

Let us note that the proof trees of the instances of the test purpose have, in both

cases, a particular form. They actually respect the following structure:

– no instance of cut and paramodulation occurs over instances of substitution

22

– no instance of cut occurs in the left-hand side subtree of an instance of paramod-

ulation

– there is no instance of paramodulation whose premises both are instances of paramod-

ulation

– there is no instance of cut whose premises both are instances of cut.

This will be fundamental for the relevance of the method, as we will show in Theo-

reom 2.

The algorithm. The unfolding procedure is formally described by the following algo-

rithm.5 What it unfolds is a constraint ψ from a set of constraints C associated to some

substitution σ in a pair of constraints (C, σ). The first set of constraints C0 only con-

taining the initial test purpose, the procedure starts with unfolding this test purpose.

It builds a set Unf (ψ) representing the unfolding of ψ and containing all the pairs of

constraints and substitution obtained by unfolding. Then it will unfold the constraints

obtained from the unfolding of the test purpose, which will be considered themselves as

test purposes, and so on. Given a constraint ψ = γ1, . . . , γm ` δ1, . . . , δn, the algorithm

can be synthesised in the following way.

(Reduce) The first verification to make is whether some instances of the constraint are

tautologies. If it is possible to unify some γi with some δj thanks to a substitution

σ, then σ(ψ) always holds and is useless. σ(ψ) is then removed from the set of

constraints associated to the corresponding instance of the test purpose.

(Unfold Paramodulation) This is the part of the algorithm dealing with equality.

If a subterm of a formula in the constraint can be unified with one of the members

of an equation appearing in an axiom, and a subset of the other formulas of the

constraint can be unified with a subset of the other formulas of the axiom, then

it is possible to prove the constraint from this axiom with two applications of

the paramodulation rule and a certain number of applications of the Cut rule.

In this case, the set of constraints that is built is the set of all σ′(ζi) ` for i

between 1 and k and all ` σ′(ξi) for i between 1 and l, to which is added the

lemma σ′(γp+1), . . . , σ
′(γm) ` σ′(δq+1), . . . , σ

′(δn−1), σ
′(δn[s]) needed to apply

the paramodulation rule. It simply means that if a subterm of δn can be unified

with t thanks to a substitution σ′, then this subterm can be replaced with s in

σ′(δn).

(Unfold Cut) If the paramodulation rule cannot be used to unfold the constraint ψ,

it is checked whether the Cut rule can be used alone. As explained before, if a part

of the constraint can be unified with a part of an axiom, then we know that the

constraint can be proved from this axiom with a certain number of applications

of the Cut rule where, as in the previous case, each σ′(ζi) ` for i between 1

and k and each ` σ′(ξi) for i between 1 and l is a lemma remaining to prove.

One of those lemmas must bring the missing formulas, so σ′(ξl) is in the context

σ′(γp+1), . . . , σ
′(γm) ` σ′(ξl), σ′(δq+1), . . . , σ

′(δn).

Then the procedure replaces the initial constraint ψ with each of the sets of constraints

in Unf (ψ). Each unification with an axiom leads to a pair (c, σ′), so the initial constraint

ψ is replaced with as many sets of formulas as there are axioms with which it can be

5 In the algorithm, δn|ω is the subterm appearing at position ω in δn, where positions in
terms are defined by words over naturals, following the standard numbering of tree nodes.

23

Algorithm 1 Axiom unfolding

Inputs : quantifier-free first-order specification Sp = (Σ,Ax), test purpose ϕ

Output : set of constraints Ψ

Ψ ← {(C0, Id)} where C0 is the set of normalised sequents obtained from ϕ

loop

Take (C, σ) from Ψ and remove it

Take ψ = γ1, . . . , γm ` δ1, . . . , δn from C and remove it

Unf (ψ)← ∅

(Reduce)

if there exists σ′ ∈ TΣ(V)V mgu, 1 ≤ i ≤ m and 1 ≤ j ≤ n
such that σ′(γi) = σ′(δj) then

Add (∅, σ′) to Unf (ψ)

else

for all axioms ax ∈ Ax do

(Unfold Paramodulation)

if ax is of the form ψ1, . . . , ψp, ξ1, . . . , ξl ` ϕ1, . . . , ϕq, ζ1, . . . , ζk, s = t

with 1 ≤ p ≤ m, 1 ≤ q ≤ n, and

there exists σ′ ∈ TΣ(V)V mgu such that

σ′(δn|ω) = σ′(t) and δn|ω is not a variable,

for all 1 ≤ i ≤ p, σ′(ψi) = σ′(γi) and

for all 1 ≤ i ≤ q, σ′(ϕi) = σ′(δi) then

c← {σ′(ζi) ` }1≤i≤k
∪{ ` σ′(ξi)}1≤i≤l
∪{σ′(γp+1), . . . , σ

′(γm) ` σ′(δq+1), . . . , σ
′(δn−1), σ

′(δn[s])}
Add (c, σ′) to Unf (ψ)

(Unfold Cut)

else if ax is of the form ψ1, . . . , ψp, ξ1, . . . , ξl ` ϕ1, . . . , ϕq, ζ1, . . . , ζk
with 1 ≤ p ≤ m, 1 ≤ q ≤ n, and

there exists σ′ ∈ TΣ(V)V mgu such that

for all 1 ≤ i ≤ p, σ′(ψi) = σ′(γi) and

for all 1 ≤ i ≤ q, σ′(ϕi) = σ′(δi) then

c← {σ′(ζi) ` }1≤i≤k
∪ { ` σ′(ξi)}1≤i≤l−1

∪ {σ′(γp+1), . . . , σ
′(γm) ` σ′(ξl), σ′(δq+1), . . . , σ

′(δn)}
Add (c, σ′) to Unf (ψ)

end if

end for

end if

Add
[

(c,σ′)∈Unf (ψ)

{(σ′(C) ∪ c, σ′ ◦ σ)} to Ψ

end loop

24

unified. The definition of Unf (ψ) being based on unification, this set is computable if

the specification has finitely many axioms.

Termination of the unfolding procedure is unlikely, since it is not checked, during

its execution, whether the formula ϕ is a semantic consequence of the specification or

not. Actually, this will be done during the generation phase, not handled in this paper.

As we already explained, the aim of the unfolding procedure is not to find the complete

proof of formula ϕ, but to make a partition of Tϕ increasingly fine. Hence the procedure

can be stopped at any moment, when the obtained partition is fine enough according

to the judgement or the needs of the tester. The idea is to stretch further the execution

of the procedure in order to make increasingly big proof trees whose remaining lemmas

are constraints. If ϕ is not a semantic consequence of Sp, then this means that, among

remaining lemmas, some of them do not hold, and then the associated test set is empty.

Given a formula ψ, the unfolding procedure defines the selection criterion Cψ which

maps T(C,σ),ϕ to the family of test sets T(σ′(Cr{ψ})∪c,σ′◦σ),ϕ for each (c, σ′) in Unf (ψ)

if ψ belongs to C, and to itself otherwise. To ensure the relevance of this selection

criterion, it must be shown that its application does not add new test cases to T(C,σ),ϕ

(soundness) or remove test cases from it (completeness). These results are proved in

the next subsection.

Coverage of the exhaustive test set. Here, our unfolding procedure has been defined in

order to cover behaviours of one test purpose, represented by the formula ϕ. When we

are interested in covering more widely the exhaustive set Sp•∩Obs, a strategy consists

in ordering quantifier-free first-order formulas with respect to their length, as follows:

Φ0 =

8
<
:

` p(x1, . . . , xn),

` f(x1, . . . , xn) = y

p : s1 × . . .× sn ∈ P,
f : s1 × . . .× sn → s ∈ F,
∀i, 1 ≤ i ≤ n, xi ∈ Vsi , y ∈ Vs

9
=
;

Φn+1 =

8
>><
>>:

p(x1, . . . , xn), Γ ` ∆,
f(x1, . . . , xn) = y, Γ ` ∆,
Γ ` ∆, p(x1, . . . , xn),

Γ ` ∆, f(x1, . . . , xn) = y

Γ ` ∆ ∈ Φn,
p : s1 × . . .× sn ∈ P,
f : s1 × . . .× sn → s ∈ F,
∀i, 1 ≤ i ≤ n, xi ∈ Vsi , y ∈ Vs

9
>>=
>>;

Then, to manage the size (often infinite) of Sp•∩Obs, we start by choosing k ∈ N, and

then we apply for every i, 1 ≤ i ≤ k, the above unfolding procedure to each formula

belonging to Φi. Of course, this requires that signatures are finite so that each set Φi
is finite too.

Example 4 First, to show the handling of equality with the paramodulation rule, we

start with the formula of Example 1: insert(r, L) = L′. The associated constrained test

purpose for this formula is

(({` insert(r, L) = L′}, Id), insert(r, L) = L′)

We denote by Ψ0 the set containing this first pair of constraints. After a loop of the

algorithm, where the chosen constraint ψ is necessarily ` insert(r, L) = L′, we obtain

the following set Ψ1 (each pair is labelled by the number of the axiom used for the

25

unfolding of the initial formula):

Ψ1 = { ({ ` x0/s(y0) :: [] = L′} , σ1 : r 7→ x0/s(y0)) (13)

L 7→ []

({ ` x0/s(y0) = e0, , σ2 : r 7→ x0/s(y0)) (14)

` e0 :: l0 = L′} L 7→ e0 :: l0

({ ` ltr(x0/s(y0), e0), , σ3 : r 7→ x0/s(y0)) (15)

` x0/s(y0) :: e0 :: l0 = L′} L 7→ e0 :: l0

({ ` ltr(e0, x0/s(y0)), , σ4 : r 7→ x0/s(y0))} (16)

` e0 :: insert(x0/s(y0), l0) = L′} L 7→ e0 :: l0

We get the same four sets as in Examples 1 and 3, although they are expressed a bit

differently. The four sets of Example 3 are what we would have obtained with the

application of the (Unfold Cut) part of the algorithm. We can see here that using

paramodulation results in simpler substitutions and more constraints, which allows to

unfold more finely the initial formula. For instance, the last constraint in the fourth

set ` e0 :: insert(x0/s(y0), l0) = L′ was kept implicit in the substitution given in the

fourth set of Example 3, which prevents from unfolding it as we can do here.

Actually, we now show the unfolding of this last constraint. We get the following

set, which replaces the fourth set above (the new substitution is already composed with

the previous one):

{ ({ ` ltr(e0, x0/s(y0)), , σ′1 : r 7→ x0/s(y0)) (13)

` e0 :: x0/s(y0) :: [] = L′} L 7→ e0 :: []

({ ` ltr(e0, x0/s(y0)), , σ′2 : r 7→ x0/s(y0)) (14)

` x0/s(y0) = e1, L 7→ e0 :: e1 :: l1
` e0 :: e1 :: l1 = L′}

({ ` ltr(e0, x0/s(y0)), , σ′3 : r 7→ x0/s(y0)) (15)

` ltr(x0/s(y0), e1), L 7→ e0 :: e1 :: l1
` e0 :: x0/s(y0) :: e1 :: l1 = L′}

({ ` ltr(e0, x0/s(y0)), , σ′4 : r 7→ x0/s(y0))} (16)

` ltr(e1, x0/s(y0)), L 7→ e0 :: e1 :: l1
` e0 :: e1 :: insert(x0/s(y0), l1) = L′}

To see that these sets correspond to what we expect from the procedure, we can write

them in a more natural way:

{insert(x0/s(y0), e0 :: []) = e0 :: x0/s(y0) :: [] | ltr(e0, x0/s(y0))}
{insert(x0/s(y0), e0 :: e1 :: l1) = e0 :: e1 :: l1 | ltr(e0, x0/s(y0))

x0/s(y0) = e1}
{insert(x0/s(y0), e0 :: e1 :: l1) = e0 :: x0/s(y0) :: e1 :: l1 | ltr(e0, x0/s(y0))

ltr(x0/s(y0), e1)}
{insert(x0/s(y0), e0 :: e1 :: l1) = e0 :: e1 :: insert(x0/s(y0), l1) | ltr(e0, x0/s(y0))

ltr(e1, x0/s(y0))}
We could have unfolded any other constraint of one of the first four sets, according to

the axioms specifying the predicates over rationals for instance.

26

Example 5 To show a complete example where cut and paramodulation are used, we

take the formula isin(r, L) ⇒ insert(r, L) = L′. This formula does not hold for every

substitution of the variables. If L is not the empty list, the instances where L = L′

only are consequences of the specification (as well as instances where isin(r, L) does not

hold, but these one are of no interest for our purpose). The unfolding of this formula

will then lead to two kinds of constraints: those where L = L′ that will actually become

test cases since they are consequences of the specification, and those where L 6= L′ that

will not lead to test cases. The procedure cannot distinguish between these two kinds of

constraints. However, before being submitted to the system, a ground substitution ρ is

applied to constrained test purposes. Since by definition, ρ(ϕ) has to be a consequence

of the specification, the constraints where L 6= L′ will not be submitted as test cases

to the system.

The associated constrained test purpose for this formula is

(({isin(r, L) ` insert(r, L) = L′}, Id), isin(r, L)⇒ insert(r, L) = L′)

We denote by Ψ0 the set containing this first pair of constraints. The set Ψ1 we get

after one loop of the algorithm is the following:

{({ isin(x0/s(y0), []) ` x0/s(y0) :: [] = L′} , σ1 : r 7→ x0/s(y0)) (13)

L 7→ []

({ ` x0/s(y0) = e0, , σ2 : r 7→ x0/s(y0)) (14)

isin(x0/s(y0), e0 :: l0) ` e0 :: l0 = L′} L 7→ e0 :: l0

({ ` ltr(x0/s(y0), e0), , σ3 : r 7→ x0/s(y0)) (15)

isin(x0/s(y0), e0 :: l0) ` x0/s(y0) :: e0 :: l0 = L′} L 7→ e0 :: l0

({ ` ltr(e0, x0/s(y0)), , σ4 : r 7→ x0/s(y0)) (16)

isin(x0/s(y0), e0 :: l0) ` e0 :: insert(x0/s(y0), l0) = L′} L 7→ e0 :: l0

({ ∅ , σ5 : r 7→ x0/s(y0)) (17)

L 7→ []

({ x0/s(y0) = e0 `, , σ6 : r 7→ x0/s(y0)) (18)

isin(x0/s(y0), l0) ` insert(x0/s(y0), e0 :: l0) = L′} L 7→ e0 :: l0

({ isin(x0/s(y0), e :: l0) ` insert(x0/s(y0), l0) = L′} , σ7 : r 7→ x0/s(y0))} (20)

L 7→ l0

The first four sets are almost the same as in the previous example, up to the left-

hand side isin(x0/s(y0), e0 :: l0), since it is the (Unfold Paramodulation) part of

the algorithm that is used for the unfolding. The last three sets are built using the

(Unfold Cut) part on the axioms specifying the membership predicate isin.

Intuitively, the part of the algorithm using paramodulation will be used to unfold

formulas involving operations, while the part using the Cut rule will be used to unfold

formulas with predicates.

27

4.3 Properties of the selection criterion

Here, we prove the two properties that make the unfolding procedure relevant for

the selection of appropriate test cases, i.e. that the selection criterion defined by the

procedure is sound and complete for the initial test set we defined.

To prove the soundness of the procedure comes down to proving that the instance

σ′(ϕ) of the initial formula ϕ can be derived from the set of constraints c and the

axiom with which it has been unified. Thus we prove that the test set obtained by the

application of the procedure does not contain new test cases, since it is only composed

of instances of the initial test purpose.

To prove the completeness, we prove that all the possible instances of the test

purpose can be proved with a proof tree of the form we showed earlier, and that the

procedure generates all possible constraints for proving this instance. We thus prove

that no test case is lost. Actually, we can observe that our unfolding procedure defines

a proof search strategy that enables to limit the search space to the class of proof trees

having the following structure:

– no instance of cut and paramodulation occurs over instances of substitution

– no instance of cut occurs in the left-hand side subtree of an instance of paramod-

ulation

– there is no instance of paramodulation whose premises both are instances of paramod-

ulation

– there is no instance of cut whose premises both are instances of cut.

We then have to prove that the derivability defined by our unfolding strategy coincides

with the full derivability. We then define basic transformations to rewrite proof trees

into ones having the above structure, and show that the induced global proof tree

transformation is weakly normalising.

Theorem 2 (Soundness and completeness) Let ϕ be a quantifier-free first-order

formula, C a set of constraints and σ : V → TΣ(V) a substitution. Let ψ ∈ C. The

selection criterion for ψ is sound and complete for the test set for ϕ constrained by C
and σ:

|Cψ(T(C,σ),ϕ)| = T(C,σ),ϕ

Proof (Soundness) Let us prove that |Cψ(T(C,σ),ϕ)| ⊆ T(C,σ),ϕ.

By definition, it is sufficient to prove that for each (C, σ) ∈ Ψ , for each ψ ∈ C, for

each (c, σ′) ∈ Unf (ψ), T(c,σ′◦σ),ϕ ⊆ T({ψ},σ),ϕ. We then have to prove that for each

ground substitution ρ : V → TΣ such that Sp |= ρ(χ), for each χ ∈ c, there exists

ρ′ : V → TΣ such that Sp |= ρ′(ψ). A first case to consider is the Reduce case. Then

two cases have to be considered, depending on the form of the axiom the constraint ψ

has been unified with.

Case 1 - Reduce. If there exists a substitution σ′ such that σ′(ψ) is a tautology, then

any ground instance ρσ′(ψ) can be proved with no additional constraints.

Case 2 - Unfold Cut. Let us assume that the formula ψ is of the form γ1, . . . , γm `
δ1, . . . , δn, and that the set c such that (c, σ′) ∈ Unf (ψ) is of the form

{σ′(ζi) ` }1≤i≤k
∪ { ` σ′(ξi)}1≤i≤l−1

∪ {σ′(γp+1), . . . , σ
′(γm) ` σ′(ξl), σ′(δq+1), . . . , σ

′(δn)}

28

where 1 ≤ p ≤ m and 1 ≤ q ≤ n are such that ψ1, . . . , ψp, ξ1, . . . , ξl `
ϕ1, . . . , ϕq, ζ1, . . . , ζk ∈ Ax, σ′(ψi) = σ′(γi) for each 1 ≤ i ≤ p and σ′(ϕi) = σ′(δi)
for each 1 ≤ i ≤ q. We then have the following proof tree, where Γ = {ψ1, . . . , ψp},
∆ = {ϕ1, . . . , ϕq}, Γ ′ = {γp+1, . . . , γm}, ∆′ = {δq+1, . . . , δn}, for each i, 1 ≤ i ≤ l,

Ωi = {ξi, . . . , ξl} and for each i, 1 ≤ i ≤ k, Λi = {ζi, . . . , ζk}. The composition σ ◦ σ′
of two substitutions σ′ : V → TΣ(V) and σ : TΣ(V) → TΣ(V), applied to a formula

ϕ, is denoted by σσ′(ϕ).

...

ρσ′(Γ ′) ` ρσ′(ξl), ρσ′(∆′)

...

` ρσ′(ξ2)

...

` ρσ′(ξ1) ST

ρσ′(Γ), ρσ′(Ω2)`ρσ′(∆)
Cut

...

Cut

ρσ′(Γ), ρσ′(Ωl) ` ρσ′(∆)
Cut

ρσ′(Γ), ρσ′(Γ ′) ` ρσ′(∆), ρσ′(∆′) Cut

where ST is the following subtree:

Γ,Ω1 ` Λ1,∆
Ax

ρσ′(Γ), ρσ′(Ω1) ` ρσ′(Λ1), ρσ
′(∆)

Subs

...

ρσ′(ζ1) `
ρσ′(Γ), ρσ′(Ω1) ` ρσ′(Λ2), ρσ

′(∆)
Cut

...

ρσ′(ζ2) `
...

Cut

ρσ′(Γ), ρσ′(Ω1) ` ρσ′(∆)
Cut

Case 3 - Unfold Paramodulation. Let us assume that the formula ψ is of the form

γ1, . . . , γm ` δ1, . . . , δn, and that the set c such that (c, σ′) ∈ Unf (ψ) is of the form

{σ′(ζi) ` }1≤i≤k
∪{ ` σ′(ξi)}1≤i≤l
∪{σ′(γp+1), . . . , σ

′(γm) ` σ′(δq+1), . . . , σ
′(δn−1), σ

′(δn[s])}
where 1 ≤ p ≤ m and 1 ≤ q ≤ n are such that ψ1, . . . , ψp, ξ1, . . . , ξl `
ϕ1, . . . , ϕq, ζ1, . . . , ζk, s = t ∈ Ax, σ′(δn|ω) = σ′(t), σ′(ψi) = σ′(γi) for each 1 ≤ i ≤ p

and σ′(ϕi) = σ′(δi) for each 1 ≤ i ≤ q. We then have the following proof tree, where

we follow the same notations as previously except that ∆′ is the set {δq+1, . . . , δn−1}:

...

` ρσ′(ξl)

...

` ρσ′(ξ2)

...

` ρσ′(ξ1) ST

ρσ′(Γ), ρσ′(Γ ′), ρσ′(Ω2)`ρσ′(∆), ρσ′(∆′), ρσ′(δn[r])
Cut

...

Cut

ρσ′(Γ), ρσ′(Γ ′), ρσ′(Ωl) ` ρσ′(∆), ρσ′(∆′), ρσ′(δn[r])
Cut

ρσ′(Γ), ρσ′(Γ ′) ` ρσ′(∆), ρσ′(∆′), ρσ′(δn[r])
Cut

where ST is the following subtree:

ST ′

...

ρσ′(ζ1) `
ρσ′(Γ), ρσ′(Γ ′), ρσ′(Ω1) ` ρσ′(Λ2), ρσ

′(∆), ρσ′(∆′), ρσ′(δn[r])
Cut

...

ρσ′(ζ2) `
...

Cut

ρσ′(Γ), ρσ′(Γ ′), ρσ′(Ω1) ` ρσ′(∆), ρσ′(∆′), ρσ′(δn[r])
Cut

29

and ST’ is the following subtree:

ρσ′(t)=ρσ′(r)

Subs
Γ,Ω1`Λ1,∆,s=t

Ax

ρσ′(Γ),ρσ′(Ω1)`ρσ′(Λ1),ρσ
′(∆),ρσ′(s)=ρσ′(t)

...

ρσ′(Γ ′)`ρσ′(∆′),ρσ′(δn[s])

ρσ′(Γ),ρσ′(Γ ′),ρσ′(Ω1)`ρσ′(Λ1),ρσ
′(∆),ρσ′(∆′),ρσ′(δn[t])

Para

ρσ′(Γ),ρσ′(Γ ′),ρσ′(Ω1)`ρσ′(Λ1),ρσ
′(∆),ρσ′(∆′),ρσ′(δn[r])

Para

(Completeness) Let us prove that T(C,σ),ϕ ⊆ |Cψ(T(C,σ),ϕ)|.
By definition, it is sufficient to prove that T({ψ},σ),ϕ ⊆

[

(c,σ′)∈Unf (ψ)

T(c,σ′◦σ),ϕ. We

then have to prove that for each ground substitution ρ : V → TΣ such that Sp |= ρ(ψ),

there exists (c, σ′) ∈ Unf (ψ) such that there exists ρ′ : V → TΣ such that Sp |= ρ′(χ)

for each χ ∈ c. In other words, we have to prove that ρ(ψ) can be deduced from

specification Sp if there exists (c, σ′) ∈ Unf (ψ), and ρ′ : V → TΣ such that Sp |= ρ′(χ)

for each χ ∈ c.
If ρ(ψ) is a tautology, it is a ground instance of a tautology σ′(ψ). Therefore, there

exists a pair (∅, σ′) ∈ Unf (ψ) build by the (Reduce) part of the algorithm.

If it is not a tautology, let show that there exists a pair (c, σ′) ∈ Unf (ψ) and a

substitution ρ′ such that ρ(ψ) can be deduced from the set of all ρ′(χ) for χ ∈ c.
First, let us note that the unfolding procedure defines a strategy which bounds the

search space for proof trees to a class of trees having a specific structure. The procedure

defines a proof search strategy which selects proof trees where:

– no instance of cut and paramodulation occurs over instances of substitution

– no instance of cut occurs in the left-hand side subtree of an instance of paramod-

ulation

– there is no instance of paramodulation whose premises both are instances of

paramodulation

– there is no instance of cut whose premises both are instances of cut.

We then have to prove that there exists a proof tree having the structure we just

described and of conclusion ρ(ψ). We are actually going to prove a stronger result: we

are going to define elementary transformations of proof trees, which allow to rewrite

elementary combinations of inference rules, and then we will prove that the resulting

global proof trees transformation is weakly normalizing and normal forms are proof

trees with the above structure.

We give here the elementary transformations of basic proof trees. For instance,

when an instance of the cut rule occurs over an instance of the substitution rule, we

have the following rewriting rule to make the instance of substitution go over the

instance of cut:
Γ ` ∆,ϕ Γ ′, ϕ ` ∆′

Γ, Γ ′ ` ∆,∆′ Cut

σ(Γ), σ(Γ ′) ` σ(∆), σ(∆′) Subs Ã

Γ ` ∆,ϕ
σ(Γ) ` σ(∆), σ(ϕ)

Subs
Γ ′, ϕ ` ∆′

σ(Γ ′), σ(ϕ) ` σ(∆′) Subs

σ(Γ), σ(Γ ′) ` σ(∆), σ(∆′) Cut

The case where an instance of substitution occurs over an instance of paramodu-

lation:
Γ ` ∆, s = t Γ ′ ` ∆′, ϕ[r]

σ(Γ), σ(Γ ′) ` σ(∆), σ(∆′), σ(ϕ[t])
Para

ρ(σ(Γ)), ρ(σ(Γ ′)) ` ρ(σ(∆)), ρ(σ(∆′)), ρ(σ(ϕ[t]))
Subs Ã

30

Γ ` ∆, s = t

ρ(σ(Γ)) ` ρ(σ(∆), ρ(σ(s)) = ρ(σ(t))
Subs

Γ ′ ` ∆′, ϕ[r]

ρ(σ(Γ ′) ` ρ(σ(∆′), ρ(σ(ϕ[r]))
Subs

ρ(σ(Γ)), ρ(σ(Γ ′)) ` ρ(σ(∆)), ρ(σ(∆′)), ρ(σ(ϕ[t]))
Para

We know from the paramodulation in the initial proof tree that σ(r) = σ(s), therefore

we also have ρ(σ(r)) = ρ(σ(s)).

The case where an instance of cut occurs in the left-hand side of an instance of

paramodulation:6

` ψ ψ ` s = t

` s = t
Cut ` ϕ[r]

` σ(ϕ[t])
Para Ã

ψ ` s = t ` ϕ[r]

σ(ψ) ` σ(ϕ[t])
Para

` ψ
` σ(ψ)

Subs

` σ(ϕ[t])
Cut

The case where two instances of paramodulation occur over an instance of

paramodulation:7

` u = v ` s = t[x]

` σ(s) = σ(t[v])
Para

` r = z ` ϕ[w]

` σ′(ϕ[z])
Para

` σ′′(σ′(ϕ[σ(t[v])]))
Para Ã

` r = z

` σ′(r) = σ′(z) Subs
` u = v ` s = t[x]

` σ(s) = σ(t[v])
Para

` σ′′(σ′(r)) = σ′′(σ(t[v]))
Para

` ϕ[w]

` σ′(ϕ[w])
Subs

` σ′′(σ′(ϕ[σ(t[v])]))
Para

From the three instances of paramodulation in the initial tree, we know that: (1)

σ(x) = σ(u), (2) σ′(w) = σ′(r), (3) σ′′(σ′(z)) = σ′′(σ(s)). In the resulting proof tree,

we use these unifications in the order (1), (3) and (2).

The case of two cuts over a third one has to be divided into four cases, according

to the position of the last cut formula in the premises of the two cuts of the top.

The case where ϕ is in both left premises:

Γ1`∆1,ϕ1,ϕ Γ ′1,ϕ1`∆′1
Γ1,Γ

′
1`∆1,∆

′
1,ϕ

Cut
Γ2,ϕ`∆2,ϕ2 Γ ′2,ϕ2`∆′2

Γ2,Γ
′
2,ϕ`∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

Ã

Γ1`∆1,ϕ1,ϕ Γ2,ϕ`∆2,ϕ2

Γ1,Γ2`∆1,∆2,ϕ1,ϕ2

Cut

Γ ′2,ϕ2`∆′2
Γ1,Γ2,Γ

′
2`∆1,∆2,∆

′
2,ϕ1

Cut

Γ ′1,ϕ1`∆′1
Γ1,Γ

′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

The case where ϕ is in both right premises:

6 We omit the contexts for the sake of readability.
7 We omit the contexts for the sake of readability.

31

Γ1`∆1,ϕ1 Γ ′1,ϕ1`∆′1,ϕ
Γ1,Γ

′
1`∆1,∆

′
1,ϕ

Cut
Γ2`∆2,ϕ2 Γ ′2,ϕ2,ϕ`∆′2

Γ2,Γ
′
2,ϕ`∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

Ã Γ1`∆1,ϕ1

Γ ′1,ϕ1`∆′1,ϕ
Γ2`∆2,ϕ2 Γ ′2,ϕ2,ϕ`∆′2

Γ2,Γ
′
2,ϕ`∆2,∆

′
2

Cut

Γ ′1,Γ2,Γ
′
2,ϕ1`∆′1,∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

The case where ϕ is in the left premise of the left cut, and in the right premise of

the right cut:

Γ1`∆1,ϕ1,ϕ Γ ′1,ϕ1`∆′1
Γ1,Γ

′
1`∆1,∆

′
1,ϕ

Cut
Γ2`∆2,ϕ2 Γ ′2,ϕ2,ϕ`∆′2

Γ2,Γ
′
2,ϕ`∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

Ã Γ2`∆2,ϕ2

Γ1`∆1,ϕ1,ϕ Γ ′1,ϕ1`∆′1
Γ1,Γ

′
1`∆1,∆

′
1,ϕ

Cut

Γ ′2,ϕ2,ϕ`∆′2
Γ1,Γ

′
1,Γ

′
2,ϕ2`∆1,∆

′
1,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

The case where ϕ is in the right premise of the left cut, and in the left premise of

the right cut:

Γ1`∆1,ϕ1 Γ ′1,ϕ1`∆′1,ϕ
Γ1,Γ

′
1`∆1,∆

′
1,ϕ

Cut
Γ2,ϕ`∆2,ϕ2 Γ ′2,ϕ2`∆′2

Γ2,Γ
′
2,ϕ`∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

Ã Γ1`∆1,ϕ1

Γ ′1,ϕ1`∆′1,ϕ
Γ2,ϕ`∆2,ϕ2 Γ ′2,ϕ2`∆′2

Γ2,Γ
′
2,ϕ`∆2,∆

′
2

Cut

Γ ′1,Γ2,Γ
′
2,ϕ1`∆′1,∆2,∆

′
2

Cut

Γ1,Γ
′
1,Γ2,Γ

′
2`∆1,∆

′
1,∆2,∆

′
2

Cut

Let us define the measure of a proof tree π by:

m

„
π1 π2

Γ1, Γ2 ` ∆1,∆2
Cut

«
=

8
<
:

1 +m(π1) +m(π2) if each πi =
πi1 πi2
Γi ` ∆i Cut i = 1, 2

m(π1) +m(π2) otherwise

m

„
π1 π2

Γ1, Γ2 ` ∆1,∆2
Para

«
=

8
>>>><
>>>>:

1 +m(π1) if π1 =
π11 π12

Γ1 ` ∆1
Cut

1 +m(π1) +m(π2) if each πi =
πi1 πi2
Γi ` ∆i Para i = 1, 2

m(π1) +m(π2) otherwise

A proof tree π is in normal form if and only if m(π) = 0. A proof tree π =
π1 π2

ϕ
is called maximal if and only if π1 and π2 are in normal form but π is not. Therefore,

by applying the strategy which consists in reducing first maximal proof trees, we show

that the measure m decreases for each basic transformation given above.

32

Since by hypothesis, Sp |= ρ(ψ), and ψ is not a tautology, there necessarily exists

either an axiom

ψ1, . . . , ψp, ξ1, . . . , ξl ` ϕ1, . . . , ϕq, ζ1, . . . , ζk

or an axiom

ψ1, . . . , ψp, ξ1, . . . , ξl ` ϕ1, . . . , ϕq, ζ1, . . . , ζk, s = t

and a ground substitution ρ′ such that

– ρ′(ψi) = ρ′(γi) for each 1 ≤ i ≤ p
– ρ′(ϕi) = ρ′(δi) for each 1 ≤ i ≤ q
– ρ′(δn|ω) = ρ′(t).

Hence ρ′ is a unifier of each ψi and γi, of each ϕi and δi and of δn|ω and t. So there

exists a proof tree resulting of the transformation defined above, of conclusion ρ(ψ)

where ρ = ρ′, and of the form:

...

ρ(Γ ′) ` ρ(ξl), ρ(∆′)

...

` ρ(ξ2)

...

` ρ(ξ1) ST

ρ(Γ), ρ(Ω2)`ρ(∆)
Cut

...

Cut

ρ(Γ), ρ(Ωl) ` ρ(∆)
Cut

ρ(Γ), ρ(Γ ′) ` ρ(∆), ρ(∆′) Cut

where ST is the following subtree:

Γ,Ω1 ` Λ1,∆
Ax

ρ(Γ), ρ(Ω1) ` ρ(Λ1), ρ(∆)
Subs

...

ρ(ζ1) `
ρ(Γ), ρ(Ω1) ` ρ(Λ2), ρ(∆)

Cut

...

ρ(ζ2) `
...

Cut

ρ(Γ), ρ(Ω1) ` ρ(∆)
Cut

or of the form:

...

ρ(Γ ′) ` ρ(ξl), ρ(∆′)

...

` ρ(ξ2)

...

` ρ(ξ1) ST

ρ(Γ), ρ(Ω2)`ρ(∆), ρ(δn[r])
Cut

...

Cut

ρ(Γ), ρ(Ωl) ` ρ(∆), ρ(δn[r])
Cut

ρ(Γ), ρ(Γ ′) ` ρ(∆), ρ(∆′), ρ(δn[r])
Cut

where ST is the following subtree:

ρ(t)=ρ(r)

Subs
Γ,Ω1`Λ1,∆,s=t

Ax

ρ(Γ),ρ(Ω1)`ρ(Λ1),ρ(∆),ρ(s)=ρ(t)

...

ρ(Γ ′)`ρ(∆′),ρ(δn[s])

ρ(Γ),ρ(Ω1),ρ(Γ
′)`ρ(Λ1),ρ(∆),ρ(∆′),ρ(δn[t])

Para

ρ(Γ),ρ(Ω1),ρ(Γ
′)`ρ(Λ1),ρ(∆),ρ(∆′),ρ(δn[r])

Para

...

ρ(ζ1)`
ρ(Γ),ρ(Ω1)`ρ(Λ2),ρ(∆),ρ(δn[r])

Cut

...

ρ(ζ2)`
...

Cut

ρ(Γ),ρ(Ω1)`ρ(∆),ρ(δn[r])
Cut

and where Γ = {ψ1, . . . , ψp}, ∆ = {ϕ1, . . . , ϕq}, Γ ′ = {γp+1, . . . , γm}, ∆′ =

{δq+1, . . . , δn}, for each i, 1 ≤ i ≤ l, Ωi = {ξi, . . . , ξl} and for each i, 1 ≤ i ≤ k,

Λi = {ζi, . . . , ζk}.

33

Conclusion

In this paper, we extended the test selection method known as axiom unfolding to

quantifier-free first-order specifications with equality. We first proved the existence of

an exhaustive test set, namely the set of observable semantic consequences of the spec-

ification, without any condition on the system under test. As it has originally been

defined in the algebraic specifications setting, our unfolding procedure consists in di-

viding the initial test set for a formula into test subsets, characterising the different

instances of this formula that can be proved from the specification axioms. The gener-

ation of a test set for this formula then arises from the selection of one test case in each

resulting subset. We improved our previous works on this procedure by handling the

equality predicate in an efficient way, thanks to the paramodulation rule. We proved

this procedure to be sound and complete, so that exhaustivity for a given formula is

preserved at each step. We finally proposed a strategy to cover the exhaustive test set.

The definition of test selection criteria is the first step towards the construction of

a practical test set to submit to the system. The next step is the generation of a test

set satisfying these criteria. In our framework, the generation consists in applying the

uniformity hypothesis to the constrained test sets obtained by unfolding an initial test

purpose. It actually comes down to solve the constraints associated to each constrained

test purpose, in order to build one test case corresponding to this purpose. Note that

for a constrained test set T(C,σ),ϕ where C is empty, any instantiation of the variables

defines a test case. However, since we are interested in generating only one test case

per constrained test set, a complete unfolding procedure is useless. It suffices to solve

the constraints on the fly, during the unfolding procedure. A strategy is then needed

to choose at each step which constraint in the current set C should be unfolded in

order to reduce the remaining set C to the empty set and then to be able to compute

a test case. Obviously, as the current set of constraints may be unsatisfiable, the test

case generation also requires some backtracking steps. To be efficient, such a strategy

of test case generation should be based on some heuristics (e.g. the choice of the

next constraint to be unfolded may be based on syntactic criteria, like constraints

with the fewest variables or constraints unifying with the fewest axioms) or applied to

specifications written according to some predefined restricted form [25,1]. To complete

the work of this paper, we plan to study the definition of an efficient algorithm of test

case generation for a subclass of quantifier-free first-order specification.

Ongoing research is also to be continued on structuration aspects. Axiomatic spec-

ifications can be structured via operators allowing to rename, to reduce or to enrich a

specification for instance, or to make the union of two specifications. Integration test-

ing, that is testing the composition of several modules or program units, deals with

testing the new properties arising from the composition of those modules but that

did not exist in the individual modules. Our goal then is to propose a framework of

functional testing with selection criteria including structuration primitives, following

for instance [23,24].

References

1. Marc Aiguier, Agnès Arnould, Clément Boin, Pascale Le Gall, and Bruno Marre. Testing
from algebraic specifications: test data set selection by unfolding axioms. In Formal Ap-
proaches to Testing of Software (FATES’05), volume 3997 of Lecture Notes in Computer
Science, pages 203–217, 2005.

34

2. Marc Aiguier, Agnès Arnould, Pascale Le Gall, and Delphine Longuet. Test selection crite-
ria from quantifier-free first-order specifications. In Fundamentals of Software Engineering
(FSEN’07), volume 4767 of Lecture Notes in Computer Science, pages 144–159, 2007.

3. Marc Aiguier, Agnès Arnould, Pascale Le Gall, and Delphine Longuet. Ex-
haustive test sets for algebraic specification correctness. Technical report,
IBISC, Université d’Évry Val d’Essonne, 2008. Submitted, available at
http://www.epigenomique.genopole.fr/∼aiguier/publications/communications/exhaust.pdf.

4. Agnès Arnould and Pascale Le Gall. Test de conformité : une approche algébrique. Tech-
nique et Science Informatiques, Test de logiciel, 21:1219–1242, 2002.

5. Agnès Arnould, Pascale Le Gall, and Bruno Marre. Dynamic testing from bounded data
type specifications. In Dependable Computing - EDCC-2, volume 1150 of Lecture Notes
in Computer Science, pages 285–302, 1996.

6. Gilles Bernot. Testing against formal specifications: a theoretical view. In Theory and
Practice of Software Development (TAPSOFT’91), volume 494 of Lecture Notes in Com-
puter Science, pages 99–119, 1991.

7. Gilles Bernot, Marie-Claude Gaudel, and Bruno Marre. Software testing based on formal
specifications: a theory and a tool. Software Engineering Journal, 6(6):387–405, 1991.

8. Achim D. Brucker and Burkhart Wolff. Symbolic test case generation for primitive recur-
sive functions. In Formal Approaches to Software Testing (FATES’04), volume 3395 of
Lecture Notes in Computer Science, pages 16–32, 2004.

9. Matthieu Carlier and Catherine Dubois. Functional testing in the Focal environment. In
Tests and Proofs (TAP’08), volume 4966 of Lecture Notes in Computer Science, pages
84–98, 2008.

10. Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Notices, 35(9):268–279, 2000.

11. Jeremy Dick and Alain Faivre. Automating the generation and sequencing of test cases
from model-based specifications. In Formal Methods Europe (FME’93), volume 670 of
Lecture Notes in Computer Science, pages 268–284, 1993.

12. Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. Test generation based on symbolic
specifications. In Formal Approaches to Software Testing (FATES’04), volume 3395 of
Lecture Notes in Computer Science, pages 1–15, 2004.

13. Christophe Gaston, Pascale Le Gall, Nicolas Rapin, and Assia Touil. Symbolic execu-
tion techniques for test purpose definition. In Testing of Communicating Systems (Test-
Com’06), volume 3964 of Lecture Notes in Computer Science, pages 1–18, 2006.

14. Marie-Claude Gaudel. Testing can be formal, too. In Theory and Practice of Software
Development (TASPOFT’95), volume 915 of Lecture Notes in Computer Science, pages
82–96, 1995.

15. Marie-Claude Gaudel and Pascale Le Gall. Testing data types implementations from
algebraic specifications. In Robert M. Hierons, Jonathan P. Bowen, and Mark Harman,
editors, Formal Methods and Testing, volume 4949 of Lecture Notes in Computer Science,
pages 209–239. Springer, 2008.

16. Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems for structured spec-
ifications with observability operators. Theoretical Computer Science, 173(2):393–443,
1997.

17. Claude Jard and Thierry Jéron. TGV: theory, principles and algorithms. a tool for the
automatic synthesis of conformance test cases for non-deterministic reactive systems. Soft-
ware Tools for Technology Transfer (STTT), 6, 2004.

18. Pieter W. M. Koopman, Artem Alimarine, Jan Tretmans, and Marinus J. Plasmeijer.
GAST: Generic automated software testing. In Implementation of Functional Languages,
volume 2670 of Lecture Notes in Computer Science, pages 84–100, 2002.

19. Pascale Le Gall and Agnès Arnould. Formal specification and test: correctness and oracle.
In 11th Workshop on Algebraic Development Techniques (WADT’96), volume 1130 of
Lecture Notes in Computer Science, pages 342–358, 1996.

20. David Lee and Mihalis Yannakakis. Principles and methods of testing finite state machines
- A survey. In Proceedings of the IEEE, volume 84, pages 1090–1126, 1996.

21. Guillaume Lussier and Hélène Waeselynck. Proof-guided test: an experimental study. In
International Computer Software and Applications Conference (COMPSAC’04), pages
528–533. IEEE Computer Society, 2004.

22. Patŕıcia Machado. On oracles for interpreting test results against algebraic specifications.
In Algebraic Methodology and Software Technology, volume 1548 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1999.

35

23. Patŕıcia Machado. Testing from structured algebraic specifications. In Algebraic Method-
ology and Software Technology (AMAST’00), volume 1816 of Lecture Notes in Computer
Science, pages 529–544, 2000.

24. Patŕıcia Machado and Donald Sannella. Unit testing for Casl architectural specifica-
tions. In Mathematical Foundations of Computer Science, volume 2420 of Lecture Notes
in Computer Science, pages 506–518, 2002.

25. Bruno Marre. LOFT : a tool for assisting selection of test data sets from algebraic speci-
fications. In Theory and Practice of Software Development (TAPSOFT’95), volume 915
of Lecture Notes in Computer Science, pages 799–800, 1995.

26. Peter D. Mosses. CASL Reference Manual, The Complete Documentation of the Common
Algebraic Specification Language, volume 2960 of Lecture Notes in Computer Science.
Springer, 2004.

27. Alexandre Petrenko, Sergiy Boroday, and Roland Groz. Confirming configurations
in EFSM. In Formal Methods for Protocol Engineering and Distributed Systems
(FORTE’99), volume 156 of IFIP Conference Proceedings, pages 5–24, 1999.

28. Marc Phalippou. Relations d’implantation et hypothèses de test sur les automates à
entrées et sorties. PhD thesis, Université de Bordeaux, 1994.

29. George A. Robinson and Larry Wos. Paramodulation and theorem proving in first-order
theories with equality. Machine Intelligence, 4:133–150, 1969.

30. Vlad Rusu, Lydie du Bousquet, and Thierry Jéron. An approach to symbolic test gen-
eration. In 2nd International Workshop on Integrated Formal Method (IFM’00), volume
1945 of Lecture Notes in Computer Science, pages 338–357, 2000.

31. Jan Tretmans. Testing labelled transition systems with inputs and outputs. In Interna-
tional Workshop on Protocols Test Systems (IWPTS’95), 1995.

